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Density of localized states in disordered solids
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Calculations of a localized state density (DOS) are carried out in the framework of a well-known vari-
ant of the Anderson model, i.e., for the three-dimensional single-band Hamiltonian with diagonal disor-
der. Results of the calculations give three regions of the energies below the virtual crystal band edge EG'
characterized by different behavior of the DOS. (I) The band-edge (BE) region is placed in the vicinity of
EG'. Here the DOS on a linear scale is approximately a linear function of the localization energy. (II) At
lower energies the Urbach law governs the DOS behavior. (III) At lower energies the DOS exhibits
Lifshitz singularity dependence. Here the DOS has a very small value and rare deep centers (DC) can
appear in the spectrum. The problem of the DC-band inhomogeneous broadening is also considered.
Estimations of the number of localized states and of the mobility-edge position are presented. The data
on single-electron-DOS energy dependence of a-Si:H are used to compare qualitatively the calculated
DOS with the experiment results. Good agreement is reached both in DOS behavior and in the
mobility-edge location. An aspect in the approach to the problem is an additional restriction of the
trial-function class minimizing the one-instanton action. The additional restriction was obtained from
the analysis of the localized state problem for the concrete realizations of the disordered system under
consideration. A strong-scattering problem in the limit of small concentration of scatterers is studied, as
well as the case of the three-component system consisting of a binary solution of weak scatterers with a
third component comprising rare deep centers. In all of the cases considered the general expressions for
the DOS including prefactors are found, as well as their approximate forms. It is shown that there are
limits which allow for single-instanton solution of the problem to coincide with the exact one.

I. INTRODUCTION

Modern experiments give detailed information on the
behavior of both spectral density and single-electron den-
sity of states (DOS) for many different disordered sys-
tems, see Refs. 1 —7 and references therein.

The single-electron DOS of amorphous silicon in the
regions on the top of the valence band and in the band
gap was studied in detail in Refs. 4 and 5. The DOS ob-
tained in Refs. 4 and 5 in these regions can be character-
ized by the following interesting features.

(1) In the region of relatively high values of the DOS
near the top of the valence band, the DOS energy depen-
dence is linear; i.e., it can be described by the formula

E —eG
p(~)=pBE 1—

BE

Parameters pBE and EBE can be found by a simple
fitting procedure taking the energy EG as the frame of
reference to be equal to the experimentally known posi-
tion of the mobility edge. We prefer a slightly different
definition of EG which is more convenient for the theoret-
ical approach and put it equal to the edge of the band in a
virtual-crystal approximation. After the other parame-
ters of Eq. (1) are calculated for the model Hamiltonian
we should estimate the position of the mobility edge in
order to reconcile the theoretical and experimental re-
sults. Equation (1) remains correct until the linear term
is small compared with the constant one.

(2) For increasing energy, Eq. (1) transforms into the

well-known Urbach law, ' which probably always ap-
pears in disordered solids (see Refs. 1 —10 and references
therein). The Urbach law for the DOS taken in the loga-
rithmical scale leads to a linear function of energy,

(&)inp(e) =inpz—

Here again the value of the parameter pU depends
upon the chosen frame of reference of the energy. The
magnitude of the Urbach parameter EU obtained in Ref.
4 satisfies the inequality EU (EBE.

(3) At lower energies the DOS behavior is influenced to
a great extent by the presence of deep centers in the sam-
ples of Ref. 4. Here we can speak about the superposi-
tion of two tails of different origin. One of them is the
decreasing Urbach tail, while the other is due to the inho-
mogeneously broadened deep-center band. The results of
Ref. 4 show the Gaussian form of the band near the band
center and, therefore, we write for it

(ei —E)
p (e) , exp (3)

I2~rl j'"
where cl is the deep-center concentration and yl is the
band half-width. The wings of the band are considerably
asymmetrical. There are a number of data giving evi-
dence for more complicated structure of the deep-center
bands in the literature. " ' A removal of degeneracy due
to fluctuation of the nearest neighborhood, "' appear-
ance of the clusters consisting of the deep centers, ' ' as
well as a homogeneous broadening lead to complexity of
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the structure. We do not touch on these problems in this
work.

All of the above listed features of the DOS are ob-
served in different samples of amorphous silicon. The ab-
solute value of the DOS accurate to a factor of 2 was re-
ported in Ref. 4 and, therefore, the general number of
states below the mobility edge can also be found as well
as the number of deep centers.

The purpose of our work is a theoretical investigation
of the possibility of describing the observed features of
the DOS behavior. We proceed from the premise that
only very general characteristics of the Auctuation poten-
tial are essential for the explanation of DOS features, and
we exploit for the calculation of the DOS the simple
three-dimensional single-band Hamiltonian with diagonal
disorder resulting from random distribution of two kinds
of atoms A (attractive centers) and 8 (repulsive ones) and
the continuum analog of the model. It is the well-known
variant of the so-called Anderson model.

The model to be used here has been extensively studied
in the context of perturbation theory and in the coherent
potential approximation to describe many properties of
disordered solid solutions (see Refs. 15 and 16 and refer-
ences therein). The problem of localized states applying a
calculation method lying beyond both mentioned ap-
proaches was considered in the framework of this model
earlier in Ref. 17. The results obtained there give the Ur-
bach dependence like Eq. (2) within an energy interval
which is wide enough to describe the experimental data
for different disordered systems. The observed values of
the Urbach parameter as well as its composition depen-
dence for the solid solutions A2B6 given in Ref. 6 can be
explained. However, the behavior of the DOS above the
Urbach region in Ref. 17 differs from both the experi-
mental data of Ref. 4 and Eq. (1). This problem is the
subject of the present investigation.

The other question to be considered here is the strong-
scattering limit, i.e., the situation of a small concentra-
tion of deep centers. Two aspects of this problem are of
interest.

First, we have the limit of small but finite values of the
attractive center concentration c in the two-component
Hamiltonian. This question is closely related with the
strong local perturbation problem solved in Ref. 18 for
the electron system and in Ref. 19 for the phonon system
(see also Refs. 20 and 21 and references therein). As a re-
sult, we know the answer described by the Koster-Slater-
Lifshitz equation in the limit c —+0, which could be used
for checking the calculations.

The second variant of the problem concerns rare deep
centers in the relatively shallow sea of the random poten-
tial; the actual situation for amorphous silicon and, prob-
ably, for other disordered systems. The necessary addi-
tional complication of the model Hamiltonians described
above is easily incorporated. A solution of the problem
could be applied to the experimental data of Ref. 4.

Another problem pf interest for the experiment is con-
cerned with a preexponential factor of the Green function
which makes it possible to normalize the calculated DOS.
For the purpose of checking upon the prefactor both
strong-scattering cases are especially important.

We describe the model Hamiltonian in the lattice rep-
resentation in Sec. II. The Hamiltonian contains three
parameters. Two of them are the amplitude of the Auc-
tuation potential equal to the difference of diagonal
tight-binding matrix elements of attractive and repulsive
atoms and the averaged number of attractive centers per
unit volume or their concentration. The third parameter
is related with the dispersion of the electronic band and
in compressed form is presented by the critical value of
single-lattice-site perturbation leading to a splitting off
the bound state with binding energy equal to zero.

