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Statistics of branched fracture surfaces
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A statistical analysis of fracture surfaces of the polycrystalline intermetallic compound Ni3Al is re-
ported. Although these surfaces contain secondary branches, a roughness exponent g can be defined,
and is found close to 0.8. The number of branches is shown to have nontrivial fluctuations, which exhib-
it a power-law increase with an exponent strongly dependent upon the dynamics of crack branching dur-
ing crack propagation. Moreover, the probability distributions of both heights and averaged heights are
shown to slowly decrease, i.e., like power laws, for high enough altitudes. Dynamical effects could be re-
sponsible for these "anomalous" statistics.

INTRODUCTION

Since the pioneering work of Mandelbrot, Passoja, and
Paullay, ' numerous experimental measurements of the
fractal dimension of fracture surfaces were performed on
various materials using various experimental methods.
Many of these experiments aimed to establish a correla-
tion between this dimension and macroscopic fracture
parameters, such as the fracture toughness or the impact
energy measured during Charpy tests. In Ref. 1, the au-
thors concluded that for their series of steels, the higher
the fractal dimension, i.e., the rougher the surface, the
lower the impact energy. The opposite correlation was
observed on some ceramics by other authors. However,
in all the quoted references, variations of the fractal di-
mension are rather small (range 2. 1 —2.3), and in most
cases, no experimental error bars are estimated.

Experiments performed on four samples of the 7475
aluminum alloy ' subjected to four different heat treat-
ments, which produced four different fracture modes and
fracture toughnesses, resulted in identical roughness ex-
ponents g [in the case of self-affine surfaces, g is related to
the "box" fractal dimension df (Ref. 10) through the rela-
tion df =3—g], within experimental accuracy. It was
conjectured ' '" that the value 0.8 of g could be univer-
sal, i.e., independent of the micromechanisms of fracture
and of the material. In a recent publication of Milky
et al. , values of g close to 0.8 were also reported for a
series of various brittle materials.

Experiments are performed on the intermetallic com-
pound Ni3Al, which is well known to be prone to brittle
intergranular fracture. ' The surfaces of the two studied
samples contain many secondary branches and overhangs
and do not look like simple "mountain landscapes. " This
seems to be very common in the field of intermetallic-
based alloys. ' Nevertheless, a roughness exponent can be
defined through the return-probability power-law

behavior (see below). In the three series of experiments,
this exponent is found close to 0.8. On the other hand, it
is a well-known result, ' ' although not fully under-
stood, ' ' that fast-running cracks branch when a criti-
cal velocity is overpassed. One can reasonably expect
that this is the case for most intermetallics in a fracture
toughness experiment. The fluctuations of the number of
secondary cracks are shown to exhibit a power-law
behavior with an exponent close to 0.13. The value of
this exponent should be strongly related to the dynamics
of crack branching.

The conditional probability distribution P ( r, z) of
finding the point (r, z) on the surface, averaged over all
possible origins belonging to the surface is shown to ex-
hibit a scaling behavior:

P(r, z)=
&
f1 z

r& r&

with f (u) decreasing very slowly ( —1/u) for high
enough values of u. The broad character of this distribu-
tion should be due mainly to the presence of secondary
cracks. The whole structure under study can be viewed
as a "fIuffy" fractal, with branches growing from a struc-
ture with roughness index 0.8.

The conditional probability P (r, z(r)) is also comput-
ed. P (r, z(r)) describes the distribution of the height
z(r) which is the average value of the heights at point r:

n(r)
z(r)= g z, (r), (2)

n (r)

where z;(r) are the heights of the points located on the
fracture surface with the same abscissa r, and n (r) is the
number of such points. In the following, n(r) will be
called "the number of branches at point r," although the
secondary structures may either be secondary cracks or
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overhangs. P (r,z(r)) also exhibits a scaling behavior
with slowly decreasing tail:

P (r, z(r))= ~g
1

r& r&

with

1

1 67 (4)

This is in good agreement with the results obtained on
the various moments of P

M (r)=((~z(x+r) —z(x)~)~)„ (5)

