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Binary fluids in Vycor: Anticorrelated random fields
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Binary Auids in Vycor are a realization of anticorrelated random-field systems. The change from un-

correlated to anticorrelated fields has a profound effect at zero temperature. At any finite temperatures
an effective uncorrelated random field of entropic origin is generated and thus the large scale behavior is
that of uncorrelated systems. The possible crossovers from the pure-system behavior to the eventual un-

correlated behavior and from an effective anticorrelated to uncorrelated behavior are discussed.

I. INTRODUCTION

The effects of quenched disorder on the thermodynam-
ics properties of condensed systems have been at the
focus of intensive research activity in recent years. From
all possible disorder agents, random fields have particu-
larly drastic effects due to the linear coupling between the
disorder and the order parameter of the underlying sys-
tem. As such they have been at the center of both experi-
mental and theoretical investigations. ' Relative to the
large volume of these investigations the results so far are
quite modest and most important problems are still open
to heated debates. Undoubtedly these difficulties are as-
sociated with the exceptionally strong effect of the ran-
dom fields. Therefore the study of systems in which the
disorder still couples linearly to the order parameters but
in which its effects may be weaker, will be especially in-
teresting, since they have the potential to be more tract-
able theoretically and better understood experimentally.

This paper is devoted to the study of such systems. As
we outline below these expectations are partly fulfilled al-
though we find that the drastic effects of regular random
fields are subtly generated in unexpected ways.

Let us begin by analyzing where such systems may be
looked at experimentally. The major realizations of
random-field systems originate in random antiferromag-
nets in an external magnetic field. However, other ran-
dom field realizations have been investigated: binary
fluids in presence of a gel or in porous media (like Vycor).
Binary fIuids are described in an Ising model in which the
order parameter is the concentration difference between
the two components in the Auid. ' As was pointed out
by de Gennes, if there is a difference in the affinities of
these two components to the gel ( or to the Vycor) then

the latter will generate a local change in the energy which
will be proportional to the density difference, namely
there will be linear coupling between the gel (Vycor) and
the order parameter. We are going to denote this cou-
pling as a "field" because of its analogy to the magnetic
field in the magnetic systems.

The important question is of course: Is this field "ran-
dom"? The answer to this question depends on the prop-
erties of the quenched configurations of the gel or the
Vycor. For the gel, de Gennes has argued ' that its
structure is basically random beyond a finite scale. Below
this scale the gel structure has some "persistence" and is
not random. These small-scale correlations cannot
change the behavior on the large scales and will thus be
that typical to regular random-field (RF) systems.

The answer for the Vycor systems is totally different.
Indeed the Vycor is formed from a deep-quenched phase
separation in which the silica is phase separated from bo-
ron oxide. Before the phase separation is complete the
melt is quenched to a lower temperature below the glass
transition. The boron is leached out leaving a spongelike
Si02 structure. As has been pointed out by Weichmann
and Fisher (in their study of helium in Vycor) such a
phase-separation process is controlled by the conserva-
tion of the silica (and the boron). Because silica cannot
be created or annihilated but only exchange its location
with the boron, the "conserved" spinodal decomposition
leads to random structure with peculiar correlations ex-
hibited by its structure factor S(q) (the Fourier transform
of its real-space correlations) in the limit ~q~~O. For
conserved processes it always hold that S(q)- ~q . By
contrast a completely random structure (which would
have given rise to a regular RF) would have S(q) =const
for small ~q~. So the behavior of S(q) for ~q~ ~0 is very
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different for both cases. Randomness with a correlation
function which vanishes as ~q~ —+0 is expected to be
weaker than that for which the correlation at small ~q~

are finite. This effect, which will be explained in detail
below, is at the origin of our present theoretical explora-
tions of such systems. Because diverging correlations
arise from long-range correlation in the disorder, we call
this situation in which S(q) vanishes as ~q~ ~0 as "an-
ticorrelated" random fields. Experimentally these sys-
tems have been studied by Wiltzius and co-workers' '" as
well as by Coh et a/. ' The analysis of these experiments
was all based on the "random-field" paradigm' and the
essential difFerences that may arise due to S(q)—+0 have
not been analyzed heretofore.