In Sec. III the Green-function representation is intro-
duced using anti-commutating variables. The first prob-
lem appearing here is concerned with the zero fermionic
modes of the determinants, leading to the disappearance
of the single-instanton result for the Green function and
to a DOS which looks unreasonable in the context of the
problem studied. To revolve this question we accent
rather a difference between the field-theory instanton ap-
proach and that in the problem of the DOS calcula-
tion for the random system.

In the last case, the spectrum of the disordered system
can be represented as a superposition of a great number
of spectra calculated for each of the possible realizations
of the system in definite volume taken with weights equal
to the probability of the appearance of the given realiza-
tion. This procedure is applied usually in numerical cal-
culations (see Refs. 16 and 26—29 and references therein).
A calculation of eigenfunctions and eigenvalues for the
concrete realization is purely linear in the mathematical
sense. Using all eigenstates and eigenvalues for all possi-
ble realizations we discover the supersymmetry of the
problem and obtain an expression for the averaged Green
function of the disordered system convenient for exact
calculation of the determinants by means of a formula
given by Parisi and Sourlas in Ref. 30.

After a calculation of the determinants is performed
the problem is reduced to a variational procedure under
the action describing the averaged Green function. This
idea and many details of this procedure coincide with
ones in earlier works. ' ' The new element intro-
duced here is an additional restriction on the behavior of
the trial function y„(R ), presenting a solution of the
saddle-point equation.

The restrictions on the trial function undertaken in
previous investigations were concerned with (i) considera-
tion of only the ground state of the fluctuation well, (ii)
restriction by spherically symmetrical functions, and (iii)
postulation of the decreasing law of the trial function
y„(R ) at great distances R from the fluctuation, con-
sistent with a demand of short-range potential wells. The
new restriction is concerned with the coordinate depen-
dence of the trial function in the limit of small distances
from the center of the Auctuation well and appears as a
result of adjusting the latter to the behavior of the most
probable solutions in concrete realizations.

The general scheme of the averaging procedure is given
in the last part of Sec. III, which also illustrates the fact
that all of the results of Ref. 17 are contained in the new
form of the Green-function representation if the addition-
al restriction is omitted.
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Section IV is devoted to the strong-scattering problem
in the two-component system at small concentrations of
the attractive centers. Here an additional restriction on
the behavior of y„(R ) at R ~0 leads to a close relation
between the trial function of the variational problem and
the Koster-Slater-Lifshitz solution of the point-
perturbation equation. The full number of bound states
appeared to be equal to the number of deep centers. The
solution of the considered instanton problem coincides
with exact solution of the linear problem in the limits
when the binding energy goes to the Lifshitz border of
the spectrum (see Refs. 45, 38—41, and 17), as well as to
the upper border of the bound states in the linear approx-
imation of attractive centers, and in the case of very
strong attraction.

In Sec. V we deal with the weak-scattering situation
considering the problem in a continuum limit. The equa-
tions of the paper' are derived again from the new repre-
sentation of the Green function if the additional restric-
tion on the behavior of the trial function is omitted.

An analysis of the linear problem is presented, showing
how the additional restriction on the behavior of the trial
function can be expressed in terms of properties of the
admissible fluctuation wells. As a result, the R depen-
dence of the trial function at R ~0 should coincide with
that of bound solutions of the linear problem containing
the most probable critical cluster in the origin.

The results of numerical calculations are presented,
showing a good qualitative agreement with the experi-
mental data of Ref. 4 in regions described by both Eq. (1)
and Eq. (2). The analytical expressions for the EBE and
for EU are given.

The three-component system is considered when the
third component is the deep centers and the Gaussian
form of the deep-center band is derived. The last part of
the section gives the full expression for the DOS includ-
ing both exact and approximate expressions for the
preexponential factors in the three-component situation.

We give also an estimation of the upper border of the
single-instanton approach and of the mobility-edge posi-
tion.

Section VI presents a discussion of the results and a
comparison with experiential data.

II. MODEL HAMILTONIAN

We consider the macroscopic volume V of the crystal
containing N lattice sites randomly filled with two sorts
of atoms 2 and B. The averaged number of atoms 3 is
equal to N„=cN and that of atoms B is Ns =(1—c)N.
Atoms A are supposed to be attractive centers and c is
their concentration. The single-band Hamiltonian of the
system is

H= —g %„W„(%„+ —4„)+g E„%„. (4)
n, m n

We can take the wave functions 4„ in many cases to be
real. The diagonal matrix element E„ is equal to E~ if
the site is occupied with atom 3 and to Ez in the oppo-
site case. The off-diagonal matrix element defining the
band dispersion is supposed to be independent of the
composition.

If c =0 or c =1, Eq. (4) presents the Hamiltonian of
regular B or A crystals with all En being equal to E~ or
E~. We suppose in calculations E~ & E~.

Using the plane-wave representation we have in these
cases

H =c +E
where a is 3 or B and the relation

c =8 —8'
q 0 q

describes the electronic band dispersion.

III. GREEN FUNCTION
AND DOS REPRESENTATION

The Green function of the crystal 3 or B can be
presented as

iq(R„—R )

G„(E)=[E H]„'—=-
q q (x

where R„gives the coordinates of lattice site n.
In the case of random filling of the lattice sites by two

components the Green function is dependent on the com-
position realized and on the disposition of the atoms:

G„(e;R, R~)=[@—H(R, . R~)]„' .

For the occasional but definite distribution of the atoms
2 and B the Green function looks as in Refs. 25, 46, and
47,

G„(e)=Z J D[%]l+, l exp[ id [4]]—,
where Z is normalizing factor equal to

Z= D 4 exp —iA (10)

and

H„=—W „+5„gWi+E„
1

Here 5„ is the Kronecker symbol.
We introduce for the energies the frame of reference

connected with the averaged value of E„ in a lattice site:

(E),„=cE„+(1—c)E~ . (12)

co=EG —e, An =En —EG,
we transform the action A [4] to the expression

(13)

(14)

where

The value ( E ),„coincides with the bottom of the band
in a virtual-crystal approximation and, therefore, with
the mobility edge in this approach EG =EG = ( E ),„. —
Introducing the new variables
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[4]= —g %„(H„+co5„)%'
n, m

(15) coign+ g (H„6—„5„)q)i(m )=0 . (17)

Note that cu is positive in the region of bound states. The
problem of the eigenfunction and eigenvalue calculation
for the crystal with disordered but definite disposition of
constituent atoms is linear and its solution is obtained by
means of diagonalization of the ¹ank matrix. Each of
the X lines of the corresponding equation looks as

Equation (17) gives a full set of eigenfunctions for a given
realization characterized by the definite disposition of the
atoms. Let us rewrite the integral (9) using the eigenfunc-
tions and eigenvalues of Eq. (17) and introducing
Grassmann variables g, g in order to carry over the nor-
malization factor Z into the numerator of equation (see
Refs. 25, 46 and 48 —51). We obtain

G..(~)=f H[d ~dz~dkAC~]g~ ~V5n)~'exp. —iX[~+H"—~]~~(z~z~+0~4) . (18)

where

[co+H —b, ]

= g q&i. (n )[(co—b,„)5„+H„]pi(m ) .
n, m

(19)

We suppose the Grassmann variables to be normalized
according to

f d gi d gi = 1 /~ . (20)

The quantity of physical interest is an averaged Green
function which can be obtained summing over the full set
of Careen functions (18) corresponding to all possible vari-
ants of filling the lattice sites in a considered volume of
the crystal.