(6)

were reported to be independent of r for a series of six
different brittle materials. Furthermore, these ratios were
found to fit a Gaussian distribution. However, no frac-
ture surface was reported to be branched in that case.
The "anomalous" statistics which characterizes our sur-
faces could well be the signature of the dynamical insta-
bility which produces secondary cracks. Dynamical
effects could also be at the origin of the discrepancy be-
tween the measured values of g, and the roughness index
expected for a "minimum" surface. Such a surface
would globally minimize the fracture energy, by choosing
at each elementary step the path leading to the minimum
sum of all the elementary energies. It is not clear, howev-
er, how such an optimal configuration could be reached
dynamically. This could explain that most available ex-
periments' exclude the value 0.5, which should be close
to the roughness index g (Refs. 24—26) of the minimum
surface. One must note, however, that very recent mea-
surements on low cycle fatigue fracture surfaces suggest
a value of 0.6. Tunneling scanning electron microscopy
experiments, which deal with much smaller scales than
ours (0. 1 —20 nm) also lead to exponents close to 0.4.
This discrepancy does not seem to hold for bidimensional
systems. Simulations" on the random fuse model,
which does not take the dynamics into account, result in
a universal value of g, i.e., independent of the disorder on
a microscopic scale, which is close to the roughness ex-
ponent —', of the directed polymer in a random medi-
um. ' Experiments performed by Kertesz, Horvath,
and Weber on tearing paper and by Poirier et al. on
cylinders are in perfect agreement with this value. It is
worth mentioning also that a dynamical thermal fuse
model was recently proposed by Vanneste and Sornette,
which leads to structures that, depending on a parameter
of the model (the creep exponent), may have various frac-
tal dimensions, and may contain many secondary
branches.

where q is an integer and the average ( )
„

is performed
over all possible values of the origin x. These moments
do exhibit power-law behaviors, but with exponents
different from qg for all the values of q under considera-
tion (q =2, 3,4, 5, 6). This contrasts strongly with recent
results due to Hansen et al. ; in Ref. 22, the ratios

I. MATERIAL AND EXPERIMENTAL PROCEDURE

A. Material and fracture

As far as Ni3A1 is concerned, the main objective was to
obtain as large as possible intergranular fracture surfaces
in order to improve their statistical analysis. So a small
14-mm thick plate of Ni76A124 was prepared in an argon
atmosphere by induction melting of pure constituents
and casting onto a steel m.old. The material was homo-
genized for 18 h at 1300'C. Small rectangular chevron
notch specimens (2H = 12 mm, B = 17 mm, W =24 mm)
were machined and notched using electrodischarge
machining.

A tensile stress was applied perpendicular to the chev-
ron plane (mode I). However, during mechanical testing,
as soon as the fracture started in the chevron plane, the
crack abruptly deviated to a plane parallel to the applied
stress, i.e., to the plate thickness direction, which is also
the solidification direction. These "mode-II" cracks,
with anisotropy axis perpendicular to the tensile axis are
considered in the following. Optical examinations of the
plate do not show any evidence of preexisting cracks or
large porosity which could be due to the elaboration pro-
cess (Fig. 1). Thus the secondary cracks observable on
the fracture surfaces only appeared during tensile testing.
This also means that deviation of the crack from the
"mode-I" direction could be related either to an unsatis-
factory geometry of the chevron notch specimens or to
the anisotropy of crystallization and grain-boundary
resistance. Indeed, although grains are rather equiaxed
perpendicular to the plate thickness direction with a
mean size about 0.5 mm, they exhibit heavy variations of
size parallel to this direction (roughly from 200 pm to 5
mm) leading to a large aspect ratio for numerous grains
(see Fig. 1).

Fracture surfaces were observed with a scanning elec-
tron micrograph Cambridge Stereoscan 100 with secon-
dary electron contrast. They exhibit a pure intergranular
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FIG. 1. Optical macrograph showing the etched surface (Fry
Etch) of the Ni, Al material prior to fracture. One can note that
the metallurgical grains are not isotropic; they are in fact
elongated in the direction of the main crack. Both lengths and
widths of the grains in the polishing plane appear to be rather
broadly distributed.
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aspect. Figure 2 reveals clearly the anisotropy of the
grains, and the broad distribution of their widths. Note
that the ultimate crack propagated parallel to the length
of the grains. Figure 2 also reveals deep cracks branched
on the main crack, which formed during fracture, as al-
ready emphasized (Fig. 1).

