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Crystal stability of heavy-rare-gas solids on the melting line
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Contrary to static-energy predictions favoring a hexagonal-close-packed phase, heavy rare gases
solidify into a face-centered-cubic phase over a large temperature range. Our recent perturbation
theory and hard-sphere radial distribution functions are applied to give a conclusive calculation that
agrees with experiment near the melting lines of heavy-rare-gas solids. The observed stability is due
to thermal contributions to the Helmholtz free energy which far exceed the opposing static term.
The Lennard-Jones potentials used here reproduce melting data of these solids to 1 GPa.

Rare gases are the simplest materials that occur in
nature and their thermodynamic properties are well un-
derstood. However, there are a few exceptions, one of
which is their crystal structures.’? X-ray-diffraction ex-
periments have shown that solid neon, argon, krypton,
and xenon are in a face-centered-cubic (fcc) phase up to
their melting lines, whereas helium freezes mostly into a
hexagonal-close-packed (hcp) phase (with a small tem-
perature range where the freezing to a fcc phase was
recently observed).? In contrast, theoretical calculations
predict helium (at > 15 K) in a fcc phase and heavier
rare-gas solids in a hcp phase.l»? The behavior of he-
lium is complex* because it is quantum mechanical and
contains significant many-body contributions in its in-
teraction potential. The present investigation is confined
to heavy-rare-gas solids. Even in this case, the discrep-
ancy between theory and experiment has remained as an
outstanding unresolved question during the last decade.

Crystal stability is governed by the Helmholtz free en-
ergy, A, which consists of static, harmonic, and anhar-
monic contributions:

A = Ey + A(harmonic) + A(anharmonic). (1)

A small difference in [Eg(fcc) — Eg(hep)]/ Eo(fec) = —1 x
104 favors the hcp phase and is due to the long-range
attractive interactions.! Salsburg and Huckaby® showed
that the harmonic approximation stabilizes the fcc phase
for argon. Their careful calculation was limited to the
0-K density and depended sensitively on the second-
nearest-neighbor approximation. Effects of density vari-
ation, higher-neighbor interactions, and anharmonic con-
tributions on the crystal stability have not been analyzed
yet.

The zero-point energy, E,, favors the fcc phase (Ref. 1,
p. 567), but its effect including anharmonic corrections
is not only insufficient to overcome the static-energy dif-
ference, but unimportant at melting temperatures under
consideration. Bell and Zucker computed the static en-
ergy difference, AEy = Ey(fcc)— Eg(hep), including long-
range many-body forces. They (Ref. 6, pp. 157 and 164)

0163-1829/93/48(5)/2988(4)/$06.00 48

conclude that the many-body forces diminish “the prefer-
ence shown by the two-body force for the hep structure,
but these forces are too small...” to reverse the trend
set by the two-body force and they are “almost certainly
not sufficient to account for the fcc structure.” Likewise,
Niebel and Venables (Ref. 1, p. 564) conclude that “non-
additive long-range forces ... certainly do not stabilize
fce decisively.” More significantly, our results below show
that, at melting temperatures of heavy rare gases, ther-
mal contributions, AA(thermal), to the Helmholtz free
energy become far more important than AEj.

A theory which can distinguish small differences
(within 0.1%) in the Helmholtz free energy of the two
phases is required to resolve this issue. We have recently
developed a fast and accurate perturbation theory (PT)
of fluids and solids.”"® The motivation of the present work
is to demonstrate how the power of a modern statistical
mechanical theory can be applied to resolve the ques-
tion about the crystal stability. We are not aware of any
similar conclusive study on rare gases. In this letter, we
show that the PT indeed predicts fcc phase stability for
heavy-rare-gas solids.

