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An exact solution is presented for Ising-like transitions in a decorated lattice model of a porous medi-
um. The model is solved by decimation of the spins, leading to a space-filling lattice with renormalized
parameters. The critical temperature is found to vary as 1/InL, where L is the number of sites between
intersections of the spin chains. Some of the critical exponents differ from those of the ordinary Ising
problem. We have also studied the case of a single, infinitely long pore, using both exact and approxi-
mate methods. An exploration of finite-width effects reveals surprisingly small (quantitative) deviations
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from mean-field theory.

The behavior of fluids confined in porous media has re-
ceived much current attention! and yet several phenome-
na have eluded even qualitative understanding. For ex-
ample, the liquid-vapor transition of helium in aerogel®
surprisingly exhibits critical exponents quite different
from the random-field Ising model,? while the onset of
superfluidity shows a marked lack of universality.* Many
different theoretical models have been proposed to ex-
plain certain aspects of the observed results; some em-
phasize single, regular, one-dimensional (1D) pores and
the related wetting phenomena of the fluid in the
confined system,> while others invoke randomness in the
substrate geometry to explain the global behavior of the
fluid on long length scales.®

It is clear that connectivity between different pore-
space regions is required for the fluid to have a phase
transition. However, such a geometrical constraint may
not be sufficient to ensure and characterize singular
behavior of the confined fluid, as the wetting properties of
the substrate may also play an important role. In this pa-
per we investigate the combined effects of confinement,
connectivity and adsorption, all present in porous media.
We shall first consider a simple model system having
these attributes which yields interesting exact results: an
interesting form of finite-size scaling, a phase diagram to-
pology reminiscent of the random-field Ising model, and
some critical exponents which differ from those of the
pure Ising system. We then investigate in more detail a
model involving a single isolated (but infinitely long)
pore; this exhibits a rich phase diagram for intrapore
phenomena, such as wetting and capillary condensation. >

Our models use the lattice-gas approach commonly ap-
plied to address phase transition phenomena. We consid-
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er first an Ising model on a decorated hypercubic lat-
tice”® with Hamiltonian

H=—J3 88 ~-h3¥S;—(h+h)3IS;, (1)
(i,j) i€0 iex
where the spins interact with nearest neighbors ferromag-
netically with energy J. A portion of the lattice is shown
in Fig. 1. There are two types of sites: node sites (denoted
by O) which experience a field 4, and pore sites (denoted
by X) which experience a field (A +4,). The difference is
due to the (assumed attractive) adsorption potential ex-
perienced by the pore sites; the value of 4 is determined
by the chemical potential, or pressure, of the coexisting
vapor external to the system. The lattice is characterized
by a single length scale, L, equal to the number of pore
sites between nodes. L =0 is the ordinary Ising model.
The partition function may be evaluated in two steps;
the first is a partial trace over the intermediate pore sites.
As these sites constitute isolated chains of spins connect-
ed only by node sites, this partial trace can be performed
exactly. The result is an effective Hamiltonian for the
remaining node-site spins:

Heﬂ'

=G+K' 3 SS;+H'3S, . 2)

(i,j);i,jEO i€EO

Second, we need to evaluate the trace over these remain-
ing node sites. Equation (2) is a uniform, space-filling Is-
ing Hamiltonian. The new parameters K’ and H' are ex-
plicit, nonsingular functions of the original variables J, T,
h, and h, and of the pore length L. Thus we know that
the only singularities of the free energy occur at singular
points of the ordinary, space-filling Ising model. Since the
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FIG. 1. Lower right inset depicts a fragment of the model
lattice in two dimensions for L =3. Triangles (squares)
represent K, =J /T, as a function of L for d =2 (3). The straight
line is defined by Eq. (7) the point at which the 1D correlation
length =L.

latter has been much studied (and even solved exactly in
two dimensions), our original problem can now be con-
sidered well understood by this mapping. For example,
criticality will occur in the original decorated Ising lat-
tice when the effective coupling K’ and field H' satisfy
the conditions for criticality in the regular Ising lattice.
Letting the value of K’ at the regular Ising critical point
to be K,(0), the conditions for criticality in the decorated
lattice become

K'(J,T,h,h,,L)=K,(0) , 3)
H'(J,T,h,h,,L)=0 . 4)

These equations determine the critical points of our prob-
lem implicitly.