B. Preparation of the specimens and image analysis

1. Preparation of the specimens

One of the samples was coated with opaque resin (sam-
ple 1), while the other one was electrochemically NiPd-
plated (sample 2). Both were polished parallel to the an-
isotropy axis, and perpendicular to the direction ofpropa
gation of the crack, thus showing the separation "line"
between the metal and the deposit. Let us emphasize that
the various probability distributions are computed within
that plane. In the following, the separation line between
the intermetallic and the deposit will be referred to as
"the profile. " Only one cut was obtained from sample 1,
while we made two consecutive cuts on sample 2. These

(a)

three surfaces gave rise to three sets of experiments
which will be referred to as 1 (sample 1), 2 (sample 2, first
cut), and 3 (sample 2, second cut) hereafter (see Table I).

As the wetting of the resin on the metal is not perfect,
and because of the large hardness difference between the
two materials, sample 1 cannot be observed at a magni-
tude greater than X75. An optical microscope Olympus
PMG3 is used for that purpose. Figure 3 shows an opti-
cal micrograph of sample l. One can see both the secon-
dary cracks and the cut of the overhangs linked to the
fracture surface in planes which lie beside the polishing
plane. A few of these overhangs are relatively far from
the fracture surface (some grain widths). Surfaces 2 and
3 are observed at various magnifications with scanning
electron microscopes —respectively, Zeiss DSM 960 and
Cambridge Stereoscan 100—using a backscattered elec-
tron contrast.

2. Image analysis

The negatives of three micrographs (magnifications
from X 32 to X 75) obtained from experiment 1 are
recorded using a CCD camera Lhesa 506 N (with objec-
tive lens Micronikkor 55 mm) and digitized to 758 X 512
pixels images over 256 grey levels using the Synoptics
Synergy Board mounted on an IBM PC 486-33. In ex-
periments 2 and 3, the scanning microscopes are remotely
monitored by a Kevex Delta system, which directly pro-
vides digitized pictures. In experiment 2, the size of the
images is 703 X 512 pixels, while in experiment 3, their
size is 186X512 pixels (see Table I). Five and seven mi-
crographs (magnifications X20 to X200) were analyzed
in experiments 2 and 3, respectively. Image analysis is
performed by the Synoptics Semper 6 software facilities.
The frontiers between the metal and the coating are ex-
tracted from the binarized images. In each case, the im-
ages are abandoned whenever edge detection is not
straightforward. For the low magnifications used, how-
ever, this problem usually does not arise, since the con-
trast is rather high.
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FICx. 2. Micrographs taken with a scanning electron micro-
scope Cambridge Stereoscan 100. (a) and (b) both show the
fracture surfaces, at two different magnifications. The fracture
mode is clearly intergranular. (a) gives an idea of the anisotropy
of the grains, as well as of the broad character of their widths
distribution. (b) clearly shows the presence of deep secondary
cracks.

FIG. 3. Experiment 1. Optical micrograph Olympus PMG3.
The fracture surface is coated with an opaque resin. The "verti-
cal" cut reveals a branched profile. Note also the presence of
overhangs, linked to the fracture surface in planes located be-
side the polishing plane.
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TABLE I. Experiments 2 and 3. The magnifications are expressed in pm/pixel. The lengths g and
zo are expressed in pm. Note that, although these lengths are not determined with a good precision,
they fluctuate less in the case of experiment 2 than in the case of experiment 3. Exponent p is only
determined in the case of experiment 2, and is defined by P(r z) =( I /r~) f(z/r~) with f (u) —1/u '+~.

Experiment Image
Ni3Al: experiments 2 and 3

Magnification zp

2/1
2/2
2/3
2/4
2/5

5.066
4.433
5.910 .

1.773
2.533

0.82+0.03

203
115
195
159
251

350
602
302
393
590

0.08
0.21
0.08
0.13

—0.07

3/1
3/2
3/3
3/4
3/5
3/6
3/7

12.364
12.772
3.963
6.308
3.561
3.423
2.889

0.79+0.07

255
315
250
315

61
200
100

40
190
170
870

25
6

50

C. Principle of the experimental method:
a brief recall on self-one surfaces

In this section, we briefly recall some properties rela-
tive to self-affine surfaces, for which most measurable
quantities exhibit power-law behavior with all exponents
related to the roughness index g. As it will be shown
below, nearly all these quantities can be defined also for a
multivalued set of heights, but have different behaviors.