Before the averaging procedure is carried out we sim-
I

(zi.zi. +0Ai. ) (21)

This fact is evidence for the supersymmetry of the expres-
sion and we can use the Parizi-Sourlas formula for the
exact calculation of the integrals over the variables

In the sum of Eq. (18) over A, only one of an infinite
number of integrals over z&, z& cannot be calculated ex-
plicitly. Namely, the integral

I

plify the representation of the Green function (18) in each
of the possible configurations, exploiting the very general
properties of the full set of eigenfunctions used and the
fact that the exponential expression in Eq. (18) in the
space of variables z, g remains invariant under all trans-
formations conserving the form

I/~ f dzidzi„(zi p&(n ) MI ~2((zi (
)=f dr&M(ri)(pi(n )[

f d—~ V&n)l'e"pI '[ +H ~]u. xI ~

0
(22)

where

M' (~zi~ )= M(~zi )
a

and

M(~zi
~

)=expI i[co+H h]—ii, zi ~ I . —

As a result the partial DOS at a fixed atomic
configuration (and, therefore, at a definite set of values
b,„) and at a given quantum number A, can be presented
as

pa &(m)= f dr&g ~ p(in)~
n

Xexp[ —i[co+H —
h]imari I .

(23)

The full DOS can be written as a sum over all A, and
over all possible sets of 6 taken with the weight Pz equal
to the normalized probability of the appearance of a
given configuration at random filling of the lattice:

p(co)= f gPq gdri g ~pi(n)~ exp[ i[co+H 5—]i,iril . —
2~ Qo

(24)

We are interested mainly in the partial DOS where
only the states of spherical symmetry are taken into ac-
count. In that case the sum over I, in Eq. (24) should be
omitted.

The physical sense of Eq. (24) is rather transparent;
namely, we should look over all possible variants of the

I

lattice filling and find the eigenfunctions and eigenvalues
in each case. After that, we should calculate the integrals
in (23) and perform the summing in (24). The integrals in
Eqs. (23) and (24) over r& can be taken in general form
and the expression for the p(co) is transformed to the sim-
ple formula
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(25)

We have denoted the eigenvalues of Eq. (17) for the fixed
set of A„as co&. Functions y& for the bound states can al-
ways be taken to be normalized to unity. Equation (25)
presents an exact expression for the DOS of the disor-
dered system described by the Hamiltonian (4), i.e., for
the two-component solid solution A, B[&,~. An analo-
gous expression was used earlier in Ref. 31. Numerical
methods of the DOS calculation for disordered systems
are reduced to the procedure of Eqs. (17), followed by
summing over all configurations and over all states in
each configuration. Such an approach can be called an
exact one. Our purpose is to obtain an approximate but
realistic solution of the problem, avoiding the process of
Eq. (17).

A. Restrictions of the trial-function class

The exact expression (24) could not be calculated if the
eigenfunctions y& and the corresponding eigenvalues are
not known. The procedure of approximate calculations
implies, as the first step, the introduction of the trial
functions independent of the variants of the lattice-site
filling. This action allows one to sum over all possible
configurations. Calculations of integrals over all ~& ex-
cept one, fulfilled in general form in the previous section
allows one to get rid of the problem of determinant calcu-
lations ' ' and, therefore, to simplify the following cal-
culations.

The question of the choice of trial functions and their
relation with solutions of Eq. (17) is one of the key issues
of this work. Let us enumerate the restrictions defining
the class of trial functions.

(I) We shall take into account only the ground state of
the fiuctuation well in spite of the fact that Eq. (24) al-
lows one, at least in principle, to include into considera-
tion the excited states as well. Therefore, the problem is
reduced to choice of one function.

(II) The important question is about the symmetry of
the trial function. We suppose that the spherical symme-
try for it is in a continual limit as was done in many early
calculations and the full symmetry of the lattice site of
the averaged crystal in the lattice variant of the model. '

(III) The Hamiltonian (4) leads to short-range fiuctua-

tion wells and we suppose that a trial function that de-
creases with increasing distance R obeys the law

I/8 exp[ —a(co)R ], (26)

where ~(co) is defined by the depth of the bound state (co).
It is easy to establish exactly that this behavior character-
izes the localized solutions of Eq. (17) at R ~ oo for the
possible realization and this is the only reason why we
prefer to constrain the trial function in the given form.

All the above-mentioned restrictions were used in pre-
vious investigations of the problem as well.

(IV) We introduce in this work the additional condition
to constrain the behavior of the trial function at small
distances from the center of the fluctuation well,

lim y„(R ) .
R~0

co(p„(n ) —g [H„+U„(n )5„]y„(m) =0, (27)

where U„(n ) is the averaged fiuctuation well to be
defined consistent with y„by the steepest-descent pro-
cedure. It should describe the optimal configuration of
the fluctuation well with or without an additional restric-
tion.

The restrictions mentioned above influence the form of
the fluctuation well. It is more convenient to rewrite con-
dition (IV) as a restriction on the behavior of U„(n) at
R —+0 as soon as the y„behavior in this region is com-
pletely defined by the potential energy in the saddle-point
equation. We perform this procedure in the following
sections considering the strong- and weak-scattering lim-
its separately.

Here we note that the substitution of the trial function
into Eq. (24) gives the expression

The purpose of this restriction is to obtain a behavior of
y„at small R which does not contradict the solutions of
Eq. (17) in possible realizations. Therefore, we try to op-
timize the choice of y„with a view of obtaining not only
the greatest magnitude for the p(co) but also the similari-
ty between y„and the real solutions of Eq. (17).

It is convenient to define y„as a solution of the equa-
tion

p(co)= J dr+ P& exp i g y„(n)[(co b,„)6„+H„]y„(m)r—2'
n, m

(28)

g qr„(n )[(co—6„)5„+H„]p„,(m ) =0 .
n, m

(29)

As a matter of fact, Eq. (29) can be fulfilled probably
for any arbitrary function y„due to the great number of
variants of the random filling of the lattice resulting in a

As a rule, the y„does not coincide with any solution of
Eq. (17) in any configuration. Therefore, the integral
over ~ will give nonzero results for variants of the
lattice-site filling which satisfy only the integral equation

finite answer for the DOS. We face here the problem
which lies in the fact that the functions y„, which have
nothing in common with the solutions of Eq. (17), can
even overestimate reliable DOS values in some energy re-
gion. Examples of this will be obtained in following sec-
tions. The additional condition (IV) is called up to avoid
such a situation.