We consider first the case of no pore-site field, #; =0.
By symmetry, the critical point must occur at 4 =0. In
this case, the partial trace over pore sites generates a sim-
ple, analytic relation between the original coupling in the
decorated lattice, K =J /T, and the effective coupling K.
For pores of length L,

tanhK'=[tanhK ]**! . (5)

Thus, the condition for criticality in the decorated lattice,
Eq. (3), becomes

K,.(L)=tanh~![(tanhK (0))"/‘E+D7] | 6

where K (L) is the critical coupling of the decorated lat-
tice with pore length L. The behavior of this critical cou-
pling constant as a function of InL is shown in Fig. 1.
Note that the reduction of the corresponding critical

temperature T,(L)=J /K (L) relative to the value for the
space-filling lattice T,(0) is quite dramatic: For L =1 the
ratio of these temperatures is 0.438 (0.576) in three di-
mensions (two dimensions). As L diverges, the 2D and
3D values of T.(L) decrease, but have the same asymp-
totic dependence on L. The explanation of this interest-
ing behavior is the following. A line of spins has no or-
dering transition (except at zero temperature). At a tem-
perature T;, the 1D correlation length £ ~%e2J ‘T be-
comes equal to the spacing ~ L between nodes. The in-
terconnections then permit an ordering transition. This
heuristic argument leads to

T.(L)~T, ~2J/In(2L) . (7)

This result is independent of dimensionality and agrees
asymptotically with the exact data in Fig. 1.

The preceding may be extended to the case of intercon-
nected pores of finite cross section L. As each individu-
al pore has a cross-sectional area LY !, one would expect
correlated regions along the pore of characteristic length
oL ¢=ir

I~ , (8)

where o is the surface tension of the pure d-dimensional
system. As in our single site (L, =1) model, we postulate
that criticality will occur when [~L. Assuming
o~oo[T.(0)— T} with u=(d —1)v, we find an implicit
equation for T,(L) of the connected structure

[T.(0)—T (L))~ InL ©)
T.(L) oo L¢1

Equation (9) contains both standard finite-size scaling
(L, — o0, L finite) and 1D scaling (L — «, L, finite). For
the special case of L, =1, for which the exact solution ex-
ists, Eq. (6), Eq. (9) is valid only in the limit L — o. This
is not surprising in view of the simplicity of the heuristic
argument invoked. However, Eq. (9) does indicate that
the relevant combination of length scales governing the
asymptotic behavior is (InL)/L¢~!. Thus, only in the
limit of long, narrow pores would we expect the 1D scal-
ing form to hold.

We have observed similar correlation effects for Potts
spins on a decorated lattice (see Appendix A). In particu-
lar, the absence of any transitions in the decorated anti-
ferromagnetic Potts model (¢ =3) can be traced to the
lack of 1D ordering at T =0.

We now turn to consider the decorated Ising lattice in
the presence of a substrate field 4. In this case, the tran-
sition occurs at A0 and the corresponding magnetiza-
tion at the critical point is nonzero. This is consistent
with the symmetry-breaking effect of the surface field 4 ;
the average field over the whole sample is also nonzero at
the transition. We find from the exact solution that
T.(L) is now driven to zero for sufficiently large 4, as
shown in Fig. 2. This behavior can be understood quali-
tatively by considering the 7' =0 phase diagram for the
original decorated lattice in the (—#h, k) parameter space.
There exist three possible ground states: all spins up [all
sites occupied] or down [empty lattice], and a +/—
phase; pore spins up but node spins down [all but the
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FIG. 2. Schematic phase diagram in (—h,h,,T) space. Shad-
ed surface is the porous medium’s only nonzero T transition.
At T =0, there is also a + /— phase. P is a T =0 triple point
and O’ is the critical point for 4, =0 at a temperature T,(L).

node sites occupied]. These states coexist at a triple point
denoted by P. At finite T, however, only the transition
associated with the line OP remains; there is thus a
threshold value of the substrate field, corresponding to
the value of 4, at P. The absence of the + /— phase at
nonzero T may be understood in terms of the role of 1D
fluctuations; the +/— phase corresponds to isolated
clusters of spins which cannot order for 7 > 0.