The height h (r)=[M&(r)]'/ of a profile of length r
along an ordinary self-affine surface scales as

h (r)-r~,
where g is called the surface roughness exponent, g & 1.

For such surfaces, it can be shown that the return
probability Po(r), which is the probability that the height
comes back to its initial value z =0 after a distance r
along the surface, scales as

Po(r) =P(r, 0) =r~f (0—),
where P and f are defined by Eq. (1). Note that for a usu-
al self-affine the probabilities P and P are identical,
since, for each point on the "horizontal" plane, there is
only one intersection with the structure.

According to its definition, Po(r) is also the self-
correlation C(r) of the intersection of the surface and the
horizontal z =0 plane. Thus polishing the surface per-
pendicularly to the z anisotropy axis and computing the
self-correlation function C(r) of the frontier between the
metal and the coating, contained in this z =const plane,
should, in principle, lead to the determination of g. C (r)
is obtained by averaging C(r) over all directions in the
horizontal plane, and C(r) can be computed, for exam-
ple, from the Fourier transform P(q) of the occupation
probability (the occupation probability being equal to 1 if
the site is located on the cut, 0 otherwise), using the rela-
tion

P, (r)-r (10)

but in our case the result is much too noisy to be useful.
However, note that this quantity was computed success-
fully by Ml. lely et al. These authors also computed the
one-dimensional power spectrum P(co) of the profile.
Consistently with the values of g obtained from the
analysis of P

„

they confirmed the power-law behavior

P(co) co

In our case, P(co) could not be computed because z is
multivalued.

Finally, let us note that for ordinary self-affine surfaces,
the moments M of the height defined in Eq. (5) all scale
with exponents q g:

M (r)-r~'~',

with

Pe)=ok.

where V denotes a Fourier transform. This procedure
was used in the case of the experiment reported in Refs. 6
and 7.

Po(r) may also be determined from the study of the
profile extracted from a "vertical" (containing the z axis)
cut of the surface. Such cuts were used by Mkl&y et al.
To compute Po, one has to construct the histogram of
horizontal distances r which correspond to the same
height, and average it over all accessible values of the
height. Note that this definition allows one to perform
the computation of Po on a multivalued set of heights. In
principle, one could determine in a similar manner the
first return probability P, (r), i.e., the probability that the
altitude goes back to its "initial" value z for the first time
after a distance r in the horizontal plane. P, was shown
to scale as

~P(q)~ =V[C(r)], (9) In the case of Ni3A1, these moments are computed for the
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distribution P of the averaged heights. It will be shown
in Sec. II that their scaling is quite different. Finally, the
"number of branches" n (r) at a given distance r in the
horizontal plane is characterized through its Auctuations
N(r):

X(r)= ( [n (r +x) n(x—) ) )„' (14)

II. EXPERIMENTAL RESULTS

A. Return probability Po

For each experiment, the histogram Po(r) relative to
one micrograph (number of values used equal to the
length of the image), averaged on all values of z (z =0 be-

Because of the anisotropy of the grains in the fracture
plane, cuts perpendicular to the anisotropy axis cannot be
performed. The study is thus restricted to profiles deter-
mined through cuts which contain the vertical axis z, and
are perpendicular to the direction of propagation of the
crack. The roughness index is measured through the
determination of the return probability I'o.

/=0. 82+0.05 .

If the results of experiment 3, for which finite-size effects
could be quite important (the images are 186 pixels long
in experiment 3, while their length is 703 pixels in the
case of experiment 2), are not taken into account, one
finds

(=0.83+0.04 . (16)

ing arbitrarily chosen) is reported on a log-log plot,
which exhibits a linear portion extending from a distance
comparable to the pixel size up to a distance g lying
within the range of grain widths. Note that g being
defined as the limit of the scaling domain, its value is only
indicative (see Table I). For each micrograph, the exten-
sion of this zone is roughly two decades. For each exper-
iment, curves relative to the various micrographs are re-
ported on the same plot: Po(r ) /Po( g ) versus r /g.
"Roughness exponents" g can be determined in each case
over two decades (see Fig. 4); values of g for experiments
2 and 3 are reported in Table I. Averaged results over
the three sets of experiments read
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FIG. 4. Log-log plot of the return probability Po(r)/Po(g) as a function of r/g Curves (a)., (b), and (c) correspond, respectively, to
experiments I, 2, and 3. Linear regimes extend approximately over two decades in r/g. The measured roughness indices g for each
experiment, as well as the estimated correlation lengths g for each image are given in Table I. Let us emphasize that the scaling re-
gime extends only up to g, which lies within the range of grain widths. (a) /=0. 84+0.04, (b) /=0. 83+0.04, (c) (=0.79+0.07.
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In any case, g remains close to 0.8, again excluding the
minimum surface exponent, and in perfect agreement
with other results on brittle or ductile' materials.
However, in order to quantify the "branched character"
of the structure, the fluctuations of the total number of
cracks must also be computed.