B. General scheme of averaging

In this part of the section we consider the general
scheme of the averaging procedure irrespective of the
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problem of the additional condition (IV) for U„(n ) or y„.
As soon as y„does not depend on the atomic

configuration we are able to sum over all possible sets of

We see from Eqs. (18), (19), and (23) that the function

exp{ id, A—[r][ =exp i—g b,„p„(n )r

is the subject of averaging. The fluctuating item of the
action hA [~] depends on the variants of the lattice-site
filling. At a random distribution of constituent atoms an
atom A appears in each of the lattice sites with a proba-
bility equal to c and a probability (1—c ) an atom B does.
Taking into account that the exponent subjected to
averaging can be presented as the product of indepen-
dently averaging exponents we get

= Q {cexp[ ib,—„(p„(n)]+(1—c) exp[ id~—y„(n)r]] .
n=1

(30)

Here

b, „=E„EG= —(—1 —c)b,
~B Eg —EG C

A=E~ —E~ )0 .

(31)

The averaged expression for the DOS can be presented
now as

R„(r it ) =—c exp[id(1 —c )y„,( n )(r—it ) ]

+(1—c ) exp[ i bey„—(n )(r it)] . (3—5)

The equation obtained is completely equivalent to Eq.
(32). The free parameter of the Laplace transformation t
can take any positive or negative values.

Picking out the exponential factor we transform the ex-
pression for the DOS into a form

Xy„(m )

where

+ g ln[R„(r)]

R„(~)=c exp[i'(1 —c )q)„(n )~]

+ (1—c ) exp[ i b y„(n )r] . —

p(co) = f dr exp i r g Ip„j(n )[A@5„+H„]2'
n, m

(32)

p(co)=exp{ —A [qPt]] f d~exp{ —A (~)J,
(36)

where

A [y„t]=(co+H ) t —g lnR„( it), —

(37)

1. Laplace representation
(co+H ) = g q&„(n )[co5„+H„]y„(m) .

n, m

(38)

For the convenience of further analysis we go from the
Fourier integral (32) to the Laplace transformation of the
DOS,

The saddle-point equation without an additional re-
striction has been studied earlier in Ref. 17. It results
from a minimization procedure

p(co) = f dr exp i g jp„(n—)[jo5„+H„]
n, rn

X y„(m )(r—it )

+ gln[R„(r it)] -, —(34)

5A [p„t]
5qr„(n )

therefore, it looks like Eq. (27),

g [H„+co5„]y„(m)+ U„(n )y„(n ) =0,

(39)

(40)

where
where in the case without additional restriction the po-
tential energy U„(n ) should have the form'

8 lnR„( —it )
U„(n)= — = —(1—c)b, 1—

dtqP„(n )

I

exp[ b, tp„(n)]-
c+(1—c)exp[ b, ty„(n )]— (41)

The following scheme of calculations of the DOS is the
same in all cases and reduces to (i) solution of the saddle-
point equation, the form of which depends on restriction
(IV), (ii) calculation of the exponential index (in this case

it is equal to A [jp„]t]), and (iii) calculation of the r-
dependent part of the action (here it is expressed by
M [~]) and of the integral over w which gives the preex-
ponential multiplier. Note that the saddle-point equation
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gives both the function y„and the value of the Laplace
transformation parameter t.

Choosing this lattice site as the frame of reference for y„
we collect all variants of the lattice filling satisfying this
condition, neglecting the remaining ones. As a result we
obtain instead of Eq. (26)

IV. STRONG-SCATTERING LIMIT

Let us consider the situation of small concentration

c«l
of strongly attractive centers when the depth of the po-
tential well in lattice sites occupied by atoms 3 is great
compared with its critical magnitude, i.e.,

p(cg) =exp[ —2 [yet ]] f dr exp[ —M [r]],
where

2 [ip„t]=(to+H ) t —g lnR ( it—)
mWn

t(1 ——c )AqP„(n )+ in(1/c )

(44)

(45)

(42) and

If both conditions are fulfilled, the largest portion of
atoms 3 is disposed on distances from each other consid-
erably exceeding the radius of the bound state appearing
at each lattice site occupied by atoms A. In this case, the
solution of Eq. (17) in the region of bound states with ac-
curacy up to terms of order of c reduces to the problem
of a strong local perturbation (see Refs. 18—21).

A. Additional restriction in strong-scattering limit

R (r it)—
A [r]=i(co+H ) r g —ln

R ( it)—
—ir(1 —c)by„(n) . (46)

Minimizing the exponential index A[+ ] we get the
saddle-point equation in the form of Eq. (40), where now
in accordance with Eq. (43)

We see now that any fluctuation well leading to an ap-
pearance of the bound state includes at least one atom of
kind A. We can transform this observation into an addi-
tional condition constraining the U„(m) to coincide in
one of lattice sites with the potential of atom 3:

U„(m )=
—(1 —c)b„, m =n

[lnR (
—it)], mWn .a

Bty„(m )

(47)

U«(n)= —(1 —c)b, . (43) Here

I

a exp[ —tqr„(m )]
[lnR ( —it ) ] = —[lnR ( it ) ]', =——(1—c )b, 1—

Bt(p„(m ) c+(1—c )exp[ —ty„(m )]
(48)

Multiplying the equation by the Green function of the
virtual crystal we get

~ [1+(1—c )b G„„(co)]y«(n )

I

practically only at one lattice site, i.e.,

g)„(m ) =5

g„,(mWn) «1 .

+ g G„U«(m )y«(m ) .=0,
mWn

where U„(m ) is given by Eqs. (47) and (48).

(49)

In the region co=coi„we can use the fact that Eq. (49) has
a solution at small t. Expanding U„(m Wn ) given by Eq.
(47) in a Taylor series and conserving the linear in t
power term we transform Eq. (49) to the form

[1+G„„(co)(1—c )b, ]y«(n )

B. Approximate consideration

[1+(1—c )b G„„(co)]P„,(n ) =0,
which can be presented at co =co&0, as

P„,(m ) = —G„(co„,) I
G„„' (to„,)

I

(50)

(51)

For deeply localized states g~„(m ) has nonzero value

If condition (42) is fulfilled, Eq. (49) coincides with the
Koster-Slater-Lifshitz equation at t=0 and &p«(m) at
co =co&„coincides with eigenfunction of this equation, i.e.,

—c(1—c)b, g G„(to)y„(m )t=0 .
mWn

Using as a zero approximation

y„(m ) =gi„(m )

and representing G„„c(co)in the vicinity of coi„as

G„„(co)=G„„(co„,)+G„„' (bio, )(co—toi„),
where

G„„(co„,) = —[(1—c )6]
we get the value of t satisfying Eq. (52):

(52)

(53)

(54)
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( CO Ci)i )

c(1—c)b,

Gvc( ) i2

mWn Gnn (~lac)

p(co) = [2m5L c(1—c )5 ]

