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Phase diagram at T =0 of the one-dimensional chiral planar model
in a twofold-anisotropy field
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The ground-state phase diagram for the one-dimensional chiral planar model in a twofold-anisotropy
field is obtained. An intrinsic reAection-symmetry property about the natural angle of cantedness
A=~/2 is demonstrated and serves to relate commensurate phases having different orders of commen-
surability. This last property is used to establish a comparison with earlier results obtained by A. Baner-
jea and P. L. Taylor [Phys. Rev. B 30, 6689 (1984)]. The phase boundaries at low amplitude of the
twofold-anisotropy field are determined analytically with a criterion of zero creation energy of isolated
solitons. At finite value of the amplitude of the anisotropy field, the phase diagram is obtained with an
effective potential.

I. INTRODUCTION

The ground-state phase diagram of the one-
dimensional chiral planar model in a twofold-anisotropy
field has been stUdied previously by Banerjea and Tay-
lor. In their treatment, they restricted the angle
measuring the natural cantedness of the system to the
first quarter of the full circle and imposed an additional
indistinguishability between polar angles differing by ~,
having in mind an application to polytetraAuoroethylene
crystalline polymers. These limitations are too restric-
tive for the planar vector model and leave out half of the
phase diagram with phases having a specific order of
commensurability. As is shown later, an interesting mir-
ror symmetry about b, =~/2 exists, relating phases of
different orders of commensurability. In addition to the
above, it is worth mentioning that a planar model, in a
twofold-anisotropy field, which does not differentiate be-
tween 0 and 0+~ in its nearest-neighbor potential energy
would be turned into a vector model in a magnetic field.
Under these conditions we know the phase diagram to be
very different, making extensive use of the nonconvex
part of the interparticle potential energy. In the present
study, we have in mind applications ' to the one-
dimensional discotic liquid-crystal phases having at their
lattice sites physical quantities possessing intrinsic three-
fold rotational symmetry embedded either in a sixfold or
threefold local anisotropy field. These applications call
for an extensive study of the phase diagram of the chiral
planar model in a twofold-anisotropy field, the case of a
onefold-anisotropy field having received an extensive
treatment in the past.

The rest of this paper is organized as follows. The
model potential energy is presented in Sec. II with a
study of its symmetry properties. It is followed in Sec.
III by the determination of the boundaries at small am-
plitude of the anisotropy field and of the principal com-
mensurate phases, with a criterion of zero creation ener-

gy of a single soliton in an otherwise commensurate
phase. In Sec. IV, the complete phase diagram at a

higher value of the anisotropy field is obtained using the
method of effective potential of Griffiths and Chou. Fi-
nally, a discussion of the results and conclusions are
presented in Sec. V.

II. THE MODEL AND ITS SYMMETRY PROPERTIES

The potential energy of the chiral planar model is writ-
ten as follows:

E(0„)=g —cos(0„—0„,—b, ) ——cos(20„), (l)
H
2

where 0„ is the angle between the vector at site n and a
preferred fixed direction in the plane of the vectors. 0 is
the amplitude of the twofold-anisotropy field relative to a
unit amplitude for the nearest-neighbor intersite chiral
interaction. 6 is a measure of the natural angle between
nearest neighbors. This potential energy has a few sym-
metry properties which are used to limit the parameter
space for a thorough study of the phase diagram. It is
easily shown that

E [b,H, (0„)]=E [6,+2~, H, (0„)],
=E [ b„H, ( —0„)], —

=E [6, H, (0„+rr/2)]-,
=E [m. b„H, ( n vr 0„)] . ——

(2a)

(2b)

(2c)

(2d)

Equation (2d) expresses an additional nontrivial symme-
try of E(0„) which relates commensurate phases linked
by a mirror reAection about A=a/2. In order to specify
the commensurate phases related by (2d), we use the no-
tation introduced by Yokoi, Tang, and Chou. The aver-
age nearest-neighbor intermolecular angular displace-
ment is written as follows:

(0„+,—0„)=q =2m.q .

