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This paper is concerned with the description of the nonlinear mechanical properties of composite
media. We develop a general theoretical framework for the determination of the overall nonlinear
behavior of a two-phase composite, with randomly oriented elastic and ellipsoidal particles embedded in
a ductile medium, in terms of the multiple-scattering theory. This theory is versatile enough to provide
results under any proportionally increasing combined stress. Two solutions, namely, non-self-consistent
and self-consistent solutions, for the nonlinear behavior are discussed. The theoretical predictions also
compare reasonably with the experimental results.

I. INTRODUCTION II. PRELIMINARIES

Many methods have been proposed to evaluate the
linearly macroscopic behavior of heterogeneous media
from constituent properties and interactions. Among the
more prominent ones is the multiple-scattering theory, '
which has been developed in various ways to describe the
physical and mechanical properties of heterogeneous
media in the linear-response regime. Recently, the at-
tention has shifted to the nonlinear response of these
media because, in practice, there are many nonlinear
behaviors.

Over the last few years, some work " on the non-
linear magnetic and dielectric susceptibilities of hetero-
geneous media has been reported. Recently, Ballabh
et al. ' have deduced the explicit analytical expression
for the third-order elastic constant of disordered solids
and calculated the three independent third-order elastic
constants of cubic polycrystals by generalizing the
multiple-scattering theory.

In this paper, we follow the multiple-scattering
schemes and describe the strongly nonlinear mechanics
behavior of a perfectly bonded elastic-plastic composite
under a proportionally increasing (not cyclic) combined
stress. In the limit of the low-volume concentration of
elastic particles, our results reduce to those recently
found by Tandon and Weng, ' and Qui and Weng, ' from
an improved micromechanics model.

In Sec. II, we give the properties of the ductile phase
and introduce the notations. In Sec. III, we present the
general formulation which shows a latent correspondence
principle between elasticity and elasto plasticity. Two
kinds of approximate solutions, namely, non-self-
consistent (NSC) and self-consistent (SC) solutions, of the
overall nonlinear elastoplastic properties for the compos-
ite with spherical or spheroidal particles are given in Sec.
IV. The results of the application of the theoretical
methods to the ductile-matrix composites reinforced with
hard particles are discussed in Sec. V, and Sec VI is de-
voted to the conclusions.

in terms of von Mises' effective stress o' and strain e~',
defined by

ere (3tT t7 /2)1/2 EP =(3' EP/2)1/2' (2)

where o.
,
' is the deviatoric stress, e; is the plastic strain,

and o. , h, and n are the initial yield stress, strength
coefficient, and work-hardening exponent, in turn.

The "secant" Young's modulus of the isotropic ductile
phase is given by

E'= l /[ l /E+ e '/[o +h (et")"]I, (3)

where E is its ordinary linear Young's modulus. The as-
sumption of plastic incompressibility for the ductile
phase results in k' (the secant bulk modulus)=k (the
linear elastic bulk modulus), and the secant shear
modulus p' is given by

p'=E'/(3 E'/3k ) . —

In the following analysis we use a general symbolic no-
tation, that is, second-rank tensors are denoted by Greek
letters; fourth-rank tensors are denoted by capital letters;
and scalars are denoted by lower case, light-faced letters.
All the tensors considered are dyadic ones, and the dot
symbols in the inner products between tensors are ig-
nored.

Since the theory is intended only for the monotonic
and proportional loading, the deformation theory (in-
stead of the incremental theory) will be used to describe
the nonlinear stress-strain relation of the ductile phase.
Under a uniaxial tension the nonlinear stress-plastic-
strain relation of most ductile materials can usually be
represented by the modified Ludwik equation. ' In a
composite system, the ductile phase is usually in a triaxial
stress state and the Ludwik equation can be expressed as

o'=cr +h(e~')",
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III. FORMALISM

Under a monotonically increasing proportional load-
ing, the equations governing the mechanical response of
the perfectly bonded elastic-plastic composite resemble,
in their appearance forms, the linear elastic problem,
namely,

constitutive, o =C'(F.)e,
equilibrium, V.o =0 .

But in this case, these equations are nonlinear. Here o.

denotes the stress tensor, e the strain tensor, C'(e) the
secant stiffness tensor which is a function of the strain
field. These tensors are dependent on the spatial position
r. The effective secant modulus C'* of the composite can
be defined in terms of averaged stress (0 ) and strain
(e), namely,

&~) =C'*&~) .

by the corresponding phase secant moduli in the expres-
sions for the effective elastic moduli of an elastic compos-
ite with identical phase geometry. Similarly, we can ob-
tain the same results under a prescribed traction (not
presented here).