For A [y„t ], in turn, we obtain

& [y„]= —g [g„,(l )(co5, +H, )g„,(m )

l, m

Xexp . — (CO CO~ ) —ln(1/c) . .26L„c(1—c )b.
loc

(60)

—(1—c )b g„,(n )5i „5„]t
1—

[g„,(m)] r
mWn

(55)

=exp
~lac) —ln(1/c) . ,

25L c(1—c )b,
loc

(56)

where

oL =L —[y„(n )] (57)

and L„ is so-called localization index,
loc

iGVC( )i2
L =g[y„(n)] =g

G„„' (co„,)
(58)

The value of the localization index L characterizes
the space extent of the wave function of the bound state
with binding energy equal to co. If the localization depth
is great enough and inequality (42) is satisfied with a good
providence the wave function is localized at the single
site and 6L„«1.

loc

For the preexponential factor calculating we consider
as the first step the simplified expression for the A [r]
which can be obtained from expressions given by Eq. (44)
when the functions R (r it) ar—e presented by the first
three terms of the Taylor-series expansion:

A[r] =ir[(co H) (1 —c—)bye, (n )]-
+ g [ir[lnR ( it)]', —(r /2)—

mWn

X [lnR ( it ) ],",+—
(59)

where

7.=0

and

Substituting f~„ into Eq. (55) in the form given by Eq.
(51) and the value of t obtained from Eq. (52) we trans-
form exp[ —A [y„]tI to the form

exp[ —A [q)„]t]

Therefore, instead of the 6 function obtained in the case
of isolated deep centers in Refs. 18—21, we have for the
density of localized states the Gaussian contour normal-
ized to the probability for a given site to be occupied by
an atom A. The result with the 6 function can be with-
drawn if the term that is quadratic in t powers in the
A [r] expansion is neglected. Integrating over r with this
term leads, therefore, to a decrease of the DOS at a value
co=co&„due to the statistical dispersion of the localiza-
tion energy. The value of the dispersion is characterized
by the energy

y = [6L c(1—c )6 ]'i

which goes to zero at co&„—+ ~. The disappearance of the
statistical dispersion of the localization energy means
that we have got in this limit an exact solution coinciding
with solution of Eq. (17) for some configurations.

Equation (60) presents the contribution of one lattice
site. The full number of localized states in the considered
volume of the crystal can be obtained by multiplying the
given number by the full number n of lattice sites in the
volume V. As a result, we get a number of localized
states equal to N~ =cN. This natural result is obtained
due to restriction (IV) and drastically changes if it is
omitted. The most considerable difference occurs in the
region of small co.

C. Exact formulation of the problem
and some results

The Gaussian form of the localized-state band takes
place in the vicinity of the center band only. Equation
(49) gives solutions within an energy interval restricted
both from above and from below, while the parameter t
changes within the interval —~ &t & ~. The deepest
states appear when t ~ ~ and the potential energy given
by Eq. (47) corresponds to an increase of the macroscopi-
cal cluster consisting of atoms A. The maximum binding
energy at t ~ ~ coincides with Lifshitz border
EL =(1—c)b, . We get the smallest binding energy in the
limit t ~—cc when Eq. (47) corresponds to a macroscop-
ical cluster consisting of atoms B with a single atom A in
the center of this cluster.

Some of the features of the DOS remain unchanged
compared with ones described in Ref. 17. So, when the
depth of the bound state goes to the Lifshitz border,

co~(1—c )5,

&=0

Substituting Eq. (59) into the integral over ~ in the ex-
pression given by Eq. (46) for A[~] we come to the
Gaussian integral which gives after a simple calculation

Eq. (44) leads to the well-known singular behavior of the
DOS. In the intermediate region

coi„(co((1—c )b, ,

the DOS dependence on the co obeys the Urbach rule as
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~min

according to a singular law. The difference in the DOS
behavior compared with Ref. 17 results from the addi-
tional restriction (IV). The DOS expression in the whole
region

co;„&co & ( 1 —c )b, (62)

can be written in the form of Eq. (44) where A [g„t] is
transformed with the help of Eq. (49) to the formula

A[@„t]=—g IlnR ( it) —ty—„(m)[lnR ( —it)]', ]
mWn

was shown in Ref. 17. However, it drastically changes
compared with one from Ref. 17 within the interval

0( co (co]

Equation (49) with the potential energy given by Eq. (47)
leads to the appearance of a minimal binding energy at
t ~—~, which can be defined from the equation

[1+6 G„„(co;„)]y„(n) =0,
where G„„(co)is the Green function of the crystal consist-
ing of atoms B. With accuracy up to terms proportional
to c the value ~;„can be considered as the upper bor-
der of the bound states. The DOS decreases within inter-
val

~min ~ bloc

when co moves toward the co;„and goes to zero when

and ctN deep centers by the condition cI «c, (1—c ) sup-
posing the depth of the potential well of atom 3 to be
considerably less than one of deep center I and using the
continual approach to the problem.

V. CONTINUAL LIMIT, A WEAK SCATTERING

In this section we consider a situation which, probably,
is encountered in experiments much more often than the
strong-scattering limit. Now, the concentration will not
be considered as a small value, but we will suppose that
the perturbation concerned with attractive centers is not
strong, ' i.e., it is considered to be less than the critical
value of the single-site binding potential. The signs show-
ing the weakness of the perturbation are a small width of
the region of bound states compared with the whole band
and a small number of localized states compared with
their full quantity in the band.

The importance of this limit is concerned with the fact
that a great number of solid solutions for a certainty and,
as it seems now, the amorphous silicon in the major part
of its valence-band tail can be attributed to weak-
scattering systems.

In weak-scattering disordered systems the scale of
bound states is supposed to exceed the lattice constant
considerably and, therefore, an appropriate method to
deal with is the continual approximation.

A. DOS in the continual approximation
+ln(1/c )

A[r]= g ln
mWn

R (r it)—
R ( it)—i r[lnR—

( it ) ]', —

and A [r] can be presented in the form

(63)

(64)

To go over to a continual representation we should use
the eff'ective-mass approximation for the electron zone (6)
and transform the summing over discrete lattice sites to
the integral in accordance with equation

g ~(1/Uo) f d R,
Here y„and t are defined by Eq. (49) together with Eqs.
(47) and (48). For the approximate calculation of the
preexponential factor we can again expand A[r) in a
Taylor series and reduce the integral (44) to the Gaussian
form. As a result we have

—1/2
p(co)= 2~ g [lnR ( it)],", —

mAn

XexpI —A [qr„t]J, (65)

where A [y„t] is given by Eq. (63) and y„ is normalized
to unity.

The solution in the strong-scattering regime described
in this section in general terms obviously resembles the
one of the Koster-Slater-Lifshitz problem. In distinction
from the last, the shift of the band edge given by (E ),„
and the inhomogeneous broadening of localized states
leading to an asymmetrical form of the deep-center band
of Eq. (65) are taken into account.

