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Our recent investigation led to the conclusion that there is much agreement among theories of the ex-

citation transfer:

the generalized master equation (GME), the Haken-Strobl-Reineker stochastic-

Liouville-equation theory, and the Grover-Silbey microscopic theory. Trapping effects influence
memory functions entering the GME. Decoupling of the rest of the system from the sink in the nearly
coherent regime for large trapping rates changes the form of the pausing-time-distribution functions and
probability densities in the continuous-time random-walk method.

I. INTRODUCTION

In recent years, considerable interest has been concen-
trated on the theory of coupled coherent-incoherent exci-
tation transfer and several different treatments have been
developed: the generalized-master-equation (GME)
method,! ° stochastic approaches by Haken, Strobl, and
Reineker (HSR) based on the stochastic Liouville equa-
tions,'°”!* the continuous-time random-walk (CTRW)
method,'>!¢ and nonstochastic microscopic models of Sil-
bey (GS) and co-workers.!” ™2

We have contributed to the development of excitation-
transfer theory in several directions. We have thoroughly
investigated the memory function (MF) w,,,(¢#) which
enters the generalized master equations in various re-
gimes of the excitation transfer. We derived?® ?° the
coherent memory functions for general finite systems, as
well as their relationship to so-called propagators. Calcu-
lation of the memory functions from exact energies and
eigenstates implies considerable changes in the quantum
yield of the guest molecule. When the energy difference
between the guest and host molecules increases, the exci-
ton tries to avoid the trap and prefers to move within the
unperturbed part of the system.

The interaction of the excitation with a bath has been
modeled by the interaction with phonons. Our method of
the calculation of w,,,(¢) was based** ™34 on a summation
of special kinds of divergent (in the limit #— <) terms in
the perturbation expansion of w,,,(¢). The most diver-
gent terms yield w,,,(¢) in the form of the rescaled
coherent memory functions with rescaled transfer in-
tegrals J,,,,. Further corrections are due to less divergent
terms. We derived these corrections for arbitrary lattices
composed of equivalent sites and for the nearest-neighbor
transfer integral only. We obtain memory functions
which have a two-channel form with two different decay
times and different ranges of individual components in
real space.

In the first channel the pronounced role of the long-
range coherent memory functions is preserved, while the
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second channel corresponds in the long-time limit to
phonon-assisted hops with a range given by J,,,,,7O0.

For general J,,, and arbitrary systems, we were able to
reproduce (to second order) the lowest-order perturbation
result by Kenkre and Rahman.>® The correspondence is
lost, however, with the semiphenomenological extension
of the Kenkre- and Rahman theory to infinite order [for-
mula (2.90) in Ref. 6], as well as the usual phenomenolog-
ical inclusion of the influence of photons via a multiplica-
tive exponential damping factor in front of the memory
function [formula (2.71) in Ref. 6]. Our results also ex-
tend and modify the conclusion given by Sokolov and
Hyznyakov in Refs. 36—-38. It has been shown that the
pure coherent memory functions also play a crucial role
in the noncoherent regime of the excitation transfer.

These new results call for a revision of some of the con-
clusions given by Kenkre® % about the relationship be-
tween the GME, GS, HSR, and CTRW methods which
were based just on the lowest-order perturbation results’
for a dimer. We have shown® that there is greater agree-
ment between various theories considered than their
diverse structures might lead us to believe and then this
could have been guessed from the result of Kenkre® ™ ® us-
ing only the lowest-order results for memory functions
w,,,(t) (Ref. 35) in the dimer.

The formal correspondence between the GME and
HSR theories also led to the reconsideration of the prob-
lem of how to include a trap (here modeled as a sink) into
the GME. Our results differ appreciably from those pre-
viously derived.

Pearlstein and co-workers recognized that the
consequences of the sink on the energy-transfer processes
are different in the coherent and incoherent regimes. For
a long time this fact has not properly been taken into ac-
count®*~*" in the GME treatment.

Cépek and Szdcs*® pointed out the necessity of “trans-
formation” of memory functions in the presence of the
sink. They also gave a prescription for a proper inclusion
of the sink into the HSR method. This led us to apply
the HSR equations in the computer modeling of the exci-
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tation transfer in photosynthetic systems.** =33

Recently, we succeeded®**¢ in deriving the form of
the pure coherent memory functions in the presence of
the trap (in the full sink model) and the consequences on
the excitation transfer.’* The case of the semi-infinite
chain was considered in Ref. 57.