While the present calculation exploits properties of the
space-filling (L =0) Ising lattice, the critical exponents
will not be the same, in general, as those of the latter
problem. The reason for this possibly surprising behavior
is that the mapping, while nonsingular, introduces a new
dependence into the pertinent quantities. The usual sym-
metries associated with the conventional Ising transition
have been broken by the substrate field ;. This results
in a nonzero magnetization at the transition and effective
critical exponents. The critical behavior can be deter-
mined from the known scaling properties of the Ising
model. The singular part of the latter’s free energy’
satisfies

Fapg=f (', h)=1f (A 0,0 h) (10)

where the reduced temperature t'=T'/T.(L)—1 and
field h’ are, in this case, functions of 4 and %, as well as
T. Because of these dependences, derivatives of the free
energy with respect to the physical temperature or exter-
nal field will generate linear combinations of the specific
heat and susceptibility (see Appendix B). However, as y,
is the larger of the two scaling dimensions, we obtain
effective critical exponents at specified nonzero 4 and A,
(Ref. 10) for the heat capacity and susceptibility/
compressibility:

a=y'=1—1/5. an

Here 8 is the magnetic exponent and we have used known
relations between Ising exponents. The value of & is 15
(4.82) in two dimensions (three dimensions). These
effective exponents are not equal to either a or y of the
pure system (which would apply only to the special case
of a thermodynamic path for which 4'=0).

In contrast, the order-parameter exponent 3 does not
differ from its Ising value because it is measured along
the system’s coexistence curve, by definition; this au-
tomatically includes the 4 dependence on T in a non-

singular way. Interestingly, the density coexistence re-
gion associated with the transition is narrowed by a frac-
tion f =(dL +1)"! relative to the pure Ising model be-
cause the singularity at the ordering transition arises only
from the node sites, which are a fraction f of the total.
Such a shrinking of the coexistence region, as well as a
reduction of T, have been observed in recent experi-
ments. 2

While the present model takes into account connectivi-
ty in the pore structure, it ignores the nonuniform ad-
sorption potential within the pore. For a planar sub-
strate, a spatially varying adsorption potential gives rise
to wetting and layering transitions and it is interesting to
consider the possibility of such transitions (as well as
capillary condensation) in the more restricted geometry
of a 1D pore.’

We have investigated a single pore with square cross
section, containing L? adsorption sites, and of length L,.
The adsorption potential at r within the pore is approxi-
mated by summing the van der Waals interaction,
—Cg/|r—1'|%, over all sites of a lattice in the space exter-
nal to the pore; the value at a given site, V;, depends on
its position within the pore. We thus have the lattice-gas
Hamiltonian describing the adsorbate-pore system,

H=—J3 nn,—3In(u—V;), (12)
(i) i

where n; =0, 1 and p=Au—3J being the external chemi-
cal potential, Au=0 corresponding to coexistence of the
pure three-dimensional fluid. Our study is complementa-
ry to the work of Liu et al., who considered similar 1D
pores in a canonical ensemble, thus emphasizing the
effects of wetting. !!

To determine the thermodynamic behavior of this
model, we have compared the results from three different
calculational techniques; a mean-field (MF) approxima-
tion, exact enumeration of the free energy using numeri-
cal transfer-matrix (TM) methods'? and direct TM diago-
nalization, which is exact in the limit Lj— .

The mean-field equations can be derived in the usual
way starting from the Bogoliubov inequality. The true
free energy of the system, F, is approximated by the free
energy F calculated with a trial Hamiltonian H,, where

F<Fy,+(H—Hy), . (13)

We ignore thermal fluctuations along the pore but allow
the average occupancy per site {n;) to depend on the
transverse position of the site within the pore. Thus, the
trial Hamiltonian becomes

Hoz—Eﬁini s (14)

where the sum over i is restricted to the L? sites in the
transverse direction and fi; is the mean field at site i.
Minimizing F with respect to the variational parameters
{fi;} results in the set of coupled mean-field equations:

1
(n))=——"—7-—, (15)
1+e P
gi=p—V,+J3(n), (16)
k
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where the sum in the Eq. (16) is over the nearest neigh-
bors of site i in the full three-dimensional space within
the pore. Finally, the square symmetry of the infinite
pore reduces the number of coupled equations [Eq. (15)]
to be solved numerically. By allowing {#;) to depend on
the transverse position within the pore, the mean-field
solution becomes exact in the limit 7—O0.

