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The dilute-limit heats of solution for all binary alloys of six bcc transition metals (V, Nb, Ta, Mo, W,
and Fe) have been calculated with the analytic embedded-atom model for bcc pure metals by Johnson
and Oh. Cubic equations are proposed and used for providing a smooth cutoff for the calculated poten-
tial and electron density functions between second- and third-nearest neighbors in the calculation. The
heats of formation for all of the binary alloys of these six bcc metals for the whole compositional range
and the intermetallic compounds A3B, AB, and AB3 are also calculated. The dilute-limit heats of solu-

tion are generally in agreement with available experimental values except for Ta in W and W in Ta. The
heats of formation agree well with available experimental data, ab initio calculations by Colinet,
Beesound, and Pasturrel, and thermodynamic calculations with the Miedema model for Mo-Ta, Mo-Nb,
and Fe-V. The heats of formation are in good agreement with thermodynamic calculations with the
Miedema model for W-V, Nb-V, Ta-V, Fe-W, Mo-W, Ta-Nb, Fe-Nb, Fe-Ta, and Mo-V alloy systems.
There are, however, significant differences between the heats of formation for the present work and cal-
culations with the Miedema model for the Ta-W, Nb-W, and Fe-Mo alloy systems.

I. INTRODUCTION

There is a lot of interest in modeling the heats of solu-
tion and formation AH for metallic alloys because of its
importance. Miedema and co-workers' calculated the
heats of solution and formation for a number of alloy sys-
tems by an empirical model from thermodynamics. The
theoretical results are generally in good agreement with
available experimental data. The agreement between
them, however, still needs improvement because assump-
tions and approximations are made in the model and cal-
culations. First-principles calculations for heats of for-
mation should be attractive methods because of their mi-
croscopic physics premise. Several calculations with the
ab initio calculations have been performed. For example,
Terakura and co-workers performed local-density-
functional band calculations of AH for alloys which are
composed of Cu, Ag or Au as one element and one of Ni,
Pd or Pt as the other element. Colinet, Beesound, and
Pasturral performed calculations of AH for Cr-W, Cr-
Mo, Mo-W, Mo-Ta, Mo-Nb, and Ta-W alloys based on
an alloy cluster-Bethe-lattice method. All of the results
are in good agreement with available experimental
values. However, the ab initio methods are generally lim-
ited to very small systems, and various degrees of approx-
imation should be involved in the methods when solving
Schrodinger's equation. It is therefore not easy to apply
them to all kinds of alloy systems.

The embedded-atom method (EAM) developed by Daw
and Baskes is a powerful tool to describe the problems
for metals and alloys. Johnson ' has developed an ana-
lytic nearest-neighbor embedded-atom model for fcc met-

als and alloys, and calculated the dilute-limit heats of
solution for all fcc binary alloys of Cu, Ag, Au, Ni, Pd,
and Pt, and the heats of formation for 12 binary alloys of
these fcc metals. The results are generally in good agree-
ment with the available experimental data and ab initio
calculations by Terakura and co-workers, but their model
fails to predict Pd alloys, which indicate that the model is
effective for calculating AH of fcc alloys at least.
Johnson and Oh" have developed an analytic nearest-
neighbor embedded-atom-method model for bcc metals.
Guellil and Adams have performed a brief study of alloy
heats of solution of bcc alloys for Fe in V, V in Fc, K in
Na, and Na in K, with the EAM of Johnson and Oh. '

In addition this scheme cannot generate a model for Cr
because the elastic constants of Cr require a negative cur-
vature of the embedding function. In this paper, the
dilute-limit heats of solution and heats of formation for
15 binary alloys of all bcc transition metals, (V, Nb, Ta,
Mo, W, and Fe) except Cr were calculated using the ana-
lytic nearest-neighbor bcc model and its extension to al-
loys according to the same procedures by Johnson from
fcc metals to fcc alloys. A cubic equation has been pro-
posed for the cutoff potential for a two-body potential.