Kenkre, Montroll, and Shlesinger'®> concluded from
their preliminary investigations that there is full
equivalence between the GME and CTRW methods.
Klafter and Silbey*®? tried to extend the CTRW method to
all regimes of the exciton transfer. On the other hand, we
have shown that correspondence between the GME and
CTRW theories can be recovered from the mathematical
point of view only for energetically homogeneous sys-
tems. The strange behavior of “probabilities,” which
enter the CTRW theory,® ! forces us to question the
applicability of this method for computer modeling in
this case of the quasicoherent regime, and disproves the
usual physical interpretation of the formal CTRW equa-
tions in this case. On the other hand, because of the role
of the pure coherent memory functions in the non-
coherent regime of the excitation transfer, it is necessary
to investigate the influence of the trap (sink) on the
pausing-time-distribution functions and probability densi-
ties entering the CTRW.

The aim of this paper is to extend our recent investiga-
tions®! in CTRW method. The relationship among vari-
ous theories of the excitation transfer [GME, stochastic
Liouville equation (SLE), and GS] is explained in Sec. II.
The description of the trap in the full sink model, which
is based on the correspondence of the GME and HSR
theories, is presented in Sec. III. The CTRW treatment
of the trap in the full sink model is given in Sec. IV.

5

II. RELATIONSHIP BETWEEN THEORIES
OF EXCITON TRANSFER
WITH EXCITON-PHONON INTERACTION

A. Generalized-master equation method

In general, the density operator p satisfies the
Liouville—von Neumann equation

-§£=%[H,p]zz;p_ @.1)

Yot

Here H is the Hamiltonian of the system and L is the
Liouville superoperator.

One can use the Nakajima-Zwanzig equation!™° for
projection on a relevant part of the density operator,

3pp (1) .
p;’, =—iDLpD(t)—fo’dTDLe—”QLQLpD(t—r) ,
2.2)
Q=1-D.

The kernel of the integrals is the so-called (superoperator)
memory function. The initial term [not shown in (2.2)] is
omitted as a consequence of properly chosen initial con-
ditions (see below).

Having chosen a proper diagonalizing form of D, the
term —iDLpj, drops out (the presence of the trap is not
yet considered), matrix elements of the operator pp, =Dp
become proportional to site-occupation probabilities
P, (t), and matrix elements of the superoperator MF are
the memory functions w,,,(¢) in the usual sense. The for-
malism of the projection superoperator D employed in
the derivation of (2.2) from (2.1) (Refs. 62 and 6) enables
us to follow the site-occupation probability and thus the
excitation migration. Generally, it is necessary to include
the influence of phonons or another bath.

For a single exciton in a periodic linear chain interact-
ing linearly and locally with phonons, the usual small-
polaron Hamiltonian reads

H=H,+H,,+H,,, (2.3)
where
H,=73 e,a;ra,—i- > J,sa:as ,

r r#s
Hy,=3 hwkb:(bk ,
k
1 ,

Hepn=~ %gkexp(lk-rn Yiwa)a, (b, +bT,) .
We can rewrite the Hamiltonian as

H=H,+¥#, (2.4)
with

Hoy=3e,ala,+H, +H,
r

and
H=7 J,sa:ras .
r#s

H, can be directly diagonalized, and the corresponding
eigenstates and eigenenergies are

Hy
lmp)= I’;I \/l,u_' bl + Vljv-gkexp(ik-rm) exp %Nngexp(ikTm)(bk—bT_k) al|lvac) , p,=0,1,2...,
K K
(2.5)
(2.6)

1
Em#=8m + zhwk/‘k_ﬁ zﬁwk|gk|2 .
k k
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Let us assume that the excitation is initially localized
at a specific site and that the lattice is relaxed around it
with the initial lattice density matrix pffv. Then (as men-
tioned above) the initial condition term [already dropped
in (2.4)] really disappears.’!

We derived®® ™34 the following form for the memory
functions [just for equivalent sites (g,, =0) with nearest-

neighbor hopping integral J]:

Wiy (1) =W IN(1) +wincoh(y) | 2.7
where
wxoh(f)=exp(—2TDwSND|, _;

‘ T,
w1 =272 (Reexplh,, (0] 1) .