We consider in more detail the variant of the strong-
scattering problem in the context of the three-component
system, consisting of Nc atoms A, (1—c —ct )N atoms 8,

X f drexp[ —A (r)] . (66)

Here the new —compared with Eq. (26)—multipliers
are produced by the introduction of dimensionless vari-
ables.

The continual analog of the action written in Eq. (37) is
given by the expression

where integrating should be expanded into the whole
considered volume of the crystal. Here v0 is the volume
per lattice site.

It is convenient to use in the calculations the dimen-
sionless variables. We take the de Broglie wavelength
(A' /2M')'~ to scale the length and the depth of the
bound state cu as an energy unit. Accordingly, we change
the variables (rA)/cour and (tb, )/co~t.

Analogously to (26), we write down the expression for
the density of states without the additional restriction
(IV),

' 3/2
0

expI —A [yt2,t]]
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A [tgP„)=
Ep f d x[(Vy„) +y„]t

2Mvp
Gz (m)= — exp[ —a.(co)R ]4~2R (72)

Ep f d x lnR( it )—, (67)

3/2E f d x ir[(V(p„) +y„]

Ep f A(r —it)
%( it )— (68)

The expression %(r it ) is g—iven by the formula

where the energy Ep=h /2Mvp is related to the critical
depth of the potential well of volume vp by means of the
equation Eo =(6/~ ) E„,and M is the e6'ective mass of
the electron band defined by the disposition of Eq. (6).

The function A [r] can be written as

and

)
2M'

g2

1/2

(73)

The radial part of the wave function within the cluster at
R + R „has the form

y„(R )- sin[[2M(1 —c)b, /A' ]'~ R ] (74)

fi

2M(1 —c )b,
(75)

After integrating in Eq. (71) over R i at R =0 we get the
condition of the bound-state appearance as

1/2

W(r it ) =(ex—p [i (r—it )(1—c )@~2,I

X [c+(1—c)exp[i(r —it )qr„] ]) .

which gives us the radius of the critical cluster. The
probability of the appearance of this cluster is

The analog of Eq. (40) has the form

( —V' + 1)y(x )+ U„(x )y„(x ) =0, (69)

exp. —4vrR „ln( 1/c )

Vp
(76)

where

U„(x)=—(1 —c)A

x 1— exp[ t(p„(x )I—
c + ( 1 —c )exp [ t p„(x )]— (70)

B. Separation of the critical cluster

In the case of weak scattering the bound state can ap-
pear in any configuration if atoms A aggregate at some
point in a cluster the potential well of which exceeds the
critical power. As soon as the depth of the potential well
is restricted in the considered model by the value
(1 —c)b, , we obtain from Eq. (17) a criterion for the ra-
dius of the spherical critical cluster consisting of atoms 3
in the form

A detailed analysis and the results of the numerical solu-
tion of this equation are given in Ref. 17.

Such critical clusters could be called compact, because
they have a minimal size. They have the maximal proba-
bility of appearing among the critical clusters. The criti-
cal spherical clusters of greater size containing the atom
B or the cluster of atoms B within themselves are less
probable because the atoms B, being the repulsive
centers, lead to a decrease in the integral in the corre-
sponding analog of Eq. (71) and, therefore, to an increase
in the region of the integrating compared with Eq. (71)
for the critical situation to be reached and to a decrease
in the probability of the appearance.

The fluctuations responsible for the formation of the
bound states with finite localization energy have well
powers certainly exceeding those of the critical cluster.
Therefore, they should contain one of the variants of the
critical clusters within themselves. At a given localiza-
tion energy the most probable fluctuation wells should
contain the most probable critical cluster, i.e., the com-
pact cluster consisting of atoms A. This condition we
will consider as an additional restriction (IV) in the case
of weak scattering.

y»(R)+(I —c)b f d RiG it it ~(0)y»(R )=i0 .

(71)
C. Solution with exponential energy accuracy
for fluctuations containing the critical cluster

The probability of formation of such a cluster at ran-
dom filling of the lattice sites is

ln(1/c) f «
exp

vp p

Here the Green function of the virtual crystal in the con-
tinual limit can be written as

Let us consider the changes of Eqs. (67)—(70) due to re-
striction by the fluctuation wells containing the compact
spherical critical cluster. The depth of the potential well
within the volume of the critical cluster (sphere of the ra-
dius X„)is equal to (1—c)h, as a result of the filling of
this volume by atoms A. Picking out configurations con-
sistent with this demand we get instead of Eq. (67)
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A [ty„]=

where

3/2
0 f d x I [Vy„(x )] +q&„(x)]t

CO

3/2
0 f d x[(1—c)tp„(x)—ln(1/c)]+ f d x lnR( it)—

cr
(77)

X„=(~/2)&co/( I —c)b, .

Minimizing the action obtained we derive the equation

( —V' +1)y(x )+ U„(x)q)(x ) =0,

where the potential energy now has the form

(78)

(1—c)h x ~X„
U„(x)= .

(1—c)b, exp[ ty„(x —
) ]1— x )X„.c+(1—c)exp[ —tqP„(x )]

(79)

Equation (78) has the spherically symmetrical solution within the whole interval of energies 0 & co & (1—c )b, . Substitu-
tion of Eq. (78) into Eq. (77) gives for the DOS with exponential accuracy the expression

p(co)=exp . —(Eo/co) f d x IinR( it) —ty—„(x)[in%( it)],' 2,
—

cr tr

a—( E/Dc') (4m/3)X„ inl/. c '[in'( —it)]' ~
= [in'( —it)] .

3( t gP„(x ) )
(80)

1. Lifshitz and Urbach regions

Note that at X„~Oexpressions (77)—(80) transform to
the corresponding equations of Ref. 17. In the limit
co~(1—c )b„Eq. (80) gives for the DOS dependence the
Lifshitz singularity law

A [tyt', ]=
' 3/2

0 f d x I [Vq&„(x )] +y„(x ) j t

3/2
X

f d x [(1—c )y„(x )t —ln(1/c )]
CO 0

E„
p(co) —exp

(1—c)b, —co

3/2
3/2

c(1—c)t Eo f ~d3
[

2 ]2
CO x,„

1 [(1—c )b. ]
P31 (1/ ) E3/2 (81)

At co&(1—c)b, they lead to a Urbach character of the
DOS decreasing as in Ref. 17 with the Urbach parameter
EU, which with good accuracy can be described by the
equation

The potential energy is transformed to the equation

(1—c)b, x (X„
U„(x)= '

c(1—c)A zter„(x ), x )X„.
(83)

As an approximate solution of Eq. (78) with the potential
energy (83) we can use the solution of the equation

2. Band-edge region

In the limit co~0 expression (80) can be simplified in
so far as the potential wells are defined in this limit by the
compact critical cluster. In this case Eq. (78) has solu-
tions at small t, which allows us to expand the exponen-
tial expressions of Eqs. (77) and (79) into a series in t
powers. Therefore, we have

(1—c)b,
CO

U-' '=
0, )X. ,

x~X

( —V +1)y (x)+U (x)y (x)=0,
with the potential energy being equal to

(84)

