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The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and
Auger-electron diffraction patterns consume much computer time in the intermediate-energy range
(200—1000 eV); in fact, because of the large value of the electron mean free path and of the large
forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crys-
tal, so that the number of paths to be considered becomes dramatically high. An alternative method is

developed in the present paper: instead of calculating the individual contribution from each single path,
the scattering matrix of each plane parallel to the surface is calculated with a renormalization process
that calculates every scattering event in the plane up to infinite order. Similarly the scattering between
two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The
process may then be applied to the calculation of a larger set of atomic layers. The advantage of the
method is that a relatively small number of internuclear vectors have been used to obtain convergence in

the calculation.

I. INTRODUCTION

In recent years x-ray photoelectron diffraction (XPD)
and Auger-electron diffraction (AED) have been applied
by many authors to the study of the structure of solid
surfaces and interfaces. ' This technique is based on the
fact that the electrons photoejected may undergo elastic
scattering from the atoms of the crystal, so that the in-
terference between the direct and the scattered waves
gives origin to diffraction patterns. Besides, since all ele-
ments have a unique photoelectron spectrum, it is almost
always possible to find a kinetic energy specific for each
element of the system under consideration, and to local-
ize the origin of the signal in different sites of the crystal,
so that different features of the system may be ern-
phasized. The current way to obtain structural informa-
tion about the sample is to monitor the intensity of the
photoelectron current as a function of the emission direc-
tion relative to the crystal axis: this may be done both
through azimuthal and polar scanning; another possibili-
ty consists in varying the energy of the incoming photon
by keeping fixed the geometry of the experiment. The
specific advantage of these techniques is that they probe
the short-range order as it is seen from a certain type
of atom in the crystal; this makes these local dif-
fraction methods complementary to low-energy electron
diffraction (LEED) and x-ray diffraction, which are sensi-
tive to the long-range order. Besides XPD and AED
have been successfully applied to the study of the passiva-
tion of GaAs(001) surfaces by incorporation of group-VI
atom, a situation for which other techniques were re-
vealed to be inadequate. The large variations in the in-
tensities of XPD and AED patterns are originated by two
different physical processes; some peaks coincide with the
directions of the internuclear axis of the emission site and
its neighbors: these peaks are originated by the forward-
focusing effect that is observed above a few hundreds eV
and produces an intensity enhancement approaching a