Here
B ()= 3 |gy [{ 1 —cos[k-(x,, —1,)]]
N k

X [ng(fioy expliogt)]
+[1+ng(fio)exp(—iwgt)],
np(z)=[exp(Bz)—1]7!,
- J=Jexp[—h,,,(0)/2] for nearest neighbors ,

mn .
0 otherwise ,

2r=zz(7/ﬁ)2f0+°°{Reexp[hm,,(t)]—l} ,
m,n nearest neighbors (2.8)

(z is the coordination number, i.e., the number of the
nearest neighbors to a given site).

<V(t1) V(tzk_1)>=0 >

2k
(V) - Vity))= S AV V) V(ty) - V(g

1=2

which means that any correlation function is either zero
or is determined by the pair correlation function
(V(t)V(¢t')). Further, it is supposed that V(z) is a §-
correlated (white-noise) Markov process, i.e.,

(Vn £V, (2,) ) =8(2, —1,)2A (2.10)

mnpq. *
With the Haken-Strobl-Reineker!? parametrization

Amnpq :Ymnsmqsnp +77mn8mp8nq( 1 _amn) ’
Ymn=Vnm > 77mn:77nm >

(2.11)

the HSR stochastic Liouville equations for the single-
exciton density matrix pj,,(¢) has the following form (tak-

ing 7,,, =0);
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Thus the structure of the memory function is two
channel; the first term w3®(t) corresponds to a
quasicoherent long-range propagation with a small ex-
ponential damping of the rescaled pure coherent memory
function, while the second one is (in our approximation)
short ranged and results from phonon-assisted processes.
The decay constants of the two channels are entirely
different.

We calculated® the coherence time 7,=(2I") ! of the
excitation and contributions of each of the two channels
to the excitation transfer and coherence time of the exci-
tation for a broad range of input parameters, e.g., tem-
perature T, bare bandwidth ~J, excitation-phonon cou-
pling g, and optical-phonon frequency hw, and in the
Markovian approximation applied to the second channel
of the MF.

We showed the mutual connection of two channels in
the memory functions w,,,(¢) in different regimes of the
excitation transfer (coherent, quasicoherent, and in-
coherent).

The connection between the integral of the second
term in (2.7) and the damping constant 2I" of the first
term [see (2.8)] has a physical meaning in relation to the
stochastic-Liouville-equation method, as can be seen in
the next section.

B. Stochastic-Liouville-equation method

In the stochastic-Liouville-equation method, the
influence of vibrations (forming a genuine thermodynam-
ic bath or reservoir) is substituted by an external stochas-
tic potential field ¥ (¢) with prescribed statistical proper-
ties.

It is assumed that V(z) is a Gaussian stochastic pro-
cess, i.e.,

2.9)
I)V(t]+1)’ c V(lzk)> , k=1,2,...,

9 e :_L e
atpmn(t) h([He’P (t)])mn

F8,n 2 [27 mpPpp (1) =2 pmPrum ()]
p

—(l_amn )rmn fnn(t) ’
i (2.12)

2rmn = 2 [7rm +7rn ]=2rnm *

r

In periodic systems, I',,,, becomes independent of m and
n (T",,,=T). In nonperiodic systems (finite chains, etc.),
this m,n dependence survives.

Reineker and Kiihne'> ! thoroughly discussed vari-
ous regimes (pure coherent, pure incoherent,
quasicoherent, incoherent) of the excitation transfer
governed by different parts of the HSR equations.
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Capek and Szocz%%% generalized this treatment by in-

troducing the generalized stochastic Liouville equation
model (GSLEM) by replacing the classical field V(¢)
(leading just to induced transitions) by a quantum field
(yielding both induced and spontaneous transitions).
Thus the symmetry relations v,,, =¥ ,,, become invalid
and are (in the lowest order in J,,,) replaced by detailed
balance conditions. In the Haken-Strobl-Reineker pa-
rametrization, however, (2.12) remains valid.