For certain ranges of the parameter 6 at a given H, com-

0163-1829/93/48(5)/3074(5)/$06. 00 3074 1993 The American Physical Society



PHASE DIAGRAM AT T=O OF THE ONE-DIMENSIONAL. . . 3075

mensurate phases are obtained having P2m. rotations for
the Q successive vectors of an entire period. The rational
number

q =P/Q (4)

is used to specify the order of the commensurate phase.
The above refiection symmetry property about 5=m. /2
imposes the condition that the commensurate phase P/Q
for 6) m. /2 occupies a domain of the parameter space
which is the mirror image about b, =m/2 of the com-
mensurate phase P'/Q' for b, & m. /2; the orders of com-
mensurability being related by

P Q' —2P'

Q 2Q'

( )„ is used to specify the rational number in its reduced
form. Contrary to the onefold-anisotropy field, only
phases with the reduced form of P/Q were observed in
the twofold-anisotropy field. As a result of the symmetry
properties [Eqs. (2) and (5)], it is sufficient to consider the
phase diagram for H )0 and ~/2 & 5 & m.

In the absence of an anisotropy field, a perfect helical
ordering of a definite chirality is obtained with
( 8„+,—8„)=b„where an infinite succession of com-
mensurate and incommensurate phases occurs with in-
creasing A. Contrary to a model with discrete spins, like
the ANNNI model, the twist q of the helix varies con-
tinuously, like in a Aoating phase not pinned to the lat-
tice at H =0, and the incommensurate phases occupy the
full domain of the 5 parameter space leaving a space of
zero measure for the commensurate phases.

The presence of a finite amplitude H for the anisotropy
field introduces domains of finite width in the 5 parame-
ter space for the commensurate phases, turning the phase
diagram into a harmless, complete or incomplete, Devil' s
staircase. These behaviors will be studied both analyti-
cally at small H and numerically for all values of H in
Secs. III and IV, respectively. At this point, let us illus-
trate the behavior in the limit of an infinite amplitude H
of the anisotropy field. In this limit the vector angles are
limited to 0„=0 and 0„=~. The ground-state energies
of the ferromagnetic phase 0/1 and the antiferromagnetic
phase 1/2 are equal at b, =m. /2, the ferromagnetic and
antiferromagnetic phases being ground states, respective-
ly, for b, & rr/2 and b, )m. /2. At b, =rr/2, phase generat-
ed from the ferromagnetic phase by reversing one or
many vectors have the same energy as the ferromagnetic
or antiferromagnetic phases. The character of the phase
at the limiting point A=a/2 and H~ ~ is of interest.
Starting from the ferromagnetic phase 0/1 and reversing
vectors, any commensurate phase P/Q with a higher or-
der of commensurability may be formed without any cost
in energy. Random phases with their periods approach-
ing infinity may also be generated. In this Ising limit, the
absence of a continuous character for the site variables
prevents the appearance of incommensurate phases. We
thus conclude that the limiting point H —+ ~ and h=~/2
is a multiphase point of the kind predicted in the
ANNNI model.

III. SOLITON INSTABILITY STUDY FOR SMALL H

We now study the limit of stability of certain com-
mensurate phases at weak but finite values of the ampli-
tude H of the anisotropy field. We will assume that the
limit of stability is signaled by the vanishing of the
creation energy of a single soliton in an otherwise com-
mensurate phase. Starting with the uniform ferromagnet-
ic phase 0/1, and measuring the energy with respect to
this phase, the total-energy difference becomes

bE(8„)=g [1—cos(8„+,—8„—b, )]+H g sin 8„. (6)

For H «1 and 6 near zero, treating the angular variable
8(n) as a slowly varying continuous function of n, b,E be-
comes

bE(8„)= —b, [8( oo )
—8( —oo )]

2

+ J dn — +H sin [8(n)]
+~ 1 do

2 de
(7)

a=+~+ H'" .4
(10)

We now study the stability of the 1/4 phase near
b, =sr/2. In the 1/4 phase, the angular variable 8„ is
written as follows:

8„= n+ P+—g„.
For H =0, the global phase angle P is undetermined and
the modulation g„=O. For HWO, Q is fixed and a finite
value of the modulation g„develops. Modulations with
wave numbers ~ and ~/2, both being compatible with

q =m /2, g„ is written as follows:

g„=(—1)"x +y cos n +zsin n—
2 2

(12)

To the lowest order in x,y, z, and H, the energy per site is
minimal for

H sin(2$) +O(H3)
2 sin(b, )

y =O(H'),

(13)

Solving the differential equation obtained from the ex-
tremal condition of the energy functional (7), with the
boundary conditions at infinity 8(+oo ) =0 or m, the fol-
lowing soliton (+) and antisoliton (

—) are obtained.

8(n)=2tan 'I exp[+(2H)'~ n]j .