(85)
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where

and

' 1/2

(1—c)b, —co

(1—c)b, —0X ~—arctan

' 1/2

1Q22

102~

1029

g 1019

e 10&9

3
1017

10~9

1019

1014

0.10

1 sin [y(co )x ]
VJV x

p exp[ —x](x)= '

x )X„.O'A' x
0.05

Here also are

g(~)= (1 —c)b, —co

1/2

1/2

0.2 0.1
0.00

0.0
1 —c)b, —co

(1—c)b,
exp(x ),

and

JV= jd'x q&„(x) .

cof~ d xy (x)

c(1—c)b,fx d x[p (x)]
(87)

Substitution of Eq. (83) and y (x ) into Eq. (84) leads to a
value of t equal to

FIG. 1. Energy dependence with exponential accuracy of the
calculated DOS. Curve 1 is obtained as result of Eq. (78) solu-
tion with help of Eq. (80), curve 2 obtained using the Urbach
approximation, curve 3 is the result of Eq. (69) and calculations
according to Eq. (67) and coincides with data of Ref. 17, curve 4
is the same as curve 1 in linear scale, and curve 5 is linear ap-
proximation of the DOS dependence in the region of the band
edge. Calculation results are given at c =0.1; the common mul-
tiplier v„=[E„/(1—c)h] is taken as the scale unit for
1n[p(co)]. The inset gives one of the experimental curves for the
single-electron DOS of amorphous silicon taken from Ref. 4.

Simple calculations give in this limit

p(co) —exp
E„CO

ch (1—c)b,
3/2E„

(1—c)b,

3/2
6 1

2 Icr

ln(1/c) .
, (88)

where

exp( —4X„Y)Icr dY.
(1+Y)

The last expression gives at small cu the dependence

(89)

p(co)-exp . —
EBE

(90)

with the value

3/2 2 cr
(1—c)b, 'tr I

EIRE —C 5 (91)

weakly dependent on the co due to the integral I4'.
Neglecting the weak dependence of the I4' at cu «EBE
we can expand the exponential expression, which leads to
the linear function of p(co) coinciding with the one in Eq.
(1).

3. Results of numerical calculations

The numerical solution of Eq. (76) gives the exponen-
tial part of the p(co) dependence presented in Fig. 1. In
the figure the data obtained as a result of the solution of
Eq. (69) without separation of the compact critical cluster
are also given. They coincide with the data of Ref. 17.

As the unit of In[p(to)] we get the common multiplier
equal to [E„/(1—c )b ]

~ persistent in all expressions.
In Fig. 1 it is easily recognized that p(co) presented in

linear scale have almost linear dependence on co within
the interval 0&co&0.076. At greater values of cu it
transforms into Urbach's law, which, in turn, goes to the
Lifshitz singularity at co approaching the border of the
bound states.

The results of the given calculations coincide with the
previous ones of Ref. 17 with high accuracy beginning
from the values co=0. 16. This results from the fact that
the form of the fiuctuation wells at given localization en-
ergies is already insensitive to restriction (IV) because
these energies demand for the wells size to exceed consid-
erably a critical size in any case. The difference between
the DOS values obtained with and without restriction
(IV) (curves 1 and 3 in Fig. 1) is again considerable in the
region of small co. As a result, the DOS found without
the additional restriction overestimate the full number of
states below EG.
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D. Solution for three-component system
with exponential accuracy

We consider here the situation often met in experi-
ments when the disordered system contains a small num-
ber of deeply localized centers influencing the form of the
deep tail of the band.

To describe the desirable situation we use the binary
solid solution A, B~&,) where a small fraction of lattice
sites is occupied by deep centers I. The concentration of
the centers cI is supposed to obey the condition
ct ((c,(1—c). The chemical formula of the solution
could be written now as A, I, B~&, , ~. We suppose theI I
depth of the fluctuation wells of the solid solution to be
restricted by the value ( 1 —c )b, (E„asbefore, neglecting
the inhuence of deep centers on the value of averaged po-
tential (,E ),„.

The deep center itself is supposed to be described by a
spherical potential well of a volume equal to vp with a
depth b,I considerably exceeding the critical energy

»E
Taking into account restriction (IV) for fluctuation

wells consisting of atoms A, we conclude that now bound
states of two kinds are possible. The first ones are states
in the Auctuation wells containing the compact critical
cluster of atoms 3, while the second ones are deeply lo-
calized states initiated by the centers I surrounded with a
fluctuation potential of the binary solution A, B~,
Therefore, we neglect the possibility for the deep center
to appear within a critical cluster. The action describing
the Iluctuation states of the first kind is given by Eq. (77).
The additional item of the Green function and DOS is
concerned with deep centers and can be characterized by
the action which we present in the form

At [tqr„]=
3/2

Ep f d x [ [V'y,„(x )] +y„(x )] t
co

3/2
0 f d x[6,ttgr„(x)+In(ct)]+ f d x lnR( it)—

0 X0
(92)

Here

Xp= 2M'
Q2

/ 2 3
'

1 / 3
3Up

Equations (77)—(82) do not change their form in the approximation under consideration, while the minimization of the
action of Eq. (92) leads to equation

( —V' +1)y„(x)+ U„(x )y, (x )=0,
where the potential energy takes the form

(93)

U„(x)= .

~I
x (Xo

co

(1—c)b, exp[ tV'i.«)]
1—,x&Xo .c+(1—c)exp[ ttp„(x )]—

(94)

Properties of Eq. (94) have much in common with the
strong-scattering situation considered in Sec. IV. At t =0
the problem is reduced to the Schrodinger equation with
spherical potential well which contains a deep level at
co=coI. At small deviations from coI we accept approxi-
mately that p„(x)=gt(x ), where pt(x ) is the eigenfunc-
tion of the Schrodinger equation for the spherical poten-
tial well with radius equal to Xo and depth equal to 4I.

The behavior of the DOS in the vicinity of the level is
much analogous to the one in the case of the strong-
scattering situation. With exponential accuracy we have
in a Gaussian approximation

pt(co) —exp [
—At [y„] t ]

(~—~t )'
=exp. —

z
—In(1/ct) . , (95)

25L c(1—c )b,

I

where

5L
3/2

Eo ~I II
coI COI

I4I 3+ VI
0

The normalization integral is

fd xyt(x)=1 .

(96)

The form of the deep-center band is related to the Auc-
tuation potential and, therefore, experimental data in the
form of the band can give additional information on the
fluctuation potential parameters which can be used to-
gether with data on the Urbach parameter EU and on the
DOS slope in the region of the band edge EBE. Unfor-
tunately, it appears to be impossible to avoid the calcula-
tion of the integral I4. The value of the integral is rather
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sensitive to the kind of wave function used for the calcu-
lation and, probably, the spherical well approximation
will not always give the best result.