C. Grover-Silbey microscopical theory

The theory (GS) developed in the 1970’s by Silbey and
co-workers!’ "2 is one of the earlier microscopic and,
simultaneously, most advanced theories of exciton migra-
J

D= 2 T[S 1, () F Gy (= Gy (D=

F2
_Z%VI(t){Zgnm(t)"[gnH’m+1(t)+9n

D. Conclusions

Kenkre® and also Hemenger, Lakatos-Lindenberg, and
Pearlstein®? recognized that the structure of the GS equa-
tions (2.14), if a Markovian approximation takes place,
corresponds to that of the HSR (2.12), with

Vmner =Ty () /7
and other y,,, being zero, including, in particular,

Vnn(=70)=0. (2.15)
The coincidence in this form cannot hide some physical
differences such as lack of local scattering in the GS
theory, the presence of the rescaled transfer integral J in
the GS equations in contrast to the bare J in the HSR
counterpart (2.12), and so on. They are certainly a result
of the different schemes used; the HSR theory (2.12) (and
a similar equation for the GSLEM) is based on expansion
in terms of the exciton-phonon coupling; i.e., if one
resorts to some approximations, the HSR theory is good
just when this coupling is weak enough. On the contrary,
(2.14) is based on expansion in powers of the rescaled (i.e.,
renormalized owing to the exciton-phonon coupling) ex-
citon resonance integrals (or exciton bandwidth) so that
the Grover-Silbey approach should be good when this
coupling is rather strong.

The parameters y,,, in the stochastic Liouville equa-
tions are phenomenological parameters, while the
Grover-Silbey theory'® gives for y,(t) a microscopic ex-
planation which is exactly the same as obtained by us
from the microscopic definition of the memory functions.
One can say that GS and HSR theories, although almost
formally equivalent, are two complementary approaches
with different areas of applicability.

Let us point out that Reineker and Kiihne succeed-
ed!?>"1* in the derivation of the memory functions which

*l,mfl(t)]snm _(Sn,m+1+8n,m—l)gmn(t)} .

tion in molecular crystals.
Grover and Silbey'® were looking for

9, (1)=40| 4o 4] (1) 4,,(2)) 4]]0) . (2.13)
Here |0) denotes the electronic as well as vibrational
ground state and A4 ’:r creates the exciton (carrier) polaron
at the nth molecule, while -+ ) denotes as thermal
phonon average.

The equations at which Grover and Silbey arrived
(after some manipulations and approximations; see Ref.
18) have for a perfect infinite molecular crystal in the nar-
row phonon band limit (Einstein model of dispersionless
phonons) with just the nearest-neighbor resonance in-
tegral J in one dimension the form

gn,m—l(t)]

(2.14)

f

should correspond to HSR (GS) equations. They derived
their form with an exponentially damped quasicoherent
channel and incoherent (hopping) one. They also showed
that the inverse coherence time of the excitation (damp-
ing of the first channel of the memory function) is given
by P'=zy,+y,.

We see a direct correspondence to our result (2.7) and
(2.8). The coherence time entering the quasicoherent
part of the memory function is given by the integral of
the second (incoherent, hopping) part. The main
difference is that in our theory, as in the theory of Grover
and Silbey, y,=0 for the Hamiltonian with a linear local
excitation-phonon interaction.

We concluded®® that in the case of a linear local
excitation-phonon interaction there is only one form of
the memory functions (from many principal possibilities
discussed by Kenkre [(3.4a), (3.9), and (4.4)—(4.6) of Ref.
8]) which can be derived microscopically and correspond
exactly to the GS theory after making the Markovian ap-
proximation. All further discussions®~® concerning how
to connect the Kenkre lowest-order result for memory
functions with the GS theory® are completely unneces-
sary.

Recently, we tried to explain the differences between
the HSR and GS theories (the lack of the parameter 7, in
the GS theory, the presence of the bare J in the HSR
treatment, etc.) from the microscopic viewpoint and we
suggested a way for the unification of these theories.®>

III. EXCITON TRANSFER AND TRAPPING

In many applications it is necessary to describe not
only the exciton transfer but also the exciton trapping. It
has been very popular® to work just with the original sys-
tem (as if there were no finite-lifetime or trapping effects)
and to include these effects by additional terms to the un-
changed GME. for example, Eq. (2.2) then reads
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d _ t _
o ,,,(t)—ngm)fto[wm,,(t )P, (7)

—w,,,(t —=7)P,, (7)]dT—2yPy(1)8,,, ,
(3.1)

assuming that site zero is either connected with, e.g., a
trap to which the exciton (carrier) located at this site can
escape from the system with the escape rate 2y. The
channel via which the exciton or carrier may thus escape
from the system may be called a sink and (3.1) is then the
so-called sink model. It is very easy to generalize (3.1) to
a greater number of sinks which may be connected with
any site (molecule) in the system, with possibly different
sink parameters. One should realize that, in accordance
with the physics of such processes, (3.1) implies

gt—zpm(z)=—2y1’0(t)so, (3.2)

probabilities P, (t)=p,,..(t) of finding the exciton (car-
rier) at individual sites then remain non-negative. The re-
sults of Capek and Szdcz indicated that inclusion of the
sink effect to the GME equation for probabilities should
consist of two steps: (1) inclusion of the additional sink
term as in (3.1) and (2) changing the memory functions in
the vicinity of the sink.