been shown recently that the exponent b could be related
to dynamical parameters of crack branching during crack
propagation, and this will be emphasized in the next
section.

C. Height probability distributions

B. Fluctuations of the number of branches

N(v)-v

with

6 =0.13+0.03 . (18)

However, as this exponent is relatively small, one cannot
exclude that N(r) might behave as ln(r). However, it has

On each image, N(r) [defined by Eq. (14)] is deter-
mined, and shown to exhibit a power-law behavior for
distances r smaller than the correlation length g. Figure
5 shows N (v)/N (g) as a function of r/g in a log-log
plot for the three experiments under consideration. One
has

In the case of a multivalued set of heights, at least
three probability distributions can be defined. As already
defined above, P and P describe the whole branched
structure and the averaged heights. One could also define
the probability distribution of the backbone. The latter
will be the object of a further work. In this section, re-
sults are presented on both P and P . Both exhibit a
long-tail behavior, although with different exponents.
The complete distribution P however, is broader than P

The conditional probability distribution P( vz) is the
probability that (r, z) is a point of the structure knowing
that the origin (0,0) itself belongs to it, and thus requires
further average over the origin. Only positive distances r
in the horizontal plane are considered, while both posi-
tive and negative values of the difference z in heights are
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z
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FIG. 5. Log-log plot of the fluctuations of the number of branches N (r) /N (g) as a function of r /g'. Curves (a), (b), and (c) corre-
spond, respectively, to experiments I, 2, and 3. Here again, the linear regimes extend approximately over two decades in r /g, and the
following values of the exponent b are determined (b is half the slope determined on each set of curves): (a) b=0. 12+0.03, (b)
b =0.11+0.03, (c) b =0.16+0.03. Once again, let us note that the scaling regime does not extend beyond the typical grain size.
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taken into account. However, in order to improve the
statistics, one makes the assumption that P is an even
function of z, for fixed r,

P(r, z)=P(r, —z) . (19)

1000 I

100 I

"Boxes" of length 30 pixels are used to compute the
histogram, so that 24 different values are actually taken
into account. Values of r not greater than 100 pixels
were taken into account for each image, because only
values smaller than the correlation length g lie within the
scaling domain. On the other hand, only the asymptotic
behavior of the function f defined by Eq. (1) is of interest
here, and this corresponds to high enough values of the
ratio z/r ~.

The various curves r~P(r, z) as a function of zlr~ ob-
tained for r =1 to 100 pixels are shown to superimpose
reasonably well for each image (see Fig. 6 for example),
thus confirming the scaling hypothesis expressed in Eq.
(1). Note that the width of the scaling region decreases
with increasing r. It will be shown in the following that

the upper cutoff z,„ofz is approximately a constant zo
(see Sec. III D). Thus z,„lr",which is the upper limit of
the scaling domain for a given r, decreases when r in-
creases.

In order to analyze the asymptotic behavior of f [Eq.
(I)], r ~P (r, z) =f(z lr ~) is further averaged over all possi-
ble values of r for a given z/r~. It is shown that for each
image, f (x) behaves like a power law x "+"', with an
exponent p close to 0. Error bars are difficult to estimate
in this case, because of the averaging over various values
of r. However, the study of a few different averages has
shown that the exponent —(I+@) always remains close
to —1 (see Table I). Although the correlation length g
for each image is not measured precisely enough to allow
for a real collapse of all the spectra on the same curve, an
attempt was made in Fig. 7, where the distances r and z
are expressed in pixels. One can see that the five curves
are reasonably linear, and nearly parallel. The measured
exponent is very close to —1; however, one cannot ex-
clude that logarithmic corrections give rise to an ap-
parent exponent slightly smaller than —1 ( ——1.1).
These corrections cannot be determined because of the
statistical noise —mainly due to the relatively small size
of the images.