E. Preexponential factors,
estimation of the mobility-edge position

0&co &(1—c)b,

can now be written as a sum of two items,

The expression for the DOS in the whole interval of en-
ergies Here we have the expression with a preexponential factor

1 co
p(co) =-

CO

3/2
0

exp[ —A [p„t]] f drexpI —A [r]], (97)

where with the help of Eqs. (78)—(79) A [y„t ] transforms to the formula
3/2

0
A [cp„t]= f d x [1nR( it) —t—(p„(x )[inR( it)]', ]—+(Eo/co) (4m/3)X„ln(1/c)

cr tr
(98)

%(r it )—
d x. lnA[r]= ir[lnA—(r it ) ]', —

and A [r] can be written as
3/2

EO
(99)

where

The deep centers result in
3/2

1 co
pl(co) =-

CO
expI —AI[y„] t](1/2~) f d x exp[ Al(r)], —

0
(100)

where AI [y„]can be written in the general case as
3/2

0~ t [v'~.t 1= f d x I in%( it) t y„(x ) [—in'—( it)]', & ] +—ln(1/cl )
0 tr

(101)

and

At[r]=
3/2

0
d x ln —ir[lnR(r —it)]',%(r it)—

(102)

Expanding + [r] and &t [r] in a Taylor series in r powers and restricting by the second-order term we get after calcula-
tion of the Gaussian integral

1
p(co)+pl (co)=—cob,

3/2
EO

2~ dx 1 —it
cr

—1/2

exp I
—A [y„t]]

1 co+-
CO

3/2
0

—1/2

expI —A, [y,',t ]j,. 2m f d x[ln%( it)],", . —
0

(103)

where

x=0

Eq. (86) we get the value of the energy which describes
the statistical dispersion of the localization energy:

=Q((5') ),„=QcoE /2="1/ c(1—c)h 5L

Using for the calculation of the integral

d x [in% ( it)],", —
cr

an approximate solution y (x ) given in the limit co~0 by

The last expression can be rewritten in the form

(1-c)g rr I43/2 2 cr

c(1—c)b, 5L—:cocA E„ 12

(104)

(105)
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For deep centers we get

yl =+c(1—c )b, 6L (106)

with 5L given by Eq. (96). To estimate the order of theI
magnitude of the last expression we can use the wave
function of the spherical well with the volume equal to v0
and with the depth given by AI.

As we can see from Eq. (105) at co —+0 the value of the
y will reach the value of cu at co=~M~ given by equation

3/2 2 cr
(1—c)b, vr I4

COMp =EBp /2 = CA E„ (107)

We already cannot consider the states with co & cuM~ as lo-
calized ones and, therefore, we can take the value coMF as
an estimation of the mobility edge in the single-instanton
approximation. It has an obvious resemblance to the
well-known Ioffe-Regel criterion, but in distinction from
the last it is obtained for the states supposed to be local-
ized and has more chances to succeed in the approximate
definition of the mobility-edge position.

The value co =coM~ also gives us the upper border of the
single-instanton approximation because wave functions of
states above the AM+ should be changed by the interac-
tion between the overlapping states.

VI. DISCUSSION AND COMPARISON
WITH EXPERIMENT

E
JV(0)= J p(co)dco=c ",

0
(108)

where

3/2

(1—c )b.

These states have appeared as a result of fluctuations of
the binary solution and it looks quite natural that their
number is restricted by the possible number of the most
probable critical clusters. Analogous calculations for the
second item of Eq. (103) using Eqs. (95) and (106) give a
value equal to cI for the number of deep centers per lat-
tice site. We shall note that both results are obtained
with restriction (IV) being incorporated into the calcula-
tions. Without a given restriction the number of the
states appeared to be independent of the properties of the
fluctuation potential, which looks unreasonable.

The full number of localized states can be estimated
with help of Eq. (107) by means of the numerical evalua-
tion of the integral

Using for the approximate calculation of the first item
in Eq. (103), Eqs. (88) and (104), obtained in the limit of
the small localization energies we get the estimation of
the full number of states below the EG per lattice site as

E
A'(coMp) = f p(co)de . (109)

ME

Both estimations given by Eqs. (108) and (109) have the
same order of magnitude and can be compared with the
experimental number of localized states below the mobili-
ty edge. From the experimental data of Ref. 4 and refer-
ences therein we can see that the number of localized
states is rather small compared with the full number of
states in valence bands. This fact can be interpreted in
terms of Eq. (108) and the expression for v„as resulting
in the inequality v„) 1 for these fluctuation potentials
which have a maximum depth of the single-site well of
less than the critical value E„. We can consider these
potentials as weakly scattering ones. At these estima-
tions we shall have in mind that expression (108) overesti-
mates the number of the localized states and Eq. (109) is
preferable.

There are another two values convenient for a compar-
ison with the experiment. They are the slope of the linear
region EBp defined by Eq. (91) and the Urbach parameter
EU presented in Eq. (81). From the relation of these two
quantities the most pronounced dependence on E„disap-
pears.

Totally, the three mentioned quantities give a chance
to find the three parameters of the theory, namely, the
concentration of the attractive centers, c, the random po-
tential amplitude 6, and the critical depth of the single
site perturbation, E„. If the possibility exists to find one
of the parameters from the independent sources, then the
knowledge of the mentioned experimental data allows
one to check the theoretical relations quantitatively.

The most suitable parameter for the independent es-
timation is, probably E„. For its estimation it is neces-
sary to know the effective mass of the carrier and the
volume v0. The estimation of the E„ is, probably, possi-
ble for amorphous silicon and glasses. The amplitude of
the random potential and the concentration are known as
a rule for isoelectronic solid solutions, which makes these
objects a very good prospect for use in an investigation of
the behavior of the single-electron density of states in the
region of localization.

Additional information can be obtained from the inves-
tigation of deep-center bands. In the case of amorphous
silicon fitting of the theory parameters with help of the
data on the band tail makes it possible to predict the
broadening of the deep-center band and even its form if
the preexponential factor is calculated more accurately.

The comparison of the qualitative level of the experi-
mental data of Ref. 4 on the single-electronic density of
states with our calculations is given in Fig. 1. Here the
DOS calculated within exponential accuracy without the
deep-center band is presented. The inset reproduces one
of the experimental figures of Ref. 4. According to Ref. 4
the experimental mobility edge is disposed at energy 5.7
eV (see the inset in Fig. 1). That means that almost the
whole linear region obtained in the linear scale for the
DOS is disposed above the mobility edge. The estimation
of the mobility edge (107) also gives its position just
above the Urbach region at the very beginning of the
linear region of Eq. (1). The calculated spectrum has an
obvious likeness with the experimental one.



DENSITY OF LOCALIZED STATES IN DISORDERED SOLIDS 3115

The preexponential factor cannot change the DOS
dependence in the region co ~ coME and therefore the qual-
itative agreement between the theory and the experiment.
While in the interval 0 m mME we cannot use the ener-

gy dependence of the preexponential factor obtained
above because of the localization index energy depen-

dence. Taking into account that the DOS does not have
any discontinuities at the mobility edge and so is the ex-
ponential part of the DOS we can use the obtained ex-
ponential part of the DOS dependence to extrapolate the
DOS dependence into the region above the estimated mo-
bility edge.
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