finite limit as the kinetic energy of the ejected electron
tends to infinity. All the other peaks are bound to
specific diffraction effects. Their angular position de-
pends strongly on the kinetic energy of the photoelectron
so that their analysis requires an adequate mathematical
treatment. The basic physical process for the explanation
of photoelectron diffraction patterns is the elastic elec-
tron scattering. Core-level photoabsorption gives origin
to an atomiclike outgoing electron wave: this wave may
directly reach the detector, or it may be elastically scat-
tered by the atoms in the crystal. The interference effect
among the different electron waves depends essentially on
the difference in path lengths, so that the diffraction pat-
tern is strictly bound to the geometry of the system. In
favorable cases single-scattering calculations have proved
to describe accurately the chief features of the experimen-
tal data, but they are inadequate for the full analysis of
most experiments, so that a multiple-scattering theory be-
comes necessary. The multiple-scattering approach con-
sists of a perturbative expansion in the strength of the
scattering potential, which may be expressed in terms of
the hypothetical paths that the electron follows as it
scatters and propagates from atom to atom. The single-
scattering theory is obtained by the truncation of the per-
turbative series at the first order; however, because of the
relatively large values of the atomic scattering factors,
higher-order perturbative terms must be, in general, con-
sidered. The first multiple-scattering approach to angle-
resolved photoemission was presented by Li, Lubinsky,
and Tong but the sophistication of these calculations has
limited their use for the simulation of experimental data.
A more recent approach to the multiple-scattering prob-
lem was presented by Barton, Robey, and Shirley; they
consider the terms in the perturbative expansion by sum-
ming each term after verifying that its contribution was
not inferior to the selected amplitude cutoff value. They
applied their theory only to the case of photoemission
from an S-core level and introduced curved-wave correc-
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tions through the Tailor-series magnetic-quantum-
number expansion. Rehr and Albers have recently
presented an alternative theory based on a separable
decomposition of the free-electron Careen's function.
This theory has been recently applied by Osterwalder
et al. for the simulation of XPD patterns for Ni2p3/2
emission from a Ni(001) substrate. Most of the
multiple-scattering simulations for XPD and AED have
been executed by cluster calculation techniques; these
methods are, however, time consuming as soon as the
number of atoms and the order of scattering are in-
creased. An alternative method is developed in the
present paper: instead of calculating the individual con-
tribution from each single path, the scattering matrix of
each plane parallel to the surface is calculated with a re-
normalization process which includes every scattering
event in the plane up to infinite order for a selected set of
internuclear vectors; the scattering between two planes is
then calculated up to infinite order so that the double-
plane scattering matrix is introduced, etc. The computa-
tion time depends strongly on the number of internuclear
vectors utilized, but it has been found that a relatively
small number of internuclear vectors is sufficient to ob-
tain a convergent solution. The present method is con-
ceptually similar to those applied in LEED theories:" in
fact, the scattering processes are calculated first on a sin-
gle layer, then in a couple of layers, and finally among
couples of layers. However, the mathematical treatment
is very different; in fact, in LEED theories the vectors
used in the calculation are reciprocal-lattice vectors,
while in the present theory, the vectors considered are in-
ternuclear vectors. This difference is originated by the
fact that, in the case of photoelectron diffraction, the ori-
gin of the incident electron wave is located inside the
crystal, so that it cannot be described as a plane wave;
this implies that atoms with different distances from the
emitter are not equivalent, while all atoms in the same
plane, parallel to the surface, are equivalent in the case of
LEED theories. This lack of translational symmetry is
one of the main differences between photoelectron
diffraction and low-energy electron diffraction.

II. GENERAL THEORY
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where k is the electron final wave vector, l; and lf are, re-
spectively, the initial and final angular momenta, Oz and

Pa are the polar coordinates of R in a reference system
where the z axis coincides with the polarization vector of
the incident photon; o.

&
are the phase shifts related to the

short-range central potential of the ionized atom (the
long-range Coulomb field is neglected' ), It is the in-

f
tegral corresponding to the radial component of the wave
function and is given by
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The electron mean free path A, expresses the attenuation
of the electron wave due to inelastic processes, such as
plasmon losses, single-particle excitations, etc.; L(0) is the
distance traveled by the electron before reaching the exit
surface. The single-scattering term f, is given by

The angle-resolved cross section for the photoelectron
diffraction process may be calculated through the pertur-
bation theory; the wave function in the position R, far
from the crystal, may be expanded in a perturbative
series in the strength of the atomic scattering potential:

Q(R) =$0(R)+ g, (R)+g~(R)+

where the zero order term go has the following form:
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the vector a; is the internuclear separation between the
photoemitter and the scattering atom, and f (a, b, 8) is
the effective curved-wave scattering amplitude, given by

f (a, b, 8)=—g (2l+1)ttc&(ka)c&(kb)Pt(cos8) .
1

I

&n &q. (7) t&=exp(i6t)sin(5t) are the components of the
atomic t matrix, P~(cos8) is a Legendre polynomial of or-
der l, and c& are dimensionless polynomial factors, related
to the spherical Hankel functions by the following rela-
tion:
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[note that the 51 phase shift differs from the o
&

