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Crystal stability of heavy-rare-gas solids on the melting line
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Contrary to static-energy predictions favoring a hexagonal-close-packed phase, heavy rare gases
solidify into a face-centered-cubic phase over a large temperature range. Our recent perturbation
theory and hard-sphere radial distribution functions are applied to give a conclusive calculation that
agrees with experiment near the melting lines of heavy-rare-gas solids. The observed stability is due
to thermal contributions to the Helmholtz free energy which far exceed the opposing static term.
The Lennard-Jones potentials used here reproduce melting data of these solids to 1 GPa.

Rare gases are the simplest materials that occur in
nature and their thermodynamic properties are well un-
derstood. However, there are a few exceptions, one of
which is their crystal structures. X-ray-diÃraction ex-
periments have shown that solid neon, argon, krypton,
and xenon are in a face-centered-cubic (fcc) phase up to
their melting lines, whereas helium freezes mostly into a
hexagonal-close-packed (hcp) phase (with a small tem-
perature range where the freezing to a fcc phase was
recently observed). s In contrast, theoretical calculations
predict helium (at & 15 K) in a fcc phase and heavier
rare-gas solids in a hcp phase. ~ 2 The behavior of he-
lium is complex because it is quantum mechanical and
contains significant many-body contributions in its in-
teraction potential. The present investigation is confined
to heavy-rare-gas solids. Even in this case, the discrep-
ancy between theory and experiment has remained as an
outstanding unresolved question during the last decade.

Crystal stability is governed by the Helmholtz free en-
ergy, A, which consists of static, harmonic, and anhar-
monic contributions:

A = Eo + A(harmonic) + A(anharmonic).

A small difFerence in [Eo(fcc) —Eo(hcp)]/Eo(fcc) = —1 x
10 favors the hcp phase and i.s due to the long-range
attractive interactions. Salsburg and Huckaby showed
that the harmonic approximation stabilizes the fcc phase
for argon. Their careful calculation was limited to the
0-K density and depended sensitively on the second-
nearest-neighbor approximation. EfFects of density vari-
ation, higher-neighbor interactions, and anharmonic con-
tributions on the crystal stability have not been analyzed
yet.

The zero-point energy, E„favors the fcc phase (Ref. 1,
p. 567), but its effect including anharmonic corrections
is not only insufficient to overcome the static-energy dif-
ference, but unimportant at melting temperatures under
consideration. Bell and Zucker computed the static en-
ergy difference, KEo = Eo(fcc)—Eo(hcp), including long-
range many-body forces. They (Ref. 6, pp. 157 and 164)

conclude that the many-body forces diminish "the prefer-
ence shown by the two-body force for the hcp structure,
but these forces are too small. . ." to reverse the trend
set by the two-body force and they are "almost certainly
not sufficient to account for the fcc structure. " Likewise,
Niebel and Venables (Ref. 1, p. 564) conclude that "non-
additive long-range forces . . . certainly do not stabilize
fcc decisively. " More significantly, our results below show
that, at melting temperatures of heavy rare gases, ther-
mal contributions, AA(thermal), to the Helmholtz free
energy become far more important than AEo.

A theory which can distinguish small difFerences
(within 0.1%) in the Helmholtz free energy of the two
phases is required to resolve this issue. We have recently
developed a fast and accurate perturbation theory (PT)
of fluids and solids. The motivation of the present work
is to demonstrate how the power of a modern statistical
mechanical theory can be applied to resolve the ques-
tion about the crystal stability. We are not aware of any
similar conclusive study on rare gases. In this letter, we
show that the PT indeed predicts fcc phase stability for
heavy-rare-gas solids.

Perhaps the most striking difFerence of PT from a
quasiharmonic lattice dynamics (LD) method is that PT
considers a short-range stiff (hence, anharmonic) repul-
sion as playing a major role in determining crystalline
properties. It is essentially an adaptation of van der
Waals' model of fluids to solids. Its most notable advan-
tage over the LD is that it fully accounts for harmonic
and anharmonic contributions without approximation.
Comparisons ' with experiment and computer simula-
tions have proven that the PT gives reliable results, in-
cluding the Inelting transition where large anharmonic
efFects makes the LD less useful.

The PT divides a pair potential, V(r), into the refer-
ence, Vo(r), and perturbation, W(r), potentials, i.e.:

V(r) = Vo(r) + W(r),

Vp(r) = V(r) —F(r), if 1

Vo(r) = 0, if r ) A,
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W(r) = F(r), if r ( A;
W(r) = V(r), if r ) A.

Details of the division of V(r) and specific expressions
for F'(r) and A in Eqs. (2) to (4) are given in Refs. 8
and 9. The division of the potential is made optimum
so that, when the configurational Helmholtz free energy
(A) is expanded as a perturbation series, the inclusion
of the reference (Ao) and first-order perturbation (Ai)
contributions, together with the first-order quantum cor-
rection (A~~) for atomic mass of m (Ref. 11) is sufficient
to yield accurate results at high temperature; i.e. ,

experimental melting data are available, i.e. , from the
triple point to at least 1 Gpa.