This paper is organized as follows. The model and the
procedures used in the paper are described in Sec. II.
The calculation results and discussions will be presented
in Sec. III, and the conclusions are made in Sec. IV.

II. THEORETICAL MODEL

The basic equations of the embedded-atom-method
model are
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E, = —,'g'(r, , )++F(p, ),

f(r)=f, (ri, lr)~ . (3)

p, =g' f(r,)),
J

where E, is the total internal energy, p,. is the electron
density at atom i due to all other atoms, f(r,j ) is the elec-
tron density at atom i due to atom j as a function of the
distance between them, r, - is the separation distance be-
tween atoms i and j, F(p, ) is the energy to embed atom i
in an electron density p;, and P(r, . ) is a two-body poten-
tial between atoms i and j.

In order to apply the model, the embedding function
F(p), atomic electron-density function f (r), and the
two-body potential function must be known. Because the
electron density at any location is approximated by the
linear superposition of atomic electron densities, the
same function of it in the pure metal can be used for an
alloy. Therefore, we have"

P' (r)= — - P"(r)+ -
b

P""(r)1 f (r) „ f'(r)
f'(r) f (r)

(8)

2

1 +k]
ale

p(r) =k3
~&e

The parameters k3, k2, k &, and ko are as follows:

is used for all alloy potentials of bcc alloys. The super-
scripts a and b indicate the a- and b-type atoms in a
binary alloy. P"(r) and P "(r) are the monatomic poten-
tials which could be given by the monatomic models.
This alloy potential is in a normalized form, i.e., the
effective two-body potential, for which a term linear in
the electron density is added to or subtracted from the
embedding function and an appropriate adjustment is
made to the two-body potential. The monatomic poten-
tial is taken as a spline function"

3

—1 +k2 —1 +ko.
le

f, is the scaling factor, which is determined by the rela-
tion of p, =E, /A. From Eq. (2), it is given by

150G 3 1

3A+2 4' 2' (10)

f, =E, /(SpQ)

Sp= g N; IkP,

(4) 1506 15 3 9 7
3A+2 16 4 8 8

where the sum is over neighbor shells, 2V, is the number
of atoms in the ith shell, and k; is the ratio of the radius
of the ith shell to the nearest-neighbor distance, r, =k, r, .
S&=8+ 3&3 when the first- and second-nearest-neighbor
shells are only taken into account. E, is the cohesive en-

ergy, 0 is the atomic volume, r„is the equilibrium first-
neighbor distance, and P is an adjustable parameter.
P=6 is used for all of the alloys. It will be seen below
that only ratios of electronic densities occur in the repre-
sentations of F(p) and alloy potentials P' (r ); the scaling
contant S& cancels from the model, so it is taken as 1 for
convenience. Because the embedding energy in the EAM
model is assumed to be independent of the source of the
electron density, the embedding function can be also tak-
en directly from monatomic model, which is

F(p) = (E, E,&)[1—ln(pl——p, )"](pip, )" . (6)

where B is the bulk modulus, and G is the Voigt average
shear modulus.

The two-body potential function in an alloy could be
determined from the monatomic potentials when
sufhcient data were available. However, it is usually
determined from the assumption that the alloy potential
is a function of the monatomic potentials. The same type
of function as in fcc alloys,

Here E&& is the unrelaxed vacancy formation energy, p,
is the equilibrium electron density, and n is a parameter
that is given by

1 /2
1 9QB —150Gn=—
P E, E,/—

7 3
k = —15QG ———S1 8 4

(12)

150G 201 27 87 187
3A +2 112 28 56 168

(13)

where 3 =C/C' is the anisotropy ratio, with C=C«,
C'=1/2(Cii —Ci2), and S=r2, /ri, =2/&3.

It was found that the monatomic potential is rather
soft at short interatomic distances, " so to stiffen it, the
modification

P, (r)=P(r)+k, [P(r) —P(r„)](rlr„—1)

is used for r (r&, with the parameter k, taken as

k, =4.5[1+4/(A —0. 1)] .