phase
shift, introduced in Eq. (2), when atomic relaxation
effects are introduced in the calculation of o.&]. The
effective curved-wave scattering factors (7) may be ob-
tained if one truncates the Rehr-Albers scattering ma-
trices F& &. to lowest order; this approximation has
proved to be adequate for kinetic energies above a few
hundreds eV, but it may not give fully accurate results
for the forward-scattering directions in the high-energy
range. ' This fact may be observed for emission direc-
tions along the principal axis of the crystal, where the
atoms are more close to each other (the curved-wave

corrections rapidly diminish when the distance between
the atoms is increased). However, interesting features,
bound to specific diffraction effects which may give im-
portant information about the surface structure and in-
teratomic distances, may be evidentiated for different
emission directions (in an azimuthal scanning, e.g. , it is
sufficient to choose a polar angle which does not lie along
one of the few principal axis directions). The present
method is then more accurate for the study of XPD
peaks, whose angular position does not coincide with the
crystal principal axis directions. The nth scattering term
has the following form:
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Some useful notations are now introduced: if b is an internuclear vector, the double-scattering event for an electron
coming along the internuclear direction a, scattered erst along b, and then along c, may be expressed through

Rb(c):P(b, R)f (b, c, 8—b, ),

so that, if the incident electron wave function is t/i;, the wave function P& for an electron coming out along c, after the
two scattering events, is given by the following expression:

g&=)t),f(a, b, 8,b)R.b(c) .

All the multiple-scattering events on a plane parallel to the surface can similarly be expressed through

S(a,c):f (a, c,8„)—+ g f (a, b;, 8,b ) Rb (c)+ g Rb (b, )[Rb (c)+ . ] .
1 l1 tl "i1 '2 i2l) 12

(12)

where the sums are intended over a set of internuclear
vectors b;, lying in the plane. Equation (12) has been de-
rived with the hypothesis of two-dimensional periodicity
in the layer; however, since the wave function is exponen-
tially damped, such periodicity is actually required only
for a region whose extension is of the order of the elec-
tron mean-free-path length. If the two-dimensional unit
cell contains more than one atom, Eq. (12) applies to the
sublattices corresponding to each atom in the unit cell,
while the scattering between sublattices may be calculat-
ed likewise the scattering among different layers (see
below). The multiple-scattering problem in a plane paral-

lel to the surface may then be calculated up to the infinite
order; in fact, R b (b ) may be represented as a matrix R ',

t

so that Eq. (12) can be written in the form

S(a,c)=f(a, c,8„)
+F [R,'+R'[R J +R/[R k+ ] . ]]

=f (a, c,8„)+F,'[1+R +R +R'+ . ]'R 1

=f (a, c,8„)+F,' 1 RJ;
1 —R .J
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where

F, =f—(a, b, , 8,b ),

R,'—:Rb (c) .

(14)

(15)

The multiple-scattering problem for a plane parallel to
the surface is then resolved up to the infinite order, by in-
version of the matrix R. If the plane under consideration
contains the ionized atom, the first event is the absorp-
tion of the incoming photon so that Eq. (13) must be
modified and becomes

. IfS (ec)= g ( i)—fexp(io& )( Y& Y&o~ YI )I& &4rrY& (8„,$„)c&(kc)+U;' f
l =l.+1f i
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where

U,
' f—:&4m. Y, (8„,$„)c,(ka, ) . (17)

ln the case c coincides with R, S (e, R) gives the electron wave-function amplitude at the detector for the multiple-
scattering problem corresponding to one single atomic layer. The scattering events between two planes parallel to the
surface, may be described with a similar treatment; it is necessary to define four two-plane scattering matrices S», S1 2,
S2 1, S2 2, where S; refers to the case where the first scattering event is in the plane i and the last one is in the plane j.
The scattering processes may be summarized as follows: (a) the electron enters the plane i, travels in the plane, and
then exists along the final vector c; (b) the electron enters the plane i, it is scattered here until it exits towards the plane
j along an internuclear vector b, , it travels in the plane j, and then exists along c; etc. These processes may be ex-
pressed as follows:

S),(a, c)= S( ac) +S (P) z) S~)( P)z)([S,'+S (P,z)iS/ (Pz, )( [S,'+ . ] ],

where the sums over the repeated index are omitted,
S'—=S(b;,b ), S'=S(a,b. ), S,'—=S(b;,c), and P; is the
matrix corresponding to the propagation of the electron
from the plane i to the plane j and is given by the follow-
ing expression:

exp[ikb„(1—cos8b z ) b„/2k]—

1S, z(a, c)=(SP,z);
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12 21
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where b„is an internuclear scattering vector from the
plane i to the plane j.A11 the possible scattering processes
over each plane are already included through the matrix
S, and the scattering between the two planes may be eval-
uated up to the infinite order, by simply summing the
geometric series. One has

S11 S12S: S S2, 1 2, 2
(21)

The two-plane scattering matrices may be written in a
more compact form, as a single matrix S,

1S, , (a, c)=S(a,c)+(SP,zSPz, );
1 —SP12SP21 . J

SJ .

(20)

SP 12

0
S 0
0 S

S 0
0 S SP21

1—
SP2, 0

(22)

which may be also written in the following expression:

0 SP12

The other three two-plane scattering matrices have simi-
lar expressions:

as one can easily prove. The multiple-scattering solution
for a system with only two planes has the following form:

g(R) ~S (e,R)+ gS (e,b;)P,z(b;)[Sz, (b;, R)e '" +Sz z(b;, R)e ' '~ ] (23)

where the sum is intended over the internuclear vectors between the two planes. The scattering among a higher number
of planes may be calculated similarly: however, since the dimensions of the n-plane scattering matrix are proportional
to the number of planes n, it has been found more convenient, from a computational point of view, to introduce the
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scattering among couples of planes sequentially up to a finite order, instead of following the same procedure used for
the two-plane scattering matrix. For more clarity I show explicitly how the scattering processes between two couples of
planes (indicated as couple a and couple b) may be calculated up to third order. Suppose for simplicity an electron in-
cident on the couple of planes a along an internuclear vector a; the processes to be inserted in the calculations are the
following: (a) the electron is scattered by couple a towards the detector; (b) the electron is scattered by couple a to-
wards couple b and then by couple b towards the detector; (c) the electron is scattered by couple a towards couple b,
then it is scattered by couple b towards couple a and finally by couple a towards the detector. All these processes may
be described by the following mathematical expression:

S"(a,R)+ gS "(a,b;)P(b, , R) S' '(b;, R)+ gS' '(b;, c )P(c,R)S "(c,R)
b,. C ~

(24)

where S"and S ' ' are, respectively, the two-plane scattering matrix for the couples of planes a and b, given by Eqs.
(21) or (22), R is the direction of emission towards the detector, P(b, R) is given by Eq. (6), and the sums over b; and
over c are intended over all internuclear vector between the two couples a and b. Note that every possible scattering
event within each couple of planes is implicitly calculated, since the scattering matrices S"and S ' ' have been already
renormalized. For each emission direction, R is fixed so that S "(b, , R) and S ' '(c,R) may be regarded as vectors in-
stead of a matrix; at each step in the calculation of Eq. (24), one has then to multiply a vector by a matrix and not a ma-
trix by a matrix, so that the number of terms to be computed reduces to n instead of n, if n is the vector dimension.
This method has been applied to the study of different solid surfaces: a set of eight atomic layers has been considered
and the scattering among couples of planes has been introduced up to fourth order. The photoelectron intensity then
has the following form:

2

(
—i) fexp(io& )( Y& ~ Y,0~ Y& )I& V4vrY& (OR, PR)+ g &4~Y& (9, , $, )cI (ka;)S' '(a;, R)

f i
i&0

(25)

where S' '(a, R) is the eight-plane scattering matrix,
which is independent of the position of the photoemitter
from the angular momentum lf and from the polariza-
tion of the incident photon; this fact is very useful from a
computational point of view, since the multiple-scattering
calculation must be executed only once, while the result
is valid for all inequivalent emitters, angular momentum
If, and polarization vectors. If the spin-orbit coupling is
neglected, Eq. (25) must be summed over all possible
values of the magnetic quantum number m. When the
spin-orbit coupling is introduced, the initial state is
represented by a spin orbital of one of the following
forms:

I + 1/2

m. = —I —1/2
J

l +m +1/2 I

l —m +1/2
+ ' r2(+1 Im +1/2

2t+2
2l+1 ~ Ilm ~

III. NUMERICAL RESULTS

for j =I +—,', and similarly for j = l —
—,'.
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As a final state, one must consider the two possibilities of
spin-up and spin-down electron states, which are
equivalent when the spin-orbit coupling is neglected; the
intensity is then given by

In this section the theory described above is applied to
the study of emission from a semi-infinite substrate. In
contrast to the case of emission from adsorbate struc-
tures, this case presents greater difficulties from a compu-
tational point of view: in fact, the number of important
scatterers is larger and many nonequivalent emitters with
a different local environment and varying distance to the
surface must be considered. For a typical cluster tech-
nique this situation results to be complex, since the calcu-
lation must be executed from the beginning for every
nonequivalent emitter. The present method overcomes
this difficulty, since the multiple-scattering calculation is
evaluated only once, while the result is used for all emit-
ters, as results from Eq. (25); the contribution from
several hundreds of atoms is included in the present cal-
culation of the photocurrent intensity. Multiple-
scattering calculations for photoemission from a Ni(001)
surface have been executed for small clusters of =40
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atoms by Fadley and co-workers, ' while Fritzsche has
presented multiple-scattering calculations only up to the
third order, for Auger-electron emission from a Ni(111)
surface. ' The multiple-scattering calculation presented
refers to the case of Ni2p emission from a Ni(001) sub-
strate at a kinetic energy E=630 eV: the incident beam
is supposed unpolarized, so that two orthogonal photon
polarization vectors have been considered. Both s- and
d-channel contributions have been evaluated and 20
phase shifts have been used for the calculation of the
ion-core scattering factor. An azimuthal scanning at a
fixed polar angle 0=16 have been considered: the great
importance of multiple-scattering processes is shown in
Fig. 1, where multiple-scattering (solid line) and single-
scattering (dashed line) curves are represented. At such a
polar angle, the emission direction never coincides with
directions connecting the emitter with overlying nearest-
or next-nearest-neighbor atoms, so that the forward-
focusing effect is not evident from a simple inspection of
the diffraction pattern. All the peaks in Fig. 1 are then
originated by complex diffraction processes, so that it is
not possible to give a simple explanation of the great
differences between the single-scattering and multiple-
scattering curves. In Fig. 2 the convergence in the inter-
nuclear vectors is illustrated. An increasing number of
internuclear vectors have been introduced: more precise-
ly, all the internuclear vectors smaller than 5, 8, and 11 A
have been, respectively, used in the multiple-scattering
calculation for the dash-dotted, dashed, and solid lines.
The matrix dimensions involved in the calculation obvi-
ously depend on the number of internuclear vectors; for
example, the one-plane scattering matrix dimensions are
10X10, 32X32, and 54X54, respectively, for the dash-
dotted, dashed, and solid lines. Unlike the single-
scattering curve, the dash-dotted curve in Fig. 2, though
obtained by using a small number of internuclear vectors,
reproduces rather well the convergent solution: the only
differences consist in a lowering of the peak at 21 and in
the presence of the broad peak at 38, which is present
also in the single-scattering curve, while all the other
structures, even the minor ones, are well reproduced. In

30.0 40.0 50.0 60.0

RZIMUTHRL RNGLE (DEG)

FIG. 2. Convergence in the internuclear vectors: multiple-
scattering calculations for the same case as in Fig. 1. All the

0
internuclear vectors smaller than 11, 8, and 5 A have been, re-
spectively, used for the solid, dashed, dash-dotted lines.