For such quasi-one-dimensional systems, the transfer-
matrix formalism allows an exact evaluation of the free
energy. We have employed this technique to calculate nu-
merically, but otherwise exactly, the free energy and
hence adsorption isotherms for pores with small cross-
sectional areas. For a pore with L? transverse adsorption
sites, we represent the state of a single layer by a m-

dimensional vector, where m =2L1. The free energy can
be evaluated by numerically updating this vector layer by
layer along the pore!? or by direct diagonalization of the
resulting m Xm transfer matrix T,,; including interac-
tions between two neighboring layers along the pore, as
well as in-layer interactions in the usual way. Due to nu-
merical limitations, we were able to consider pores with
L, =4 by the former technique but only L, =3 by matrix
diagonalization. However, the latter approach is exact
for infinite-length pores and allows longitudinal correla-
tion functions to be determined.

Our findings are summarized below:

(1) The ground-state phase diagram can be determined
exactly by evaluating the energies of the many possible
states of the system. A representative example is shown
for L, =3 in Fig. 3. There are four possible T'=0 phases:
empty, corner adsorption, monolayer adsorption, and
full. The sequence of states through which the system
passes on approach to saturation, Au—0, depends on the
adsorption potential strength C4. For very small Cg, the

T T T T T T T T ] T T T T T T T
0 -
L F i
Q——S — M —
3
] . 4
c
L B g
-10 - -
R PR R R S S SR L
0 1 2 3 4

Ce/J

FIG. 3. The ground-state phase diagram for an infinite pore
with L =3. There are four possible phases; empty (E), corner
adsorption (C), monolayer adsorption (M) and full (F). Note
that for small C4/J the pore remains empty even at saturation,
Au/J=0.
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pore remains empty even at saturation. For pores of
larger cross-sectional areas, these same general features
were also observed.

(2) At T >0, as seen in Fig. 4, the transitions become
rounded due to thermal fluctuations. This rounding is
captured exactly by the TM calculations but is not by the
MF approximation. We note that there is surprisingly
good agreement between the two sets of results, except
within the very narrow regions where MF predicts a
spurious transition. This good agreement occurs because
at low temperatures the ground-state properties of the
system dominate, and these have been preserved within
the MF approximation.

(3) We have investigated the dependence of the adsorp-
tion isotherms on the length of the pore (L) by compar-
ing results from both TM methods for infinite pores and
finite L, pores with periodic boundary conditions. In
general, we find the adsorption isotherms to be very in-
sensitive to pore length L, even down to L ~L, shown
in Fig. 4.

(4) Even though the transitions are rounded, the corre-
lation length &, along the pore shows marked peaks at
values of Au /J corresponding to the transitions predicted
by MF, also shown in Fig. 4. It is for this reason that the
isotherms are insensitive to L”; only if §” ZL" does this
finite-length scale play an important role. In particular,
in a connected system of pores as in the former model, it
is plausible that these correlations could propagate
throughout the system giving rise to true thermodynamic
singularities.

e - T —
L / 4
8 /,7‘:?:%;—4——/ —J
L o
: o B
| //D |
i b 1
6 — J —
L / 4
L °f 4
z F UE/ 4
4~ = —
/o
’ AV b n -
L i \-I /'l ! it
ife i i 1
L i P i i
e i o
2 ! { \ / i ! \ —
! 7 \ / \ ! \\
L J N J | J 4
r /.// o) N4 '\\ /// \\\ ﬂ{
- - o S~ S i
o -
0 besseenp=_ L | L L ! | L L L M
-5 —4 -3 -2
A/ T

FIG. 4. Adsorption isotherms and correlation length & for a
square pore with L, =3, C¢/J=1.8, and T/J=0.25. The
dashed curve shows the average occupancy per layer N as a
function of Apu/J, calculated exactly by TM diagonalization.
The squares show the corresponding results for a finite pore
with L;=3 and periodic boundary conditions. The stable
branches of solutions generated by the MF approximation are
also plotted. The spurious MF transitions occur at the maxima
of the longitudinal correlation length, §; shown on the same
scale by the dot-dash curve, where N now denotes the:number
of correlated sites along the pore.
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While our models are somewhat simplified, they do in-
clude the fundamental symmetry aspects of many porous
media, namely, interconnected quasi-one-dimensional
pores in 3D space. It is the presence of both 1D and 3D
scaling properties that lead to many of the features cap-
tured here by our model: the reduction of T, and the role
of 1D correlation, the shrinking of the coexistence re-
gion, and the symmetry-breaking effect of the substrate
field giving rise to critical exponents. These general re-
sults should be applicable to a wide class of porous sys-
tems.
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APPENDIX A: DECORATED POTTS LATTICE