(14)

(15)

For providing a smooth cutoff for both P(r) and f(r), an
appropriate cutoff potential and cutoff electron-density
function between second- and third-nearest neighbors
must be specified. A similar cubic spline function is used
for the cutoff potential pb(r) between second- and third-
neighbor distances. The cutoff electron-density function
fb(r) is also a cubic spline function. The cutoff pro-
cedure is such that the cutoff potential and electron den-
sity have smoothly matching values and slopes to the cal-
culated potential and electron density, respectively, at
second-neighbor distance r2„and have zero value and
slope at the point of three-fourths of second- to third-
nearest neighbors, i.e., r, =r~, +3/4(r3, —rz, ). For po-
tential, therefore, we have
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4(r~, ) =lb(r2, »
0'( vz, ) =lb(r~, »
pb(r, ) =0,
p'b(r, ) =0,

(16)

(17)

(18)

we also have similar equations from (16)—(19). The
cutoff potential then is taken as

Pb(r) = 1&(r /r2, —1) + 12(r /r2, —1)

+ 1,(r Ir2, —1)+ lo,

where pb(r) is the cutoff potential. For electron density
I

1~= [21o+(y —l)l, ]
1

(y —1)'

with

15QG
(3A +2)(y —1)

8 9 7 4—+3y AS — —+—y A + —+2y S—
7 7 2 7

40 7
63 3

2

7(y —1)
(21)

12= [ —31o—2(y —1)l, ]
1

(y —1)'

150,G
(3A +2)(y —1)

3 5

14
+6@ AS — +7@

28

1——4y S—
7

3 14+ y (22)

15AG 7 7
3 AS ——A +2S——

3A +2 2 3
(23)

15'G 29 67 9 187
3A +2 14 28 7 126

1
$f r (24)

where y = r, /rz, . The cutoff electron density is taken as

fb(r)=m~(v/v2, —1) +m~(r!r~, —1)

+m, (r Ir~, —1)+mo,

with

m~ =f,S ~[2 P(y —1)]/(y——1)

m, = f,S ~[3 2P—(y —1)]/(—y —1)',
m, = Pf,S—
mo=f, S

(25)

(26)

(27)

(28)

(29)

E, = F'(p,') —8(b"(r'„—)
—6P"(r~, ) . (30)

(b) The energy results from adding an impurity atom:

E~ =F (p,')+8/' (r'„)+6/' (r2, ) . (31)

(c) The energy results from the effects on the neighbor
atoms caused by adding an impurity atom:

E
&
= —14F'(p', ) +8F'(p,'+ hp ) +6F'(p,'+ Ap' ),

where

(32)

hp= f'(r'„)+f (r'„), —

b.p'= f '(r2, )+f"(r,', ) . —
(33)

(34)

The dilute-limit heats of solution of binary alloys for
solute b in solvent a are the summation of the four fol-
lowing terms.

(a) The energy results from removing a host atom:

(d) The energy results from the change of cohesive en-
ergy after the host atom was replaced by the impurity
atom:

E = —E'+Eh4 c c

Therefore,

E=E)+E2+E~+Eq . (36)

24vrBGror, (r, ro)—
3Bv& +4Gro

(37)

where ro, r
&

are the atomic radii for the pure elements of
host and impurity, respectively, B is the bulk modulus of
the impurity, and G is the shear modulus of the host.