Perhaps the most striking difference of PT from a
quasiharmonic lattice dynamics (LD) method is that PT
considers a short-range stiff (hence, anharmonic) repul-
sion as playing a major role in determining crystalline
properties. It is essentially an adaptation of van der
Waals’ model of fluids to solids. Its most notable advan-
tage over the LD is that it fully accounts for harmonic
and anharmonic contributions without approximation.
Comparisons®!® with experiment and computer simula-
tions have proven that the PT gives reliable results, in-
cluding the melting transition where large anharmonic
effects makes the LD less useful.

The PT divides a pair potential, V(r), into the refer-
ence, Vp(r), and perturbation, W (r), potentials, i.e.:

V(r) = Vo(r) + W(r), (2)
Vo(r) =V (r) = F(r), if r<X;
Vo(r) =0, if r> A, (3)
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W(r)y=F(r), if r<X;
Wr)=V(r), if r> A\ (4)

Details of the division of V' (r) and specific expressions
for F(r) and X in Egs. (2) to (4) are given in Refs. 8
and 9. The division of the potential is made optimum
so that, when the configurational Helmholtz free energy
(A) is expanded as a perturbation series, the inclusion
of the reference (Ap) and first-order perturbation (A;)
contributions, together with the first-order quantum cor-
rection (Agp,) for atomic mass of m (Ref. 11) is sufficient
to yield accurate results at high temperature; i.e.,

A=A+ A1 + Aqm, (5)
A1 =2 [W()guar/ i, (©)

2
A1) = 2l [ PPV ()gr/d)dr. (7)

In Eq. (5) Ao is the Helmholtz free energy of the hard-
sphere reference system.? Its expression requires the en-
tropy constant of hard spheres, Sy, at the close-packed
density. The value of Sy(fcc) is —0.24Nk,'2 while So(hcp)
with the ¢/a ratio of (8/ 3)% (which agrees closely with the
ratio for helium) is evaluated from information on the en-
tropy difference, ASy = Sp(fcc) — So(hep) (= 0.002Nk),
at the close-packed density.!® W(r) and V2V (r) in Egs.
(6) and (7) depend only on a single relative scalar coor-
dinate r. Hence, their Boltzmann averages (W (r)) and
{(V2V (r)) only require a scalar pair distribution function,
g(r/d), for solids and fluids.

The second-order quantum correction Agm (h*) for
neon near the triple point is only 1/40 of Aqm (h2), which
in turn is one tenth of Ag.14 It implies that the inclu-
sion of Agm (h?) in Eq. (5) is probably sufficient for the
present calculations.

Equation (5) requires a knowledge of the hard-sphere
diameter d and the hard-sphere radial distribution func-
tion gus(r/d). Our calculations employ the Weeks-
Chandler-Andersen formula!® for d. For the fluid
gsus (/d), a reliable analytic fit'® is available. For the
solid g, (r/d), we use accurate expressions which we re-
cently developed for this purpose.!?

The present work utilizes the Lennard-Jones (LJ) po-
tential,

V(r) = 4el(o/r)** = (a/r)°, (8)

where parameters € and o for the heavy-rare-gas solids
are summarized in Table I. These parameters'? are re-
liable in the range of pressure and temperature where

TABLE I. Lennard-Jones parameters employed in the
present work.

e/k (K) o (A) Ref.

Neon 36.76 2.786 17(a)

Argon 119.8 3.405 17(b)

Krypton 166.7 3.68 17(c)

Xenon 225.3 4.07 17(c)

experimental melting data are available, i.e., from the
triple point to at least 1 GPa.

The melting and freezing volumes represent a pair of
points where the solid and fluid A vs volume plots show
a common tangent, which is related to the melting pres-
sure, Py, by P, = —(84/8V)r. Figure 1 compares
the resulting melting lines with the corresponding exper-
imental data.® (The LJ potential used here will become
too stiff at higher pressures.!®) Agreement between the
two demonstrates that the PT should be reliable along
the melting line up to 1 GPa. In contrast, the quasihar-
monic lattice approximation predicts no melting, since
isotherms for A(harmonic) lie below A(fluid) within den-