Fig. 1, the differences between the solid and the dashed
curves are much smaller with respect to the difFerences
between the dashed and the dash-dotted curves: it results
then that the chief contribution to the diffraction pattern
arises from the small internuclear vectors; this does not
mean, however, that only short total path lengths must
be considered, since the electron may be scattered many
times before reaching the detector. This fact may be ex-
plained as follows: it is well known that diffraction
effects are strong when the wavelength of the incident
wave is comparable to the lattice constant, while they
tend to be averaged out for a wavelength much shorter
than the lattice constant. An electron traveling along a
path formed by large internuclear vectors interacts with a
broader lattice, so that diffraction processes may be weak
for this kind of path, since the photoelectron wavelength
is considerably smaller than the lattice constant, for ener-
gy above a few hundreds eV. A path formed by small in-
ternuclear vectors may then present the most important
diffraction effects. In Fig. 3 the convergence in the pho-
toemitter depth is illustrated: short-dash —long-dashed,
dash-dotted, dashed, and solid lines refer, respectively, to
the intensity with emitter in up to two, four, six, and
eight atomic layers; the contributions from deeper pho-

30.0 40.0 50.0 60.0

RZ(MUTHRL RNGLE (DEG)
90.0

30.0 10.0 50.0 60.0

RZ(MUTHRL RNGLE (DEG)

I

BO.O 90.0

FIG. 1. Comparison between multiple-scattering {solid line)
and single-scattering (dashed line) calculations for Ni2p emis-
sion from a Ni(001) substrate at a kinetic energy E=630 eV:
the incident beam is supported unpolarized and the polar angle
is set to 16.

FIG. 3. Convergence in the photoemitter depth: solid,
dashed, dash-dotted, and short-dash —long-dashed lines refer, re-
spectively, to the intensity with emitter in up to eight, six, four,
and two atomic layers.
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toemitters raise considerably the peaks at 7 and at 30',
even if these structures do not coincide with forward-
focusing directions. However, it must be stressed that,
even in the case when only contributions from emitters in
up to two layers are evaluated, scattering events in the
whole system are introduced in the calculation, so that
such a solution does not represent the effect of the first
two layers only.

IV. CONCLUSIONS

A multiple-scattering theory for the quantitative calcu-
lation of photoelectron and Auger-electron diffraction
patterns in the intermediate-energy range (200—1000 eV)
has been presented. The ordinary cluster techniques are
time consuming when the cluster size and the order of
scattering are increased. An alternative method has been
developed in the present paper which calculates the con-
tribution of a large number of paths analytically up to
infinite order, by a renormalization process. The crucial
point of the method consists in the choice of the internu-
clear vectors to be introduced in the calculation; it has
been shown, however, that a relatively small number of
internuclear vectors is sufficient to obtain accurate solu-
tions of the problem. This may be explained by the fact
that, since the photoelectron wavelength is considerably

smaller than the lattice constant, the diffraction processes
become much weaker as the internuclear vectors involved
get larger. Nevertheless, paths formed by small internu-
clear vectors may present important diffraction effects,
even for relatively large total length, since the electron
may undergo many elastic-scattering processes before
reaching the detector because of the relatively large value
of the electron mean free path. The curved-wave approx-
imation of Eq. (7), on which the present method is based,
is less accurate for the forward-scattering amplitude; this
may be observed for emission directions along the princi-
pal axis of the crystal, where the focusing and defocusing
effect may be evidentiated. Although forward focusing is
very useful for determining bond directions, it is, in gen-
eral, not sensitive to bond lengths. One must rely on
diffraction modulation away from low index directions to
determine the latter. The present method is then more
advantageous for the study of XPD peaks, whose angular
position does not coincide with the crystal principal axis
directions.
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