The heats of formation for the disordered alloys with
any composition and the ordered intermetallic com-
pounds A zB, AB, and AB& are the differences of energies
substracting the cohesive energies for the pure constitu-
ents from the total energies for the binary alloys with
specified structures. In the calculations for the heats of
formation, the structures of the alloys, whether disor-
dered or ordered, were assumed to have a bcc lattice.
For the disordered alloys with any composition, the prob-
ability occupying the lattice sites for a constituent of an

The heats of solution calculated above are unrelaxed
values. The relaxation energy for elastic distortion of lat-
tice caused by the difference of sizes between the host and
impurity atoms must be considered. According to
Friedel, ' the relaxation energy can be approximated by
the relation
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A. Dilute-limit heats of solution

t

F

FIG. 1. Two possible bcc structures for an A&B ordered al-
loy: 0, 3 atom; ~, B atom.

alloy is the atomic percent of the constituent in the alloy.
For the ordered AB-type compounds, there is only one
possible structure, i.e., A occupies the center sites and B
the angular sites of the bcc lattice. The occupied proba-
bilities for A and B are the same. As for A3B or AB3
compounds, there are two possible ordered structures, as
shown in Fig. 1. The calculations of the heats of struc-
ture of Fig. 1(b) is more stable than that of (a) because the
heats of formation for (b) are less than that for (a). For
example, it is —0.087 eV/atom for (b), and —0.081
eV/atom for (a) for the compound Nb3Mo. The structure
of Fig. 1(b) was therefore used in the calculation.

III. RESULTS AND DISCUSSIONS

The input physical quantities a, E„AB, QG, A, and

E» are all taken from experimental data, which are
shown in Table I. The lattice and elastic constants are
room-temperature data, while the cohesive energy is for
absolute zero.

The model parameters k3, k2, k&, ko, l3, l2, I &, lo, m3,
mz, m„mo, k„ f„and n calculated from the input
physical quantities are shown in Table II.

Table III lists the dilute-limit heats of solution for all
binary alloys of the six bcc metals V, Nb, Ta, Mo, W, and
Fe. Shown in the first row are the values of the unrelaxed
calculations, the second row shows the values with the
approximation for relaxation, and the available experi-
mental data are shown in the third. The comparisons for
the heats of solution between the calculated values with
and without relaxation and experimental data are illus-
trated in Fig. 2. It can be seen from Fig. 2 that the agree-
ment between the calculated values with relaxation and
experimental data is very good except for those of Ta in
W and W in Ta. That comparison indicates an overall
improvement for the alloys of Mo in Nb, Fe in V, Ta in
W, and W in Ta, but indicates a change for the worse for
the alloys of Nb in Mo and V in Fe after the calculation
with relaxation was performed. But this is only a prelim-
inary conclusion because of limited available experimen-
tal data.

Since the values of input parameters are not definite ex-
act quantities, but in a range, e.g. , the vacancy formation
energy for W is from 3.3 to 4.0 eV, ' the calculated heats
of solution, therefore, are dependent on the selection of
values for input parameters. The calculated heats for W
in Ta and Ta in W with and without relaxation are all
positive, which are all contrary to the experimental data,
and which indicates that the scheme is still in need of im-
provement in spite of how to select the value for the va-
cancy formation energy in the range. 3.3 eV for the va-
cancy formation energy of W was used in this paper.

B. Heats of formation

The calculated heats of formation for 15 binary alloys
of six bcc metals are shown in Fig. 3. The dot and solid
line shows the results for the disordered alloys with any
composition, and 6 represents the results for the ordered
intermetallic compounds A3B, AB, and AB3. For com-
parison, the available experimental data (+ ), the ab initio
calculations by Colinet, Beesound, and Pasturral, (A),
and the results of the thermodynamic calculations of
Miedema and co-workers, ' ( ~ ) are also indicated in Fig.
3.

The results of Mo-Ta and Mo-Nb systems are in excel-
lent agreement with the available experimental data and
the calculations of Colinet, Beesound, and Pasturral and
Miedema and co-workers, respectively. The phase dia-
grams for the alloy systems are all series solid solutions,

TABLE I. Input physical quantities for six bcc metals. a in A, E„OB,QG, and E» are all in eV.
is dimensionless. The input quantities are the same as that used by Johnson and Oh (Ref. 11) except for

Elf
Metal a (Ref. 14) E, (Ref. 15) QB (Ref. 16) QG (Ref. 16) 2 (Ref. 16) E(f
V
Nb
Ta
Mo
W
Fe