Numerical modeling in the framework of the sto-
chastic Liouville equations indicated that this second
effect (suppression of the memory functions) leads to an
interesting behavior of the quasiparticle (exciton, carrier).
The quasiparticle tends to avoid (at least partly) the sites
(molecules) connected to the sink (i.e., places where it
could be canceled or captured) as far as the sink parame-
ter 2y exceeds a certain critical value. Increasing the
sink parameter 2y to infinity then dynamically splits off
completely those molecules which are connected to the
sink. On the other hand, any change of the memory
functions in the vicinity of the sink is very undesirable
from the technical point view (e.g., the periodicity is lost).

To clarify the influence of the trap (sink) on the
behavior of the MF’s, we generalized54 our direct
method®® for the calculation of the coherent memory
functions and investigated several simple sink models.’?>3
Again, these works confirmed the significant
modifications of all the memory functions as a conse-
quence of the presence of the sink. The unperturbed
memory functions for these finite systems are periodic in
time.?® Once the sink is introduced, the memory func-
tions lose their periodicity. In the trimer with the sink
appended at one end (s =3), an increase of the trapping
rate leads to an effective decoupling of the rest of the sys-
tem (dimer) from the sink site. The decoupling manifests
itself not only in the fact that as far as 2y >0 and
P, (t)=0. So the total probability of finding the exciton
(carrier) in the system is not only nonconserving, but it
should always monotonically decrease. This should be
the basic property of the sink model which might be well
accepted in many situations. Let us mention that in cal-
culating experimental integral quantities such as, e.g., the
quantum yield, the sink model has been found to be very
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FIG. 1. Memory function w,(¢) for a trimer with the sink
[—2yP5(1)].

useful (see, e.g., Ref. 5 and the literature quoted therein).
Pearlstein and co-workers showed*~* the different
consequences of the presence of the trap (sink) on the ex-
perimental quantities in different excitation-transfer re-
gimes (coherent, quasicoherent, and incoherent). This
fact has not been for a long time taken properly into ac-
count®* ™47 in the excitation-transfer treatment by the
GME method. Capek and Szbcz*® pointed out the neces-
sity of a ‘“‘transformation” of the MF’s. The absence of
such a transformation could lead to completely erroneous
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FIG. 2. Memory function w3(¢) for a trimer with the sink
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results. The serious problem is that the sink model in the
Kenkre-Wong-Paris treatment (we call it the restricted
sink model) yields probabilities which are, in the vicinity
of the coherent regime, not necessarily non-negative for
any t. [Thus the inequality (3.2) may be also disturbed.]

Capek and Szocz® showed that proper inclusion of the
sink effect should be connected, at least, with adding the
term

1

- —[8m0+8n0]pmn

2 (3.3)

to the right-hand side of (2.17). (Here we mean the situa-
tion when the sink is connected just with site 0; a possible
and the most direct generalization to any greater number
of sites connected with such sinks means just to take a
sum of analogous terms.) Numerical studies** >3 then
confirmed that the exciton moves entirely in the dimer
and avoids the sink site. This could be understood if the
memory functions w;(¢) and w,;(¢) were exponentially
damped as suggested by Capek and Szdcz.*® The result,
however, is that the memory function in the rest of the
system (here a dimer) is transformed to that for the isolat-
ed dimer. Thus our paper’® questioned the results of
Kenkre and Wong*® (in which no modification of the
memory functions due to the sink are introduced) mainly
for large trapping rates and for finite systems at least.
Recently, we demonstrated the sink avoidance effect also
in the excitation transfer along a semifinite chain.’’ The
influence of two different (host and guest) lifetimes on the
excitation transfer was investigated in Ref. 55.
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FIG. 3. Memory function w,;(¢) for a trimer with the sink
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IV. CTRW TREATMENT

A. GME and CTRW methods

The equivalence of the GME and CTRW methods was
suggested by Montroll and co-workers.!>!® We have
looked at it in more detail.®®