For a random composite, it is very difBcult to calculate
the total t matrix, Eq. (11), so the first approximation to
T(e) is usually taken as

7 —y 7 (n) 7 (n) 5CS(n)+5CS(n)GT(n)

where the index (n ) denotes particle n Th. ere are gen-
erally two first-order approximations depending on the
choice of Co, namely, NSC (Co =C'„ the secant modulus
of the matrix phase) and SC (Co=C'*, effective-medium
theory) approximations. The NSC approach gives the
average stress in the matrix (phase 1) and the inclusions
(phase 2}, which is central to the determination of yield
criterion, as

C'(e) =Co+ 5C'(e), (8)

We introduce a modulus tensor Co which depends on the
homogeneous strain field e in a homogeneous reference
medium. In the case of the homogeneous boundary con-
ditions of a uniform applied field, Co does not have a spa-
tial variations. The secant modulus tensor C'(e) is now

o''"=C'((I+GT)C'*) '(o. )

o (2) Cs (I+G7" ~))( (I+G7 )Cse )
—i(o )

and the SC approach gives

(T)=O,
o"=C'(I+GT")((I+GT)C'* ) '(o )

(14a)

(14b)

(15)

where 5C'(F) is the fluctuation on Co.
Under a prescribed surface displacement, the strain

field within the composite can be obtained as

where o", C, and T" are the average stress, the
modulus, and the t matrix of the ith phase, respectively.

F.=E +G5C'(e)e, (9) IV. ANALYSIS

where G is the familiar Green's-function tensor' for the
homogeneous background medium Co, which is given in
the Appendix. Equation (9) has the iterative solution

e=e +GT(e)e

with

In order to have a better understanding of the results
obtained in Sec. III, we consider a composite of two iso-
tropic constituents. Let the inclusions (spheres or
spheroids) be randomly distributed so that the composite
is effectively isotropic and characterized by secant bulk
and shear moduli k' and P'* to be found.

T(e) =5C'(e)+5C'(e)GT(e)

=5C'(e)[I —G5C'(e) ]

=5C'+ 5C'G5C'+ 5C'G5C'G5C'+ . , (l l)

where I is the unit tensor. From these equations, we get
the formal expression for the effective secant modulus
C$+ ~

A. Spherical particles

k '*—k, k~ —k,
3k' +4P) 3k2+4P)

(16a}

For the composite with a ductile matrix (ki, pi) and
spherical inclusions (k2, )M2), we directly get the NSC re-
sults from Eq. (12):

C'" =Co+ ( T(e) ) (I+GT(e) ) (12) P Pi
Site +ys

P2 Pj
2 $P2+~ i

(16b)

This expression is of the same form as the known equa-
tion used extensively for the determination of the
effective linear-elastic modulus. ' As mentioned above,
Eqs. (5) and (6) are also of the same form as the corre-
sponding elastic results if we identify C'(e) with the elas-
tic modulus C. There then emerges a latent correspon-
dence principle for nonlinearly elastoplastic properties of
elastic-plastic composite media. It follows that the
effective secant moduli of a binary elastic-plastic compos-
ite are obtained by simply replacing phase elastic moduli

where

)Mi(9k, + 8p', )
S —(/ S)

6(k, +2@', )
(16c)

and f2 is the volume fraction of the inclusions. These
NSC results are identical to those found by Tandon and
Weng, ' and Qiu and Weng' from an improved mi-
cromechanics theory, and are available for the case where
the value of f2 is small and the inclusions are completely
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dispersed in the ductile matrix. By decomposing the
stress into hydrostatic (o kk ) and deviatoric (o,'./) parts,
we get the average stress in the matrix

crkk —1I[1+4f2pl(k2 —k 1 )/k 1(3k2+4pl )]& 0//, &,

(17a)

~ij"= I I[1+f2y 1 (p2 pl ) Ip'1(p2+y 1 )]& ~

p$4' +y S

(1 f—2 )(pl —p'* )
p&+X &

P +12+f2(P'2 p
P2+~2

and

(21b)

from Eq. (14a). These results are also consistent with
those derived in the literature. ' '

The SC results are obtained as
,","= [p,;(p,—p'*) I(1 f, )p"—(p p')] & (21d)

o'k'k = [k1(k2 —k" )l(1 f2)k—'"(k2 —kl )]& crkk &, (21c)

k, —k'* k2 —k'*

3k +4 '* 3k +4 '* (18a)

Equations (21c) and (21d) are, in their appearance forms,
the same as Eqs. (19a) and (19b), respectively.