3.0399
3.3008
3.3026
3.150
3.164 75
2.866 45

5.30
7.47
8.089
6.810
8.66
4.29

13.62
19.08
21.66
25.68
30.65
12.26

4.17
4.43
7.91

12.28
15.84
6.53

0.78
0.52
1.57
0.78
1.01
2.48

2.10 (Ref. 17)
2.04 (Ref. 18)
2.18 (Ref. 19)
3.22 (Ref. 19)
3.30 (Ref. 20)
1.79 (Ref. 21)



3026 ZHANG BANGWEI AND OUYANG YIFANG 48

TABLE II. Model parameters for six bcc metals, k;, 1;, and m; (i =0, 1,2, 3i in eV, f, in eV/A, and k, and n are dimensionless.

Metal

V
Nb
Ta
Mo
W'

Fe

—0.11
3.50

—10.61
—0.33
—8.51

—13.31

3.94
3.34
9.88

11.59
16.83
9.21

—0.56
—0.60
—1.07
—1.65
—2.13
—0.88

—0.30
—0.29
—0.33
—0.47
—0.49
—0.27

—11.99
—11.18
—4.83
—7.07
—0.42
—3.57

4.38
3.93

—0.04
—0.25
—4.38
—0.22

0.75
0.80
1.42
2.20
2.84
1.17

—0.30
—0.29
—0.29
—0.45
—0.45
—0.24

m2

0.72 1.20
0.80 1.32
0.86 1.43
0.83 1.39
1.05 1.74
0.70 1 ~ 16

—0.96
—1.05
—1.14
—1.10
—1.38
—0.92

mo

0.16 30.97
0.18 47.36
0.19 16.75
0.18 30.97
0.23 24.28
0.15 12.06

0.38 0.72
0.42 0.73
0.45 0.60
0.44 0.60
0.55 0.45
0.36 0.37

and the crystal structures of alloys in whole composition
range are bcc, which indicates our assumption is con-
sistent with the facts. Also, the relative differences Aa/a
of the lattice constants for the elements of the alloys are
all less than 5%, the elastic energies resulting from the
effects, therefore, are not the primary inhuence in alloy-
ing. This excellent agreement therefore should be easily
understood. The results of Fe-V alloys are all negative
and are in good agreement with the available experimen-
tal data. Although our calculated values are larger than
the data, the values calculated by Miedema and co-
workers are less than the data. For Fe-V system, al-
though the value of ha/a is only 6%, but there is a little
complexity in its phase diagram because the o. phase
occurs in a certain composition range at rather low tem-
peratures, which implies the structures of the alloys in
the range are not bcc. Also, the calculations were per-
formed at room temperature, while the experimental data
given were at 1065 K. We consider these facts as
reasons for the difference between the calculated values
and the data. The present calculations give negative
values for the Mo-W system, while the Colinet values are
positive, though the negative values are rather small, and
the positive values are almost close to zero. Which value
is in agreement with experimental data cannot be known
because no such data is available at this time.

The problem is in the system of Ta-W. The calculated

values are positive though they are very small and close
to zero. But the experimental data and the values calcu-
lated by Colinet, Beesound, and Pasturral and by Miede-
ma and co-workers are all negative. The phase diagram
for the system is a series solid solution, and the Aa/a is
only 4%. These factors are favored to reduce the
difference between the calculations and experimental
data. The fact that the calculations and experimental
data were carried out at different temperatures cannot be
solely responsible for this difference of the heats of forma-
tion. The most probable explanation is that the present
model may not be a reliable method for the calculations
of the Ta-W system.

There are also no experimental data or ab initio calcu-
lations for the V-Ta, V-W, V-Mo, V-Nb, Nb-W, and Nb-
Ta systems. The phase diagrams for these systems are all
series solid solutions, and the Aa/a are all less than 4%
except less than 9% for V-Nb and V-Ta systems, which
means that these factors do not result in considerable
effects on the calculations of their heats of formation.
The present results are generally in agreement with the
calculations by Miedema and co-workers. There is a
rather large difference for V-Mo alloys, in which the
present calculations are positive, while the values of
Miederna and co-workers are almost zero.