~~
O
o
O 0.5 -‘
A
mE
o =experiment
0 &l & 1 1 ) 1 !
0 100 200 300 400 500
Tm (K)
900 T T T T T T T
(b) ----:AS,=0.0007
L (changed from 0.002)
600
W
o~ L ]
o)
o
\ fcc
300 p-
=—hcp :
fluid
0 1 1 1 1 1 1 1
1 3 5 7 9
kT/&

FIG. 1. (a) Melting lines of rare gases. Solid line is this
work; circle is experiment Ref. 18; (b) the phase diagram of
the LJ system. Dashed line is a fcc-hcp phase boundary pro-
duced by arbitrarily reducing the molecular dynamics value
of ASp = 0.002Nk to 0.0007Nk .
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sity ranges where the LD frequencies are positive and the
PT for fluid is reliable. It shows that the anharmonic
term is crucial in determining the melting lines.

We compute A and its components in Eq. (1) sep-
arately. For this purpose, we made separate LD
calculations?® to evaluate A(harmonic). Differences be-
- tween the PT and LD data in turn provide the anhar-
monic contribution,

A(anharmonic) = A(PT) — A(harmonic). (9)

At (kT /e, po®) = (1.5,1.1), for example, Eq. (9) gives
A(anharmonic) = 0.19NkT which agrees exactly with
Pollock’s Monte Carlo calculation?! of A(anharmonic).

Examination of differences between the fcc and hcp
phases,

AA = A(fcc) — A(hep), (10)

for the total, static, harmonic, and anharmonic contribu-
tions, denoted by A A(total), A A(static), AA(harmonic),
and AA(anharmonic), shed light on their relative impor-
tance in determining the crystal stability. Figure 2 shows
AA’s for neon, argon, krypton, and xenon along the melt-
ing lines. AA(static) is nearly constant and has a posi-
tive sign. However, it is about 16% to 20% less than the
thermal contributions, AA(thermal) = AA(harmonic) +
AA(anharmonic), both of which are negative. As a re-
sult, AA(total) is small (< 0.1% of A) but negative, im-
plying that these solids will crystallize into a fcc phase
(instead of a hcp phase). It is in agreement with experi-
ment described earlier. Note that, even if the magnitudes
of A(anharmonic) and A(harmonic) are significantly dif-
ferent, AA(harmonic) and AA(anharmonic) are similar
in size. It demonstrates the importance of the anhar-
monic contribution to the crystalline stability.

The quantum correction, Aqm, is negligible for argon,
krypton, and xenon along the melting lines. As a result,
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AA’s vs kT /e in Fig. 2 fall onto solid lines representing
the classical calculation, which obeys the corresponding-
states principle. For neon, AA(anharmonic), hence,
AA(total), is lower than the classical result by a small
amount (= 0.001NkT'). The enhanced stability of the fcc
phase for neon is due to quantum mechanical contribu-
tions in AA(anharmonic).

The magnitude of AA(total) decreases with temper-
ature. A similar tendency is also seen in experimental
data.! It led Niebel and Venables!' to suggest that the
thermally excited lattice vibration will tend to destabi-
lize the fcc crystal. Figure 2 shows that the anharmonic
component, AA(anharmonic), increases markedly with
temperature and it, rather than A A(harmonic), is largely
responsible for the destabilizing tendency.

To ascertain that the predicted fluid — fcc transition
is inherent to the rare-gas solids (i.e., independent of the
LJ potential employed in the analyses), we made sim-
ilar calculations for argon with exponential-6 (exp —6)
potentials,

V(r) = ¢/(a — 6){6expla(l — r/r*)] — a(r*/r)°},

using a parameter set (e,7*,a) based on 0-K crystal
properties?? and another based on high-pressure shock-
wave data up to 40 GPa.?? The three calculations are
similar; i.e., the hcp phase has a higher Gibbs free en-
ergy (and higher-melting pressure). Table II(a) compares
melting data obtained with the exp —6 (Ref. 23) and the
LJ potentials at 200 K. Thus, an important physics re-
sult, which we obtained up to 1 GPa, will likely remain
unchanged to 40 GPa for argon, provided that a realistic
effective pair potential is used. Namely, the fluid — fcc
transition along the melting lines of heavy rare gases oc-
curs through A A(thermal), which is much larger in size
than the opposing static contribution.