The creation energy of the soliton and antisolition are, re-
spectively,

aE = H'"+~a .4
v'2

For ~b,
~

~ b,, [b,, =(4/m&2)H' ], the ferromagnetic
phase 0/1 is unstable for the creation of solitons (b, )0)
or antisolitons (b, & 0). It may be easily shown that in the
antiferromagnetic phase 1/2, the lines of instability for 6
near +m are given by
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and

z=O(H ) .

IV. PHASE DIAGRAM USING THE EFFECTIVE
POTENTIAL METHOD

Substituting (13) in the energy per site s, we obtain

a=1—sin(b, )+H —— . +O(H ) .1 H sin (2P)
2 sin(A)

(14)

The last term in H favors $=7r/4, an infinitesimal H,
fixing the vectors in the middle of each quadrant in the
distorted phase of period 4. To order H, the angular
variables in the distorted phase of period 4 are given by

0„= n+—— ( —1)"+O(H ) .
H 3

2 4 2
(15)

This distorted period 4 may be looked upon as a double
fan phase, with pairs of successive vectors being drawn
together alternatively towards 0=0 and 0=m. We study
the stability of the distorted period 4 phase using a
method similar to the one presented for the uniform
phase 0/1. The soliton and antisoliton, appearing as a
slow variation of the phase angle P, are, respectively,

BE(8„)
at9„

(21)

However, this procedure could be very misleading since it
points not only to minimal energy states but to all ex-
tremal energy states. Additional complications of
nonuniqueness arise when the interparticle potential is
non convex. In comparison to this, the use of the
eff'ective potential method focuses directly on the ground
state. Extensively used and well described in the litera-
ture, ' ' ' this technique finds its justification as the
zero-temperature limit of the transfer operator,

A very useful method to obtain the general features of
the ground-state phase diagram of a one-dimensional sys-
tem with competing interactions is the algorithm of
Griffiths and Chou. In principle, the ground-state phase
diagram of the potential energy (1) could be obtained
through a search for the extremal conditions,

P(n) =—+2 tan 'I exp[+(2H)'~ n]] .
4

(16)
T(u', u) = exp ——[ V(u)+ V(u') ]

—PIV(u' —u) ~,

The soliton and antisoliton have, respectively, zero
creation energy for

H =2~ + +—1
2m 4

(17)

According to Bak, the commensurate phase P/Q should
become unstable with respect to the creation of isolated
solitons for

P——=H~2' Q
(18)

8„= n +P+—sin n —2P
=2~ H . 2~

3 3 3

The phase angle P is shown to be fixed at /=0 or
P=~/3, these two states being fully equivalent with a
single vector pointing either up or down in a given
period. The distorted phase of period 3 becomes unstable
with respect to the creation of solitons or antisolitons (in
P„)at

At first, the above result (17) seems not to agree with
Bak's result. This is only apparent; the two may be
reconciled when one observes that to lowest order, it is
the Q =2 modulation (x&0) which is nonzero in our
case.

We have also conducted a similar calculation for the
phase of period 3 near 6=2rr/3. To lowest order in H,
the distorted phase of period 3 is given by

(22)

(24)

A similar equation holds for the right eigenfunction. In
this context R(u), which possesses the same period as
V(u), is called the "effective potential" and A, is the
ground-state energy per site. It has been shown that (24)
admits a unique solution for R (u) and A, , with k real and
positive. The power of the algorithm, which is not yet
fully understood, lies in its easy numerical implementa-
tion. The process of finding R(u) is iterative, and the
scheme, suggested by (24), that gives the best conver-
gence is

R" "(u)= '[KR'1'(u)+R'1'(u—)]—k'J' .2 (25)

R 'J'(u) is the effective potential, discretized in u equidis-
tant points (U =10 ), at the jth iteration, and A,

'~' is
chosen so that

where u and u'H [0, 1] and P is the inverse temperature.
V(u') and IV(u' —u) are, respectively, the intersite and
nearest-neighbor intersite potentials. The corresponding
eigenvalue problem can be expressed as follows:

f duZ'(u', u)e ~ '"'=e ~'e ~"'"' (23)

where e ~ '"' and e ~ are, respectively, the left eigen-
function and eigenvalue. In the T~O limit, the integral
is dominated by the maximum of the integrand, giving

A+R (u') = V(u')+min[8'(u', u)+R (u)]=KR (u') .

2m.
1

&3H H
-+

3 12m
(20) min[KR'~ "(u)]=0 . (26)

The lines of instability (10), (17), and (20) are plotted on
Fig. 1 where the full diagram obtained by the numerical
method used in Sec. IV is presented.