The present results for Fe-Nb, Fe-Ta, and Fe-W alloys
are comparable to those of calculations by Miedema and

TABLE III. Dilute-limit heats of solution for all binary alloys of the six bcc metals V, Nb, Ta, Mo, and W, and Fe. The erst row
is the values of the unrelaxed calculations, the second row is the values with the approximation for the relaxation, and the third is the
experimental data available. All energies are in eV.

Host Nb Ta Mo Fe

V

Nb

Ta

Mo

Fe

—0.57
—0.66

—0.61
—0.71

0.17
0.15

—0.04
—0.06

0
—0.04
—0.10 (Ref. 25)

—0.49
—0.57

0.01
0.01

—0.31
—0.34
—0.42 (Ref. 23)

0.16
0.13

—0.23
—0.46

—0.62
—0.74

—0.48
—0.53

0.04
0

—0.31 (Ref. 24)
—0.38
—0.72

0.14
0.11

—0.35
—0.41
—0.27 (Ref. 23)
—0.49
—0.55

—0.16
—0.16

0.31
0.12

—0.05
—0.09

0.22
0.17

0.08
0.02

—0.22 (Ref. 24)
—0.15
—0.15

—0.18
—0.42

—0.09
—0.15
—0.16 (Refs. 2 and 22)
—1.29
—1.67

—1.29
—1.69

0.22
0.03

—0.35
—0.56
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0.6,

0 3-
cb

0.0

-0.3

—0.6 -0.3 0.0 0. 3 0.6

Eexpg (~~)

FIG. 2. The calculated dilute-limit heats of solution with (0 )
and without (~ ) relaxation vs the available experimental data
for bcc binary alloys.

co-workers. But the heats of formation for Fe-Mo alloys
are just contrary: The present calculations are positive,
while the values of Miedema and co-workers are nega-
tive. Considering the experimental values for the four
alloys (Fe =44, 60, 61, and 67 at %), the present results
come closer to the data than the values of Miedema and
co-workers. That is, however, a somewhat surprising re-
sult because the phase diagrams for the four-alloy sys-
tems are all complex, and our assumption is that they all
have bcc structures.

From the calculated values for A zB, AB, and AB& in-
termetallic compounds with bcc structure, it can be seen
that they are generally in agreement with the available
experimental data. It is also interesting to note that some
of the calculations for the ordered phases are far below
those of the disordered phases. It is well known that
there is a positive entropy stemming from the disordered
arrangement of atoms in a disordered alloy, but no such
entropy exists in an ordered alloy. The positive entropy
would reduce the calculated enthalpy in an alloy. In fact,
the measured entropies are all positive for some alloys in
Nb-Mo, Mo-Ta, Ta-W, Fe-V, Fe-Mo, Fe-W, and Fe-Ta
systems, e.g., +4.9X10 eV/K for the Mo5&Ta5~ alloy
measured at 1200 K. de Boer et al. have also pointed
this out when they discussed the fact that their predic-
tions for ordered compounds are more negative than the
predictions by Colinet, Pasturrel, and Hicter for disor-
dered alloys. The present calculated results, therefore,
are reasonable and believable.

From a11 the above-mentioned facts and discussions we
may conclude that the present scheme is generally
effective for calculations of heats of formation for bcc
metal alloys except for the Ta-W system.