In the case of helium in Vycor the coupling of the
Vycor is to the superAuid density which is quadratic in
the order parameter (the superfiuid amplitude

~ g~ ).
Thus in this case, studied by Weichmann and Fisher, the
disorder is equivalent to "random bonds" in the magnetic
terminology and is expected to have weaker efFects (in
comparison with a binary Quid for which, as discussed
above, the order parameter is the excess density itself).

Similar effective correlation functions in the random-
ness were found earlier in another type of system in
which the randomness couples to the gradient of the or-
der parameter: the so-called random vector field model. '

Realizations of such models include impurities effects on
charge-density waves and directed models of percolation
or transport in which the preferred direction changes
randomly in space. Because the disorder couples linearly
to the gradients, there is an extra q factor in the Fourier
transform of the random coupling and an extra ~q~ for
the two-point correlations of the disorder (compared with
the regular random-field case). This model was partially
analyzed in the past, ' and the results obtained agree, as
particular cases, with the more general results derived
here.

The organization of this paper is as follows: In Sec. II,
we discuss the anticorrelated random field and the zero-
temperature behavior. We find that the lower critical di-
mension and domain-wall roughening are drastically
affected by the anticorrelation tuning parameter. To un-
derstand the low-temperature behavior, we apply a real-
space, low-temperature, decimation procedure in Sec. III.
We find that a weak uncorrelated random field of entro-
pic origin is generated, thus obliterating the zero-
temperature behavior and replacing it by the behavior
typical to uncorrelated random-field systems. In Sec. IV,
we discuss the crossover into the eventual uncorrelated
random-field behavior. Section V discusses the crossover
from the unattainable anticorrelated critical behavior to
the uncorrelated behavior. Conclusions for the potential
realizations are summarized in Sec. VI.

II. ANTICORRELATED RANDOM-FIELDS—
ZERO- TEMPERATURE BEHAVIOR

The anticorrelated random field (ACRF) model has
algebraic correlations as q ~0 with a variable power
p) 0 defined by

[h h ~]-q"

for q —+0. To generate such correlations in momentum
space we choose the real-space correlations of the ACRF
to be of the form

—Kh /r + " ~r~&0,[h(r')h(r'+r)]=G(r)= .
+h'/r[=0 .

d is the spatial dimension and X is a constant determined
by the anticorrelation condition Q„G(r)=0. If this con-
dition were not satisfied the properties would be the same
as for uncorrelated fields. K vanishes as p approaches
zero. Therefore, the limit p=0 corresponds to uncorre-
lated random fields. Equation (2) implies for R much
larger than the interatomic distance I

and in Fourier space if p ( 1,

[h h ]-h q".

A. The lower critical dimension

-h [R "+R ']'i
where the second term between brackets is a surface con-
tribution. The domain-wall energy' to be compared with
(5) is Jr ', thus

d, =2(l —p) if p( —,
' (6a)

For p) —,
' the random field does not affect the lower criti-

cal dimension d, which is related to thermal solitons as in
the case h =0. The result is

d, =l if p) —,
' . (6b)

Note that the d, found here is related to the stability of
the ferromagnetic ground state. We shall see that this is
not the finite temperature d, .

B. Domain-wall roughness at T =0

This question has been addressed in Refs. 2, 3, and
15—17 for uncorrelated fields. The simplest method' is
to treat a problem with a single degree of freedom, name-
ly a bump of radius p and height h on a domain wall.
The balance between the random field or Zeeman energy
W, (which tends to make h large) and the exchange ener-
gy W,„(which keeps h small) determines the fluctuation
of h, (h2) =h~i(p). If h, diverges with p, the wall is
rough.