The melting and freezing volumes represent a pair of
points where the solid and fluid A vs volume plots show
a common tangent, which is related to the melting pres-
sure, P~, by P~ = —(OA/BV)T. Figure 1 compares
the resulting melting lines with the corresponding exper-
imental data. is (The LJ potential used here will become
too stiff at higher pressures. ) Agreement between the
two demonstrates that the PT should be reliable along
the melting line up to 1 Gpa. In contrast, the quasihar-
monic lattice approximation predicts no melting, since
isotherms for A(harmonic) lie below A(fluid) within den-

A = Ao+ Ai+Aq (5)

Ai = — W(r)g„, (r/d)dr,
2

(6)

h2
(h ) = T V(r)g„, (r/d)dr. (7)

In Eq. (5) Ao is the Helmholtz free energy of the hard-
sphere reference system. Its expression requires the en-
tropy constant of hard spheres, So, at the close-packed
density. The value of So(fcc) is —0.24&k, i2 while So(hcp)
with the c/a ratio of (8/3) & (which agrees closely with the
ratio for helium) is evaluated from information on the en-
tropy difFerence, ESo ——So(fcc) —So(hcp) (= 0.002%k),
at the close-packed density. s W(r) and V' V(r) in Eqs.
(6) and (7) depend only on a single relative scalar coor-
dinate r. Hence, their Boltzmann averages (W(r)) and
(7'~V(r)) only require a scalar pair distribution function,
g(r/d), for solids and fluids.

The second-order quantum correction Aq (h ) for
neon near the triple point is only 1/40 of Az~ (h2), which
in turn is one tenth of Ao. It implies that the inclu-
sion of A~ (6 ) in Eq. (5) is probably sufficient for the
present calculations.

Equation (5) requires a knowledge of the hard-sphere
diameter d and the hard-sphere radial distribution func-
tion g»(r/d) Our cal.culations employ the Weeks-
Chandler-Andersen formula s for d. For the fluid

g„,(r/d), a reliable analytic flt s is available. For the
solid g«(r/d), we use accurate expressions which we re-
cently developed for this purpose.

The present work utilizes the Lennard-Jones (LJ) po-
tential,
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where parameters e and o for the heavy-rare-gas solids
are summarized in Table I. These parameters 7 are re-
liable in the range of pressure and temperature where

Neon
Argon
Krypton
Xenon

e/k (K)
36.76

119.8
166.7
225.3

cr (A)
2.786
3.405
3.68
4.07

Ref.
17(a)
17(b)
17(c)
17(c)

TABLE I. Lennard- Jones parameters employed in the
present work.
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FIG. 1. (a) Melting lines of rare gases. Solid line is this

work; circle is experiment Ref. 18; (b) the phase diagram of
the LJ system. Dashed line is a fcc-hcp phase boundary pro-
duced by arbitrarily reducing the molecular dynamics value
of ASO ——0.002%k to 0.0007%k .
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ExplessloIls fol gHs (r/d) by Jackson and Sterol (Ref. 24) .
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effects futly and vnarnbiguousty. The calculation only
requires an effective pair potential that can reliably de-
scribe thermodynamic properties. Such an "oK the shelf"
potential (e.g. , as used in this work) can be found in the
literature within a limited (T, P) range of applicability.

The main limitation of the PT is that it is based on
the first-order perturbation correction, A~, in the high-
temperature perturbation expansion. Its range of ap-
plicability is limited to temperatures above kT/e = 0.8.
Although it will become increasingly unreliable at lower
temperatures, our calculations for argon at 1 atm show
that the stability of the fcc phase persists at tempera-
tures as low as 60 K (or kT/e = 0.5).

The stability of the fcc phase also extends to higher
pressures above the melting pressure, e.g. , at least to 100
GPa for argon. Even if the result should turn out to
be in agreement with experiment, it might be fortuitous
at these high pressures, since the LJ potential parame-
ters were calibrated below 1 GPa. Our prediction on the
stability for the fcc phase over the entire (T, P) range
makes use of the molecular dynamics value (0.002Nk)
(Ref. 13) of ASO. One can produce a small parabolic
domain of the hcp stability, e.g. , between Pos je = 91
and 368 at kT je = 1 in Fig. 1(b), by arbitrarily reducing
ASo to 0.0007Nk. It does not affect our results along the

melting lines under discussion. In this regard, the fcc ~
intermediate phase —+ hcp transition occurs for xenon at
pressures between 14 and 75 GPa. 25 The observed tran-
sition, however, is due to an increased hybridization be-
tween the valence band and upper-lying conduction band.
A pair potential alone cannot describe such an electron-
ically induced transition.

Finally, it would be useful to extend the present formu-
lation to helium, which has a complex phase diagram.
The small mass of helium atom produces a large quan-
tuzn eKect; its small attractive interaction parameter,
e, means highly anharmonic atomic vibrations, and its
short-range interaction has significant many-body eKects
by the Pauli principle that forces electronic charge den-

sities of a He atom and its neighbors to alter under high
compression. We plan to report on our study of helium
in the future.
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