From the present calculations it can be seen that the
heats of formation are all small if the relative differences
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FIG. 3. Heats of formation vs compositions for 15 binary alloys of V, Nb, Ta, Mo, W, and Fe metals. The dots and solid lines are
the present calculated results for disordered alloys. E shows the present results for ordered intermetallic compounds p &p, pp, an

3 + indicates the experimental data. ~ and ~ are the calculated results by Colinet, Beesound, and pasturrel and Miedema an
co-workers, respectively. The experimental data are from Ref. 26 for the Mo-Ta system, Ref. 22 for Mo-Nb, Ref. 24 for Ta-W, Ref.
22 for Fe-V, and Ref. 2 for the Fe-Nb, Fe-Ta, Fe-Mo, and Fe-W systems, respectively.
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of the sizes and cohesive energies between the two ele-
ments are small, e.g. , in Nb-Ta, Mo-W, and V-Mo sys-
tems the two quantities are not larger than 4 and 29%%uo,

respectively, and the heats of formation for them are
indeed small. Otherwise the heats of formation, e.g. , for
the Fe-W, Fe-Nb, Fe-Mo, and Fe-Ta systems, are large
because the two quantities for these systems are large,
which are from 9 to 15%%uo and 40 to 100%%uo, respectively.
The primary factors controlling alloy heats of formation
are the relative size and cohesive energy of the two met-
als, which is the same conclusion found in fcc metal al-
loys. ' However, the conclusion that the heats of for-
mation for fcc metals are negative if these two quantities
are smaller for one metal than the other, and are positive
if one is smaller and the other larger, ' is not obtained
in the present case. For example, the two quantities for
one metal are both larger than those for another metal
for the Mo-Fe and Ta-Fe systems, but the heats of forma-
tion for Mo-Fe are positive and negative for Ta-Fe, which
is no simple explanation.

Our calculations show that the results would be bad if
no cutoff procedure was used in the present scheme be-
cause the supposing potential and electron density were
not the exact ones. The results were also dependent on
what cutoff procedure was used. Two points should be
noted for the cutoff procedure. One is about the selection
for the starting point r, . As pointed out in Ref. 11, r,
should be ~ rz, . But where is the best point? The calcu-
lations show that r, = r2, is the best point, and the results
indicate a change for the worse if r, )r2, when the end
point r, is not changed. Another is about the definition
for r, . The results show that the agreement between the
calculations of heats and the available experimental data
is improved with increasing the cutoff distance between
second- and third-nearest neighbors, but the improve-
ment will be very small when r, ) rz, +3/4(r3, r2, ). —
That is why r, =r2, +3/4(r3, —r2, ) is taken in the
scheme.

This scheme cannot be used to calculate the heats of
formation for the alloys containing Cr because
90B—15QG of Cr is negative, which leads to the param-
eter n and- the embedding function has no meaning. To

complete such calculations another EAM scheme should
be presented.

IV. CONCLUSIONS

To calculate the heats of formation for bcc metal alloys
some revisions, mainly about the cutofF potential Pb(r)
and cutofF electron density fb(r) and the cutoff distance,
are made for the analytic embedd. ed-atom model for bcc
pure metals by Johnson and Oh. Using the scheme the
dilute-limit heats of solution and the heats of formation
for all binary alloys of six bcc transition metals, V, Nb,
Ta, Mo, W, and Fe are calculated with no adjustable pa-
rameters.

The calculated dilute-limit heats of solution are in good
agreement with the available experimental data after the
calculations were improved with relaxation. But the cal-
culated heats of solution for Ta in W and W in Ta alloys
are positive, while the experimental data are negative.

The calculated heats of formation for the 15 binary
disordered alloys of six bcc metals with any composition
are generally in agreement with the available experimen-
tal data, the ab initio calculations, and the thermodynam-
ic calculations except for the Ta-W, Nb-W, and Fe-Mo
systems, for which the present values are positive, while
the thermodynamic calculations are negative.

The calculated heats of formation for the ordered in-
termetallic compounds A 3B, AB, and AB3 of the alloy
systems have the same sign of the heats of formation for
the disordered alloys in the same alloy system. But the
former are generally less than the later. The only excep-
tion occurs also in the Fe-Mo system, for which the heat
of formation for the FeMo compound is negative.

The heats of formation are small if the relative
differences of the sizes and cohesive energies between two
metals are both small, otherwise, they are large if the two
quantities are both large.
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