For needle-shaped particles, the NSC results are

S $4 Sg

P] +~ P2+~
(18b)

k'* —k, k2 —k,
3k'*+3p;+p 3k + 3p', +p

(22a)

where y'*=y(k'*, p'*). In this case, the hydrostatic and
deviatoric stresses in the ductile matrix are obtained as

[kl(k2 k )I(1 f2)k (k2 kl )]&okk &

(19a)

;','"=[pl(p —p'*)Ip'*(1 —f»(p. —pl)]&,', &,

(19b)

from Eq. (15). Obviously, these SC results are different
from the NSC results.

B. Randomly oriented spheroids

We now consider disklike and needle-shaped particles
for convenience (in the Appendix, the Green's-function
tensor is calculated for spheroidal-shaped particles). For
disklike particles, the NSC results are obtained as

p +Z p2+Z

where

and

~kk III:I+f2(p2+ 3p1)

P2l8 P )z'=z(p'„p2, w') =
1 —ur'

W =W(kl, pl', k2, p2)

=1 4p', (3k, +4p', )

p, (3k 1 +4p; )+p;(3k 1 +3p2+ p', )

3k2+4p) 4pi+ +
3k2+ 3p)+p2 p2+ p)

(22b)

k"—k, k2 —k,
*+4p 3k2+4p2

=f2 (20a)
X (k2 —kl )Ikl (3k2+p2+3p'1 )]& crkk &,

(22c)

pS4 pS

P +/2
P2 Pl

2 p.+y2
(20b)

~;J"=III1+f2z'(p2 pl)Ipl(p2+z')]&~—,', & . (22d)

These NSC results are similar to those derived by Qiu
and Weng. ' Furthermore, the SC results are

o'k'k'=1I[1+4f2p2(k2 kl )Ik1 (3k2+4p2)]& okk &

(20c)
3k +3p +p

(1 f2)(k, —k'*)—
3k) +3p +p(

~';,'"=1II:1+f2y2(p2 pl) Ip'1(p2+y2)] & ~', &

(20d)

3k +3 ++f2(k2 —k'" ) =0,
3k2+ 3p"+p2

(23a)

These results are also similar to those recently derived by
Qiu and Weng. ' An interesting consequence of these re-
sults is that, in the case of disklike particles, the compos-
ite still remains plastically incompressible. Furthermore,
the SC results are

3k +4p)
(1 f2)(k 1

—k")—
3k ) +4p)

PS*+ZS
(1—f2)(pl —p" )

P)+Zi

P +Z+f2(p, 2
p'*) =0—, (23b)

P2+Z2

where

3k'*+4p2
+f2(k2 —k'*) =0,

3k2+4p2
(21a)

w2 =w(k",p'*;k2, p2),
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and

~kk l. kl k2 k ~ f2)k (k2 kl j~~kk ~

(23c)

o,","=[)M&(p2—p'*)I(1 f2—)p'*(p2 —p~)](tr,', ) .

(23d)

Equations (23c) and (23d) also resemble, in their appear-
ance forms, Eqs. (19a) and (19b).

V. NUMERICAL RESULTS AND APPLICATION

As an application of the above-theoretical solutions, we
have calculated the overall nonlinear stress-strain proper-
ties of the silicon-carbide/6061-aluminum composite
which is of great practical importance. The elastic and
plastic properties of both phase are, k& =66.96 GPa,
p& =25.68 GPa, o'"=250 MPa, h = 173 MPa, and
n =0.455 for the aluminum matrix, k2=247. 5 GPa and
p2=209. 4 GPa for SiC particles. ' The obtained results
are depicted in Figs. 1 —5.

At low concentrations of SiC particles, NSC results are
nearly identical to SC results. The wide difference be-
tween them occurs with the increase in the volume frac-
tion. The reason for the wide difFerence is not dificult to
understand. The interactions among the particles are
taken into account by a mean field in a SC solution, and
are ignored in a NSC solution. A SC solution is an im-
provement over a NSC solution. Figure 5 shows the
favorable comparison between theoretical results and ex-
perimental data' for the same composite system with
randomly oriented platelets (f2=0.2, r =0.25). In this
case, the NSC solution underestimates the How stress in
the plastic range, and the SC solution overestimates the

VI. CONCLUSION

In this work we have developed a relatively simple
multiaxial theory of a strongly nonlinear mechanical
property (plasticity), which allows one to determine the
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fiow stress only in the larger plastic strain. For the initial
yield strength, the NSC solution only predicts a simply
linear volume-fraction dependence (Fig. 4).