In the case of uncorrelated fields one uses the fact that
the random-field energy change 58, is the sum of a large

d, may be obtained as in the pure case' by comparing
the exchange and Zeeman energies due to Gipping a bub-
ble of linear size R relative to its surroundings. The aver-
age Zeeman energy is zero but the typical excess energy is
given according to (3), by

[W, ]' — g gh(r')h(r'+r)
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This bump-favoring energy is equi1ibrated by a bump-

opposing exchange energy 58'„. The latter will be eval-

uated in the continuum version for the Ising model. In
that model ' '

5 W,„-Jp" '(h ] /]c] )

Minimization of (5W, +5&,„) with respect to h] yields

for large p

h 3+28 (g /J)2p5 —d (p ( ]
) (9)

The uncorrelated analog of the above simple argu-
ment' ' has been also substantiated numerically. '

In d =2 dimensions the domain-wall roughness in
the present model was considered by a one-loop
renormalization-group study via the Burger's equa-
tion. ' ' It turned out, that the result (9) is correct even
for p &p, (d =2)=—,'. For p, )p„h, -p~ with g= —', , in-

dependent of p. If this scenario applies also for higher di-
mensions, one expects that the critical value p, (d) in-
creases slightly from 2 to 5 dimensions with

p, (d =5)=0.9. Here we used the result of the functional
renormalization group for the roughness exponent
/=0. 2083 (5 —d) of the random bond model, which is
believed to be valid for p~p, (d) and d(5. For
p, &p, (d), the result (9) is correct. The critical dimen-
sions dz =5, below which domain walls are rough, is in-
dependent of p.

III. LOW- TEMPERATURE RENORMALIZATION:
GENERATION OF NONCORRELATED RF

In this section we show how the thermal Auctuations of
the spin degrees of freedom at finite temperature lead to
the generation of regular random fields on larger scales.
To see how the anticorrelated field is renormalized let us
consider an explicit two-dimensional example.

Consider the system described by the following an-
ticorrelated random-field Hamiltonian:

H =Ho+ gh; o; ——gcr„1

ieQ n,.
(10)

number of random variables, namely the random fields
inside the bump. One therefore, expects that the absolute
value of 68' for a given value of h has, with a large prob-
ability, the order of magnitude (5W', )'~ and this can ac-
tually be checked by an exact or a numerical calcula-
tion. ' If we accept this principle (to be discussed below)
for anticorrelated fields too, one finds ( 58; )
=+„„.G(r —r'), where the sum is over r and r', within the
bump. For p, (1/2 the dominant contribution to this
sum comes from points r,r' far from the wall and one ob-
tains, using (3)

h) h)
W, -p" ' f dz f d r'G(r)-p" ' f dz

0 r') z o 2p

(7)

W,'-h'p 'h,' '" (p& —,') .

where Ho is that part of Ho that is independent on the
spins belonging to 0 and

Jo,hK= —gin tr ei'
o. —h.n. i

I —:—gbH' . (12)

The last relation stems from the fact that the density of
points belonging to 0 is low. [In fact they can be chosen
from the beginning in such a way that any two sites be-
longing to 0 are beyond next-nearest neighbors and then
the last equality in (12) is exact. ] We choose a given i
denote it by 0 and its neighbors by 1,2,3,4 and calculate

= —1
J~o[,~~+~2+~3+~4 ho)

AH = —ln tre
(ao)

= A+B[cr,cr2+o]o3+ cT3cr4]

+Co ]o'2o 3 c4r+ F](cT]+(T2+cr3+(T4)

+F20 ]o 20'30'4(o ] 2+cr3+cT4 (13)

where 2, B, C, F„and F2 are explicit functions of J and
h. We present here only F& and F2 that break the inver-
sion symmetry.