The predicted fluid — fcc transition is also indepen-
dent of an expression for the solid-phase g,(r/d) used
in the PT. To verify this, we used Jackson’s, and Swol’s
analytic g.s(r/d) (Ref. 24) in place of the expressions
used in our work. Table II(b) shows the melting data of
argon for the two different analytic fits. Both expressions
give similar transition data, predicting a lower Gibbs free
energy and a lower melting pressure for the fcc phase.

In summary, the crystal stability in the neighborhood
of the melting lines of heavy-rare-gas solids is due to the
thermal contributions to the Helmholtz free energy rather
than AE,. We emphasize that the PT considers these

TABLE II. Sensitivity of melting properties of argon at 200
K: (a) pair potentials and (b) solid-phase gy (r/d) .

Vi (cm® /mol) P.(GPa) G/NkT
(a) LJ exp-6* LJ exp-62 LJ exp-6*
fce 21.73 21.33 0.623 0.685 8.316 9.034
hep 21.71 21.32 0.624 0.686 8.346 9.044
(b) This work JS° _ This work JS°  This work JS®

-0.008 - ! s L -
0.7 0.8 0.9 1.0

kTm/S

FIG. 2. Static, harmonic, and anharmonic contributions to
[A(fcc) — A(hep)]/NKkT along the melting line of rare gases.

fcc 2173  21.81 0.623  0.627 8.316 8.372
hep 21.71 21.85 0.624  0.638 8.346 8.533

*Ross (Ref. 23): (e/k,r*,a) = (122 K, 3.85 A, 13.2).
bExpressions for gus(r/d) by Jackson and Swol (Ref. 24).
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effects fully and unambiguously. The calculation only
requires an effective pair potential that can reliably de-
scribe thermodynamic properties. Such an “off the shelf”
potential (e.g., as used in this work) can be found in the
literature within a limited (T, P) range of applicability.

The main limitation of the PT is that it is based on
the first-order perturbation correction, Aj, in the high-
temperature perturbation expa.nsion,15 Its range of ap-
plicability is limited to temperatures above kT /e = 0.8.
Although it will become increasingly unreliable at lower
temperatures, our calculations for argon at 1 atm show
that the stability of the fcc phase persists at tempera-
tures as low as 60 K (or kT'/e = 0.5).

The stability of the fcc phase also extends to higher
pressures above the melting pressure, e.g., at least to 100
GPa for argon. Even if the result should turn out to
be in agreement with experiment, it might be fortuitous
at these high pressures, since the LJ potential parame-
ters were calibrated below 1 GPa. Our prediction on the
stability for the fcc phase over the entire (T, P) range
makes use of the molecular dynamics value (0.002Nk)
(Ref. 13) of ASp. One can produce a small parabolic
domain of the hcp stability, e.g., between Pa3/e =91
and 368 at kT'/e = 1 in Fig. 1(b), by arbitrarily reducing
ASp to 0.0007Nk. It does not affect our results along the

melting lines under discussion. In this regard, the fcc —
intermediate phase — hcp transition occurs for xenon at
pressures between 14 and 75 GPa.?® The observed tran-
sition, however, is due to an increased hybridization be-
tween the valence band and upper-lying conduction band.
A pair potential alone cannot describe such an electron-
ically induced transition.?6

Finally, it would be useful to extend the present formu-
lation to helium, which has a complex phase diagram.3
The small mass of helium atom produces a large quan-
tum effect; its small attractive interaction parameter,
€, means highly anharmonic atomic vibrations, and its
short-range interaction has significant many-body effects
by the Pauli principle that forces electronic charge den-
sities of a He atom and its neighbors to alter under high
compression. We plan to report on our study of helium
in the future.
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