The role of 1D correlations in the decorated lattice can
be investigated further by considering Potts spins occupy-
ing the lattice sites shown in Fig. 1. The Hamiltonian for
the system is

H__kss,, , (A1)

T Gy
where 0;,=1,2,...,q and the sum is over nearest neigh-
bors in the decorated lattice. As in the Ising case, the
partial trace over pore sites (X) can be performed exactly
(in the absence of any symmetry-breaking field), giving a
renormalized coupling K’ in a uniform d-dimensional
Potts lattice. For g-state Potts spins, one finds!3

1+ 1 ,

K'=In
(l+q/eK—l)L+l__1

(A2)

where K is the coupling parameter in the original
decorated Potts lattice. The variation of K’ with K and L
is shown in Fig. 5 for the three-state Potts model and
both ferro- and antiferromagnetic ordering. Criticality in
the decorated lattice again requires the renormalized cou-
pling K’ to equal the critical coupling of the regular lat-
tice in d dimensions, K!?. These critical couplings are
shown on the ordinate for d =2 and 3.1

For K >0 and any L, we can always reach criticality in
the decorated lattice. However, for K <0 and L >2, no
critical transitions will occur in the decorated model as
seen in Fig. 5. This is a direct consequence of the fact
that for ¢ =3 and antiferromagnetic ordering, the 1D
correlation length remains finite even at 77=0. Thus,
correlations cannot propagate between node sites (which
requires §, = L) and the system exhibits 1D behavior.

APPENDIX B: CRITICAL EXPONENTS

Let A’ and ¢’ be the critical point parameters of the
space-filling Ising lattice. They can be expanded in terms
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2,...1..,.1‘,..,/1.
i

i

K.® L

T 5 0 5

FIG. 5. Renormalized couplings K’ as a function of original
coupling K, for the three-state Potts model on the decorated lat-
tice. The curves correspond to lattices with L =2, 3, 4, and 5.
The critical coupling for the pure system in both two and three
dimensions, K!?, is marked on the abscissa; criticality in the

decorated lattice requires K =K%

of the external field, 4, and physical temperature, ?, of the
decorated lattice, scaled such that criticality occurs for

h'=t'=h =t =0. In a linear regime close to criticality,
we may write
t'=at +bh , (B1)
h'=ct +dh . (B2)

In the critical region, the singular part of the free ener-
gy obeys the scaling form

F L R)=AFA e, ), (B3)

with y, and y, the standard Ising exponents. If the exter-
nal field is chosen such that 4 =0, the free energy as a
function of the physical temperature is

F()~A%F (A at, A er) . (B4)

The specific heat follows by taking derivatives with
respect to ¢,

Ct)~aA® P f (A ", n Vher)

+ac7xd7y

Ch g (T, A ket )
e TP p, (A e ety (B3)

where f,, =(82/3x2)f(x,y), etc.
The important point is that because y, >y,, A must be
chosen to scale with ¢ such that

A~t'n (B6)

As t—0, the dominant singularity arises from the last



48 PHASE TRANSITIONS IN A MODEL POROUS MEDIUM

term of Eq. (BS),

(d—2y,

C(t)~cu“ "W g (0,c), (B7)

giving the new a’ exponent
2y, —d
a' = yh— . (BS)
Yh
In terms of the exponent 8, y, /d =8/(1+86),

a=1—+ . (BY)

b3}

Note that this is not equal to the standard exponent

3129

i (B10)
v Vi

for the pure Ising system, but is the exponent characteriz-
ing the divergence of the susceptibility at T, as the exter-
nal field goes to zero.

Similarly, the susceptibility for the decorated lattice
may be calculated by taking derivatives of Eq. (B3) with
respect to h. Again, the dominant singularity is con-
trolled by y, giving rise to the effective susceptibility ex-
ponent
2y, —d 1
—_—=1—=.

Yh 5

r—

Y= (B11)
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