The probability distribution P of the averaged height
z(r) defined by Eq. (2) is also computed using boxes of
length 30 pixels. P also scales like

10 ~ y

e1~ ~

~ ~

z
r&

0.1

0.01
0.1

~ ~

1 10 ( 100 1000
z/r

as shown on Fig. 8(a). As in the case of P, an average is
performed on the values of r ranging from 1 to 100 pixels.
Figure 8(b) shows that for the five images analyzed in ex-

1000

1000 ~

100

p 1 ~ p&
0

+ p

100

10
N

0.1

0.01

r=5
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r=100
~ ~ ~ ~ ~ ~ ~ I

~ 4 P+
p

0

p

+
0 ~

~ o +
0

10

0.1
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0.1 10 I-

z/r
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FIG. 6. Experiment 2. Image number 2/1 (see Table I). (a)
r~P(r, z) as a function of z/r~ on a log-log plot, for values of r
ranging from 1 to 100 pixels. The 100 curves superimpose
reasonably well up to a cutoff of the order of zp/r, which de-
creases with increasing r. (b) Same plot as in Fig. 6(a), but only
six values of r (r =1,5, 10,50,70, 100 pixels) have been superim-
posed.

FIG. 7. Experiment 2. Distances r and z are expressed here
in pixels. r~P(r, z) was averaged over all the values of r which
lead to close values of z/r~. Linear regimes on the log-lot plot
extend approximately over two decades for each micrograph.
Values of the various slopes lie in Table I. On average, the ex-
ponent is close to —1.11. A line of slope —1 is also drawn to
show that the actual exponent is slightly smaller than —1, but
this might be due to logarithmic terms for which we could not
have any evidence.
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10000 I ~ ~ ~ ~ ~ f ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ II~ z,„(r)= ( [Max[z (x +r')] —Min[z(x +r')]]0«„„),,

(22)

100

E

0.01

(a)

~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ I

where [Max[z(x +r')] —Min[z(x +r')]] 0«„.
„

is the
difference between the maximum and the minimum
heights detected in a window of width r originating at
point x. An average over all the possible values of x
(1 ( r (N x, —where X =703 in experiment 2 and
X =186 in experiment 3 is the total width of the images)
is then achieved. Figure 9 shows that z,„(r)behaves in
the following way:

0.1 10
z/r

100 1000 rz,„(r)=zo+z, (23)

10000 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ Ig

where zo is approximately the local thickness occupied by
the branches, and as a result, it varies slightly from image
to image (see Table I). Note that the power-law behavior

100

6
10000 I I I I I I I I) I I I I I I I II

0.01 ~ ~ ~ ~ ~ ~ ~ I

10
~ ~ ~ ~ ~ ~ ~ I

100
z r

1000

1000

100

E

FIG. 8. Experiment 2. Image number 2/5 (see Table I). (a)
r~P (r,z) as a function of z/r~ on a log-log plot, for values of r
ranging from 1 to 100 pixels. As in Fig. 6, the 100 curves super-
impose reasonably well, except for values of z/r~ which give
rise to particularly low values of P (r,z). (b) Averaged value of
r~P (r,z) over various values of r which lead to close values of
z/r~, as a function of z/r~, on a log-log plot. It is worth noting
that the curves superimpose well with distances r and z ex-
pressed in pixels. The linear regime extending over two decades
has a slope equal to —1.67+0.07.
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periment 2, the function g exhibits a power-law behavior
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1g(x)=
~, +,

~x
(20) 6

10

with exponent (see Table I)

p'=0. 67+0.07 . (21)

D. Moments of the distributions of heights

l. Infinite order moment
of the distribution of heights P (r, z)

The moment of infinite order z,„(r)was determined
for the distribution of heights P (r, z):

As it will be shown now, this value is in good agreement
with the results obtained on the moments
( ~z(x +r) —z(x) 1) of the averaged height z(r).

10

~ ~ ~ ~ ~ ~ ~ ~ I

10

~ ~ ~ I ~ I ~ ~ I

10
r (pm)

~ ~ ~ ~ ~ ~ ~ I

10 10

FIG. 9. Infinite order moment z,„(r)—zo as a function of r,
on a log-log plot. Length zo is on the order of the whole width
occupied by the branches, and, as a consequence, its value varies
slightly from image to image, as shown in Table I. (a) Experi-
ment 2. The linear regime extends over three decades in real
scale. The slope is 0.83, i.e., equal to g with a very good accura-
cy. (b) Experiment 3. The linear regime extends over two de-
cades. The measured slope is 0.89, compatible with the value of
the roughness index, although a bit higher. This slight
discrepancy could originate from finite-size effects.
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of z,„(r)—zo extends over three decades in the case of
experiment 2.