Using the retarded Fourier-Laplace transformation

F0ewm= [ forivexpl —i(w+i8) 192 | (@.1a)
— o0 2T
f“’+f6=f0+°°f(t)exp[i(w+i5)t]dt (4.1b)

[O(?) being the Heaviside step function =0, 1, or 1 for
t <0, t =0, or t >0, respectively], one can easily turn
(2.2) to

2.0 — ’[//1

v/J=0.5
0.0 —
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
] »/I=1.0
0.0 —
—-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0
v/J=5.0
0.0 —
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
v/3=20.0
0.0 —
—2.0 T T T T T T T T T ]
0.0 10.0 20.0

tJ

FIG. 4. Pausing-time-distribution function ¢,(¢) for a trimer
with the sink [ —2yP;(1)].
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. , wz
P;:i 1 2 Fm) — | Pm(2o)explizty)

z —iz +2r(¢m)w’m

wZ
+ 3 : Lo —PZ,
n(Em) 12T Wi
4.2)

z=w+ib ,

with wZ, and P, bing the transformations of w,,,(#) and
P, (t). Denoting

iz
v, =1+— P
—iz+3 e Wim
z
0z = Winp
mn . z
2+ 3 kWi

and using the reciprocal transformation (4.1a), one turns
(4.2) to

(4.3)

(4.4)

—2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0 —
»/3=1.0
0.0 —
—-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0
v/1=5.0
0.0 —
—2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
v/3=20.0
0.0 —
—2.0 T T T T T T T T T |
0.0 10.0 20.0
tJ

FIG. 5. Pausing-time-distribution function ¥,(¢) for a trimer
with the sink [ —2y P;(1)].

PAVEL HERMAN AND IVAN BARVIK 48

t—t
P, ()= [1—[0 °¢,,,(r)d7]1>m(to>

t—to
+ 3 [ Qum(nP(t—7)dT. 4.5)
n(#m) 0

Let us as usual interpret 1, (7)d T as a probability [i.e.,
¥,,(7) is the probability density] that there has been a
hop from site m to anywhere else in the time interval
(7,7+d ) after the time at which the quasiparticle (exci-
ton, charge carrier) has certainly been found at m; let
Q. (T) be the same quantity for the hop n—m. Then
(4.5) is the total balance condition serving as a basis for
the continuous-time random-walk method. It is clear
that if (4.5) were (in the above way) properly interpreted,
this would be an indispensable basis for modeling the ex-
citon or carrier dynamics.

Though formally correct, (4.5) cannot be in general
well interpreted as above. Objections against this inter-
pretation are as follows.

2.0 o ’lﬁ
3
v/1=0.5
0.0 —\/\,
—-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0
L v/J=1.0
0.0 4
4
—2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0 —
v/J=5.0
0.0
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0 —
v/J=20.0
0.0
—2.0 T T T T T T T T T 1
0.0 10.0 20.0

tJ

FIG. 6. Pausing-time-distribution function ¥;(¢) for a trimer
with the sink [ —2y P;(2)].
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From the above interpretation, one easily deduces that

S Qun(m)=9,(1), (4.6a)
m(#*n)

ie.,
2 Q=Y. (4.6b)
m(#n)

From (4.3) and (4.4) we see that (4.6b) is true just when
S r=mWiy [ice., also 3., W, (2)] is independent of m.
Unfortunately, this is in general not true; it applies only
for systems of equivalent sites (e.g., perfect molecular
crystals made of identical molecules in physically
equivalent positions). In this case (but not in general),
both sides of (4.6a) become independent of » so that, from
(4.5), we obtain

2.0 Qi2
v/J=0.5
0.0
—-2.0 T T T T T T —T T T 1
0.0 10.0 20.0
2.0 7
2/3=1.0
0.0 —
a
—2.0 T T T T T T T T T !
0.0 10.0 20.0
2.0
v/J=5.0
0.0 —
—2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
v/3=20.0
0.0 —
—2.0 T T T T T T T T T ]
0.0 10.0 20.0

tJ

FIG. 7. Probability density Q,,(¢) for a trimer with the sink
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> P.(1)=1, 4.7)
m

as far as 3, P,(t')=1 or any t'E(¢y,t) (number-of-
quasiparticles conservation law). So, if at all, CTRW
methods cased on (4.5) are justified just for systems of
equivalent sites.