F, = —
—,', [[lncosh(4J —ho) —lncosh(4J+ho)]

+2[in cosh(2J —ho) —ln cosh(2J+ho)] I,
(14)

F2= —
—,
'

[ [ln cosh(4J —ho) —ln cosh(4J+ho)]

—2[in cosh(2J —ho) —ln cosh(2J+ho)] I

(15)

At low temperature o,cr2cr 3o4may be taken as 1. (I.n fact
we have calculated the correction to that and it does not
affect the leading order of the final result. ) We are there-
fore left with a field on the points 1,2,3,4,h,~, given by

h, ]r
= —

—,
' [ln cosh(4J —ho )

—ln cosh(4J+ ho) ]
——„'ho

= —
—,'e sinh (2ho) = —sign(ho) —,'e e

—8J I —8J 2lhol

for J»ho »1. We see the appearance of the same field

h,z on the sites 1,2,3,4 and this field is uncorrelated with
the fields generated on sites surrounding any other site in
Q. For ~h, &&J, the effect of the fields on the couplings
A, B,C is negligible and therefore we could have obtained
H' by starting with

where 0 is a partial set of the square lattice of points
scattered at some low density and the summation over n,
is over the neighbors of i, the h s are taken to be random
and uncorrelated. Ho is the usual ferromagnetic Hamil-
tonian. We apply now a decimation procedure based on
integrating over the spins on the sites belonging to Q.

The renormalized dimensionless Hamiltonian is

H' =Ho+ b H —QI—],QCT „
1

4;,n
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H =Ho+ gh', trgcr„
i@A, n,.

namely, a system of correlated (rather than anticorrelat-
ed) fields with short-range correlation.

The origin of this random uncorrelated field is purely
entropic as may be seen from the fact that for the fixed
ratio

~
h

~
/J it approaches zero as J tends to infinity (the

temperature tends to zero). Our particular system has a
ferromagnetic ground state, while it is disordered at any
finite temperature, due to the effective uncorrelated field.
(Note that we consider here a two-dimensional system. )

IV. CROSSOVER TO THE
UNCORRELATED RF BEHAVIOR

We have seen by real-space decimation that due to
thermal fluctuations an uncorrelated RF is generated.
To study the crossover behavior due to this effect we ex-
plore it in momentum space. We follow standard
renormalization-group procedures to find the lowest or-
der in u and 6 at which this RF is generated. (u is the
standard P coupling constant. )

The lowest order (besides the trivial term) is given by
the following expression (b, (q) = [hzh ] ),

~'(q)=A(q)+ ~u f f f dqidq2dq3fi(q qi qz q3)~(qi)Go(qi)~(q2)Go(q2)b(q3)Go(q3)

where Go(q) —1/(r+q ) is the unperturbed propagator.
The small-scale fluctuations are integrated out by the

explicit integration over q„q2, and q3 in a momentum
shell ~/a &q; &~/2a. Clearly for q =0 there will be a
nonzero contribution from this integral. The dependence
on the rescaling factor is also easily estimated.

For the first (trivial term) b, (q)=b, oq
" the rescaling

q ~bq yields a dependence of b ".In the second term the
power counting for q =0 yields a dependence of
u Ao. b " ' + ". Since the upper critical dimension is
d =6—2p this may be expressed as u hob "b '
( e =d —d" ). So in total we have to this order

b, (q)=b "[Au bob '+boq "] .

Otherwise, if this perturbation is irrelevant there will be
no intermediate phase and the crossover will be directly
to the uncorrelated RF dominated behavior. The cross-
over exponent from the pure system due to the anticorre-
lated fields is / =2—2P —

iso, where i)o is sPin-sPin corre-
lation exponent of the pure system. The intermediate
phase will exist for P )0. Note that for the Vycor system
with p= 1 p= —il and, since i) )0 for Ising systems, the
transition will be directly to RF behavior without this in-
termediate phase. For the case P )0 we define the
effective exponents g, g and o. by the behavior of the sus-
ceptibility, correlation function, and Zeeman energy as a
function of the correlation length g, where g can still be
made very large.