This technique converges quickly, with weak dependence
on the initial conditions [for example R' '(u)= V(u)].
The recursion is stopped when the following self-
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consistency is reached;

max(~R'~+"(u) —R'1""' }&6 (27)

of the phase associated to that point, the winding number
co defined' by

with s arbitrarily small (we used c, =10 —10 ). The
effective potential calculated using (24) defines a map-
ping,

u =M(u'), (28)

representing the ground-state configuration. It is con-
structed in such a way that for each u' one assigns the
point u for which the right-hand side of (24) is minimal.
After a transient state, the mapping tends to an attractor.
The physical particle arrangement is then given by

u„,=M(u„) . (29)

The H-b phase diagram of (6) is obtained as follows. At
each point (H, E/2m. ), one generates the effective poten-
tial (with proper discretization and within given pre-
cision), calculates the mapping (28), and the ground-state
configuration. To identify the order of commensurability

m

co= g 6(u„,—u„),
m „

(30)

V. DISCUSSIONS AND CONCLUSIONS

is calculated, where 0 is the Heaviside step function.
Figure 1 shows the full phase diagram obtained by this

method for m. /2 & b, & m.. It is made of tongues starting at
commensurate values of the twist of the helix on the
H=0 axis and extending to H~oo to merge into the
multiphase point described above. It is to be noticed that
for H ) 3, most of the phase diagram is occupied by three
phases 1/4, 1/3, and 1/2. However, it is conjectured (the
numerical method is not able to obtain higher-order com-
mensurate or incommensurate phases) that all commens-
urate phases exist for the entire domain of H, giving rise
to a complete Devil's staircase. We have also verified
that all phases are convex, in agreement with previous
conjectures.

0
0.25 030

I

0.35

6/2H
045 o.so

FIG. 1. The H-5 ground-state phase diagram for
m/4 & 6 (~/2. The phase boundaries obtained analytically
from Eqs. (10), (17), and (20) are shown by dashed lines. The
different phases are characterized by their commensurability or-
der P/Q, the arrows pointing at the tongue of a particular
phase. The full curves were obtained numerically by the
effective potential method.

At this point, it is important to compare these results
with those obtained by Banerjea and Taylor. ' As indicat-
ed above, a set of tongues obtained from the mirror image
of Fig. 1 about b, =sr/2 will compose the phase diagram
for 0&6, &vr/2. The order of commensurability of the
obtained phases are given by Eq. (5). The phase boun-
daries are in excellent quantitative agreement with those
obtained numerically by Banerjea and Taylor. ' However,
the order of commensurability has to be revised, giving
successively 1/10, 1/8, 1/6, 1/5, and phase 1/4 occupy-
ing the center of the phase diagram around ~/2.

In Fig. 1, we have also plotted the phase boundaries
obtained from the criterion of instability of the spontane-
ous creation of isolated solitons. At low H (H &0.5), the
agreement is excellent with the numerical results and
serves to help one understand the origin of the bulging of
tongues delimiting the area occupied by a phase of a
given order of commensurability at low H. The discus-
sion of phase 1/4 will illustrate this very well. As shown
above, the application of an infinitesimal amplitude H of
the anisotropy field fixes the phase angle P of the period 4
phase at ~/4, destroying the rotational invariance in the
plane of the vectors. Further increasing H turns the
pinned period 4 phase into a distorted double structure
fan phase, allowing the existence of a commensurate
phase of order 4 away from the natural twist of A=a/2.
Equivalent phase angle pinning is seen for phase 1/3 and
the effect is maximum for the antiferromagnetic phase
1/2, where the pinning at /=0 or m. allows the phase to
occupy most of the phase diagram at larger values of H.

At this point, it is interesting to compare the results for
a twofold-anisotropy field with that of a onefold-
anisotropy field of Yokoi, Tang, and Chou. As seen by
these authors (Fig. 4 of Ref. 4), the application of the
onefold-anisotropy field breaks the symmetry about
b, =m/2, forcing the occupation of the nonconvex part of
the interparticle potential at higher values of the anisot-
ropy field and finally imposing a locking effect which
leaves only two phases at H~2 with a second-order
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phase transition between the two with increasing b. In
addition to this, there is an overall tendency for the
tongues describing the commensurate phase to incline to
the right in parameter space. Compared to this, the
phase diagram of the twofold-anisotropy field retains its
symmetry with respect to b, =m. /2, with all tongues for
the commensurate phases inclined to converge towards
this value of 6 in the phase diagram. This result will be
used in a further paper to understand the behavior of

one-dimensional strands of discotic liquid crystals in
different types of local environments.
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