The second objection against the above interpretation
[i.e., CTRW methods based on (4.5)] is that both 1,,(z)
and Q,,,(t) must be non-negative. Namely, this is the
point which excludes any applicability of CTRW
methods based on (4.5) (owing to its improper interpreta-
tion) for the coherent (or quasicoherent) regime, in accor-
dance with the introductory discussion. The problem is
that the inequalities

(D=0, Q,,(1)=0

do not apply for every ¢ in the coherent or quasicoherent
regimes.

(4.8)

20 Qi3
v/J=0.5
0.0 _/—\/\/\/\/—V
-2.0 T T T T T T T T 1
0.0 10.0 20.0
2.0
] v/I=1.0
—
0.0 ﬂ
-2.0 —T T T T T T T T T ]
0.0 10.0 20.0
2.0 —
v/3=5.0
0.0 —
—2.0 T T T T T T T T T —
0.0 10.0 20.0
2.0 —
v,/3=20.0
0.0
-2.0 T T T T T T T T T —
0.0 10.0 20.0

td

FIG. 8. Probability density Q,3(¢) for a trimer with the sink
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We illustrated® this shortcoming for a symmetric di-
mer and trimer.

Thus, in contrast to standard opinion, CTRW methods
are not in general equivalent to the GME and they are
well applicable in computer modeling [as far as being
based on (4.5) with the above interpretation] for systems
of equivalent sites and, simultaneously, sufficiently in-
coherent transfer only.>*3°

B. Trapping in the CTRW treatment

Recently, we started to investigate®' the influence of
the sink in finite systems on the time dependence of ¥,,(¢)
and Q,,.(t). We used exact forms of the coherent
memory functions given in Ref. 61.

The Hamiltonian H of the finite system which includes
an effect of the sink reads

H;=¢;,—iyd; ,

4.9)
H, =H}=J, foriFk .
2.0
Qes 7/1=0.5
0.0 —/W\/\/\N\———‘
—2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
»/1=1.0
0.0 _/\/\/—\_,_
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0 1
v/1=5.0
0.0 _/\/\/\
—2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
5/1=20.0
0.0
—2.0 T T T T T T T T T ]
0.0 10.0 20.0

tJ

FIG. 9. Probability density Q,,(¢) for a trimer with the sink
[—2yP;(0)].
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The coherent memory functions for finite system with
the sink have the form®!

21 )
ot

0
W (1)=—"3 ro(m,n)e’’* , (4.10)
a=1

where o, r,, and I, are given by the Hamiltonian H.

We restricted® ourselves to the simple example, name-
ly a trimer, to keep the problem also analytically solvable.
In a symmetric trimer there are two possibilities to place
a sink: in the center (s =2) or at the end (s =3).

The first case was investigated thoroughly in Ref. 61
using the memory functions given in Ref. 54.

The memory functions w,(¢), w;3(¢), and w,3(¢) ob-
tained analytically for the case that the sink is placed at
the end of timer in Ref. 54 are presented in Figs. 1-3.

Fourier transformation of (3.1) may be rearranged as

2.0 — Q
23
v/J=0.5
0.0 —/\/\/\/\/\/\N—\
-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0 —
v/J=1.0
0.0 _/\/\/—\h
—2.0 T T T T T T T T T 7
0.0 10.0 20.0
2.0
5/3=5.0
0.0 _f\/\_ﬁ
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
v/3=20.0
00 —Mm —
—2.0 T T T T T T T T T g
0.0 10.0 20.0

td

FIG. 10. Probability density Q,;(¢) for a trimer with the sink
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2’)/8”” +2r(¢m)wrm(z)

Pm(z)zi -
z —iz+2Y8,5 T, (ki)W (2)
X P, (t5)e"™"
w,, (z)
+ , . P,(2),
n(gm) —iz 278, + 3 Wrm (2)
4.11)
with
2v8,,, + w,,(z)
Illm(Z): : ms Zr(#&m) m 4.12)
—iz+2y8,, + 3 (o) Wrm (2)
and
O (2)=+ Wonn (2) (4.13)
z)= . .
mn —iz4+2Y8,, 3 )W (2)
2.0
Qa1 5/1=0.5
0.0 -
—-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0 —
v/J=1.0
0.0 +— —T——
_20 T T T T | T T T T ]
0.0 10.0 20.0
2.0 —
v/1=5.0
0.0
—2.0 T T T T T T T T T !
0.0 10.0 20.0
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0.0
_2'0 T T T T | T T T T ]
0.0 10.0 20.0

td

FIG. 11. Probability density Q3;(?) for a trimer with the sink
[—2yP5(2)].
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Contrary to the results of Ref. 61, we did not succeed
for a trimer with the sink at the end in the analytical
treatment of the functions v,,(¢) and Q,,,(¢). We found
them only numerically.