The q-independent term is proportional to ho. This
means that the effective uncorrelated field is proportional
to the third power of the amplitude of the original corre-
lated field. In particular the crossover variable to the
usual RF behavior is [h ]r (y is the susceptibility ex-
ponent of the pure system) and, since h -b,o, the cross-
over variable in all thermodynamic functions will be
b,ot ~~ namely, the crossover exponent is y/3. This is
the crossover exponent from the pure to eventual
random-field exponent.

and

W, -h g" " for p not too large .

The Arrhenius law yields for relaxation times

r=roexp[ag " ]

roepx[ C(T —T, )
'" " ']

(20)

(21)

(22)

V. CROSSOVER FROM ANTICORRELATED
TO UNCORRELATKD CRITICAL BEHAVIOR

As seen from both renormalization procedures an un-
correlated random field is generated from the anticorre-
lated field and therefore the critical behavior to be ex-
pected is that of the uncorrelated field. The effective
uncorrelated field is much weaker than h that measures
the strength of the anticorrelated field. Therefore it may
be expected that the critical behavior observable near the
transition line in the (h, J) plane, as a function of the dis-
tance to the line will first be that of the unattainable an-
ticorrelated behavior and only closer to the line will it
crossover to the behavior of the uncorrelated random
field. The condition for the existence of this "intermedi-
ate phase" is that the anticorrelated fields as such are a
relevant perturbation when added to the pure system.

and

y =(2—i))v,
=dg= —+g+p —2—cr,

2

(23)

d
2 —cx — —+cT+p v .

2
(2&)

Following Ref. (21) we also obtain that il and 7) are not
independent but

Going through the same arguments discussed by Villain'
and Fisher for uncorrelated fields we obtain the follow-
ing scaling relations for the effective exponents:
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(For the uncorrelated system the same result has been ob-
tained to all orders in e in a 2+a expansion. ) Modified
hyperscaling follows:

2 —a=(d —2+g+2p)v . (27)

(d/2 /l (T

~ 3~d/2 (Tp

so that the correlation length at crossover obeys
2/(P+—cr —o p)

(28)

(29)

Taking into account, that usually the o's are small
g-(h) /". This is the size of the correlation when the
systems starts to see the effective uncorrelated field.

VI. CONCLUSIONS

In this work we have explored the effects of anticorre-
lated random fields which couple linearly to the order pa-

(For tu, =O the same result was already obtained by Nat-
termann and in a different language by Grinstein a long
time ago. ) Because of the tu, dependence of the scaling
relations it is clear that indeed the effective exponents are
different from the true exponents.

When can we expect the crossover to occur? A crude
answer may be obtained by equating the Zeeman energies
of domains of size g of the anticorrelated field with that
of the effective correlated field. Taking into account that
h,~- h we obtain

rameter but are weaker than noncorrelated random fields.
Our intention was to learn more on general random fields
by the study of a controllable weaker perturbation. This
study led us, however, to the conclusion that anticorrelat-
ed random fields generate noncorrelated RF at any finite
temperature. So the anticorrelated RF, strictly speaking,
is exhibited only at T=O. At finite temperatures the
noncorrelated RF generated may be very weak and an
"effective" behavior may be observed on relatively large
length scales. Eventually the regular RF will dominate.
The crossover exponent to this behavior is y/3, namely
third of the RF crossover exponent.

For binary Auids in Vycor the observed behavior must
be that of regular (noncorrelated random fields) but with
very strong corrections to scaling due to the fact that
these noncorrelated fields are generated on large scales
from coupling of the local fields with S(q) ~q due to the
thermal fluctuations of the underlying order parameter.
The effects should be seen as described above in the cross-
over from pure system behavior and are therefore to be
expected not much below the critical temperature of the
bulk (pure) system. The actual details would of course
depend on the properties of the Auids and the porous
medium.
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