The shape of particles is seen to have a pronounced
effect on the overall response (Figs. 1 —4). As in the
linear-elastic case, the oblate spheroids provide the most
efFective reinforcement and the spheres are the least
effective, with the prolate spheroids lying between the
two. The overall nonlinear behavior (plastic behavior) of
the composite is more sensitive to the particle shape than
the linear-elastic behavior. The shape and the volume
fraction of particles are two important parameters which
have a drastic effect on the nonlinear behavior of the
composite.
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FIG. 1. Nonlinear stress-strain curves of aluminum-matrix

composite reinforced with spherical silicon-carbide particles.
The solid and dashed lines denote NSC and SC results, respec-
tively.
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FIG. 2. The effect of (a) the volume fraction f2 and (b) the

aspect ratio r, of the prolate SiC particles on the nonlinear
stress-strain curves of SiC-aluminum composites. The solid and
dashed lines denote NSC and SC results, respectively.
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FIG. 5. Comparison between the theoretical predictions

{solid hne, NSC; dashed line, SC result) and the experimental
data (Ref. 15) (open triangles, 0% reduction and T6 heating;
open circles, 10% reduction and T6 heating) of a SiC-Al com-
posite, with platelet-type reinforcement at r =0.25 and f2 =0.2.
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FIG. 3. The effect of (a) the volume fraction fz and ib) the
aspect ratio r, of the oblate SiC particles on the nonlinear
stress-strain curves of SiC-aluminum composites. The solid and
dashed lines denote NSC and SC results, respectively.

overall nonlinear stress-strain relations of a two-phase,
isotropic composite with spheroidal particles embedded
in a medium. For the SiC-Al composite, explicit numeri-
cal calculations have been done following two different
methods of solutions, namely, the NSC and SC ap-
proaches. The shape of the particles have a more
dramatic effect on the nonlinear behavior than the linear
one. It may be mentioned that NSC and SC solutions are
believed to be the most reasonable approaches in the low
concentration range. At high concentrations, there are
several new problems which need to be addressed. The
position of the particles will be correlated and the in-
teractions among the particles need to be included. The
fields outside the ellipsoidal particles are concentrated at
the tips and can lead to decrease in the host medium How
stress.

ACKNO%'LEDGMENTS

600

This work was supported by the National H-Tech Pro-
gram under Contract No. 863-7152101. Thanks are due
to Professor Fu-sheng Jin and Dr. ging-jin Zhang for
helpful discussions.

500 APPENDIX: GREEN'S-FUNCTION TENSOR
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identified as x„the components of the Green's-function
tensor 6; k& are
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FIG. 4. The initial yield strength of the composites vs the
volume fraction of SiC particles with diferent aspect ratios.
The solid and dashed lines denote NSC and SC results, respec-
tively.

G„„=—3h(1 L, ) g(L, +L2)—/2, —

»22= »33=G22» =G33» =g(L, +L2)/4,

62322 = G3333
—g (5L t +3L2 )/16 —3hL

~ /2,

G2233 = G3322 —
g (L ] L2 )/16, —

G)2t2 =6t3)3 =g(3L t +2L2 —2)/8 —3h (2—L, )/8,

G2323 = —g (3L, +L2)/16 —3hL, /4,



MULTIPLE-SCATTERING SOLUTION TO NONLINEAR . . ~ 3047

where

g =(3ko+go)/po(3ko+4po), h =1/(3ko+4po), (A2)

L& =r /(r 1)——r(r 1) — cosh 'r,
for prolate spheroids, (A3)

L, =r2/(r2 1)—+r(1 —r )
~ cos 'r,

for ablate spheroids, (A4)

G2222 3333

G2233 3322

G&2&2 =6&3I3= g /8 3h /8
(A8)

For a needle with r —+(x), the only nonvanishing com-
ponents are

L2=r (2—3L& )/(r 1), —

r =c/a .

For a sphere, they reduce to

(A5)

(A6)
G2323 = —g/8 —3h /4 .

For a thin disc with r ~0, the components are

G~~&& =G2222 =G3333 A 2g/15,

G„22—G„33 G22/$ G33]] G2233 G3322 g/15,
(A7)

G&2,2=G2323=6&3&3= —g/10 —h /2 .

G$2]2 G]3]3 —(g+3h )/4

and a11 other components are zero.

(A9)
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