The time dependences of the pausing-time-distribution
functions ,,(¢) and probability densities Q,,,(t) are
presented in Figs. 4-12.

V. CONCLUSIONS

As stated in the Introduction, this paper addresses a
specific problem in the exciton transfer in molecular ag-
gregates, namely, the influence of the trap (here modeled
according to Kenkre’s suggestion as a sink®) on the
pausing-time-distribution functions ¥,,(¢) and the proba-
bility densities Q,,,(¢) of the continuous-time random-
walk theory.

Investigation of the relationships among different
theories of the excitation transfer pointed out the crucial

2.0 — Q
32
v/J=0.5
0.0 —/‘\/¥
—2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0 4
5/3=1.0
0.0 4 \___—
—-2.0 T T T T T T T T T 1
0.0 10.0 20.0
2.0
5/1=5.0
0.0 |~
-2.0 T T T T T T T T T ]
0.0 10.0 20.0
2.0
~/1=20.0
0.0
—2.0 T T T T T T T T T ]
0.0 10.0 20.0

tJ

FIG. 12. Probability density Q;,(¢) for a trimer with the sink
[—2yP5(2)].
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FIG. 13. Pausing-time-distribution function ¥,(¢) for a di-
mer.

role of the pure coherent memory functions also in the
noncoherent regime of the excitation transfer.

We used the pure coherent memory functions w,,,(¢)
connecting different sites of the system in the derivation
of the CTRW counterpart of the GME formalism. Our
generalized method which we used Ref. 61 for obtaining
the pure coherent memory functions w,,,(¢) entering as
kernel in the Nakajima-Zwanzig equations is based on a
direct inversion of the superoperator expression. This al-
lowed us to investigate thoroughly the memory functions
in the general finite system in the presence of a trap
modeled as a sink.

A description of the exciton transfer in the presence of
a trap requires®! for a sufficiently large trapping rate 2y
more pronounced modification of the generalized master
equation (2.2) than suggested by Kenkre.® One has not
only to append the sink term to the GME but also to use
the proper form of the memory functions w,,,(t), in cal-
culation of which the influence of the sink was taken into
account. This results also in a form of the causing-time-
distribution functions 1,,(¢) and the probability densities
Qonn (1)

We presented dramatic changes of the analytical form
of the pausing-time-distribution functions ,,(#) and
probability densities Q,,,(¢) which take into account the
influence of the sink. We showed®! that the presence of
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the sink leads to a transformation of not only those
memory functions which connect the sink with other
places. The decoupling of the rest of the system from the
very strong sink is not only owing to a diminishing of the
memory functions connecting the sink with the rest of
the system.

In Figs. 1-3 is shown that in a trimer in which the sink
influences () one end (site 3) the memory function w,(z)
transforms to that of the rest (dimer) of the system.

Our calculation (Figs. 4—12) shows that in the time
dependence of ,,(¢) it is reflected that the coherent
memory function are generally losing their periodic char-
acter with increasing of the trapping rate 2y and memory
effects are preserved for shorter times.

We conclude that in some regimes the pausing-time-
distribution functions and the probability densities are
negative for some times so that their usual interpretation
as probabilities becomes dubious.

Hence we repeat here our former conclusion®®®! that
though the mathematical form of (4.5) as the CTRW
counterpart of the GME is doubtless, its physical inter-
pretation and consequently its practical use in, e.g., the
Monte Carlo modeling of the excitation transfer may get
into trouble in the near-coherent regime.

Our conclusions are based on results for finite systems.
To close the investigation of the connection between the
CTRW and GME (and other methods), it would be desir-
able to obtain the pausing-time-distribution functions
¥,,(t) and probability densities Q,,,(¢) for infinite systems
taking into account the two-channel form of memory
functions.

Preliminary results for the time dependence of the
pausing-time-distribution function ¥, (¢) in symmetric di-
mer during the transition from the pure coherent to in-
coherent regime of the excitation transfer is shown on
Fig. 13. We have used the two-channel form of the dimer
memory function®3?

wi,(t)=a exp(—2bt)+b 8(1) .

The microscopic meaning of the parameters @ and b was
discussed in Ref. 33.
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