2. Finite order moments of the distribution P
of averaged heights

bution of averaged heights described above by the proba-
bility P (r, z(r)}. Figure 10(a) shows that the second or-
der (q =2) moment of P behaves like a power law with
exponent

Moments M [Eq. (5)] were determined in experiments
2 and 3 for finite values of q (q =2, 3,4, 5, 6) for the distri- g( 2 ) =0.71+0.02 . (24)
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FIG. 10. Experiment 2. Moments of the distribution P (r, z(r)) of averaged heights. (a) Log-log plot of M22(r)/~~&(g) as a func-
tion «r/g. The linear regime extending over approximately three decades allows for the determination of exponent
g(2)=o 71+0 02 (b) to (e) Log-log plot of ratios [M, (r)]' «/[M2(r)]' as functions of r/a (a =1 pm). The five curves present in
each case linear regimes extending over more than two decades, and are reasonably parallel, thus allowing for the determination of
the differen«of exponents g(q)/q —g(2)/2. (b) q =3, g(3)/3 —g(2)/2=0. 11+0.01, (c) q =4, g(4)/4 —g(2)/2=0. Ig+0.02,
(d) q =5, g(5) /5 —g(2)/2=0. 19&0.02, (e) q =6, g(6)/6 —g(2)/2=0. 24+0.02.
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Ratios of the type

[M (r)]'~~

[M (r)]'

g( ) g( ) 0 18+0 02
4 2

(26)

with q = 3,4, 5, 6, are plotted versus r in Figs. 10(b)—10(e).
These ratios exhibit power-law behaviors with exponents

= —0. 11+0.01,
3 2

This is a direct consequence of the scaling property of
P(r, z). It was also established numerically in the case of
the treelike structure of directed polymers considered by
Perlsman and Schwartz, and analytically in the mean-
field theory of branching structures. lz is related to the
average width of the structure at a given distance, which
diverges logarithmically

r l2
J dr' , -12—ln (31)r' a

Thus the number of branches at a distance r is given by
the relation= —0. 19+0.02,

5 2
(27)

(28)

III. DISCUSSION

= —0.24+0.02 .
6 2

Although these exponents are rather small, these ratios
do depend on r. As will be shown below, these values are
perfectly compatible with the description used in Eqs.
(20) and (21).

l2N(r)= J dr'—,N(r —r') .
0 l, (r —r')

Equation (32) has a solution of the type

N(r)=r"

with

l2b= —.
l,

(32)

(33)

(34)

The experiments described in this paper confirm the
universality of the roughness exponent g of fracture sur-
faces. Let us recall in particular that it was found equal
to 0.80+0.05 on a series of 7475 aluminum alloys ' (duc-
tile fracture), and equal to 0.83+0.05 on Ni3A1 (brittle).
These values, as well as those determined in other experi-
ments' in a comparable lengthscale regime, except the
one reported in Ref. 27, rule out the value 0.5 and the hy-
pothesis that a fracture surface could be a "standard"
minimum surface. This discrepancy does not seem to
exist on bidimensional systems, where the exponent —', of
the direct polymer in a random medium was recovered in
experiments. ' However, although the roughness ex-
ponent of Ni3A1 fracture surfaces, defined through the
power-law behavior of the return probability Po is close
to 0.8, their structure is much more complex than those
of aluminum alloys, exhibiting deep branched cracks and
overhangs. The aim of this work was to describe the
whole statistics of these surfaces in order to quantify
their branched character. In particular, the typical num-
ber of branches N(r) is shown to exhibit a power-law
behavior, involving an exponent, b =0.13+0.03. This re-
sult can be interpreted within the framework of a simple
bidimensional model which will be published elsewhere,
but will be brieAy mentioned here. One first argues that
the probability of branching between r and r+dr along
the main crack path is uniform, and can be written

(29)
l,

where l& is homogeneous to a length, as in a model re-
cently proposed by Perlsman and Schwartz. Then, one
may show that the probability that the branches born at a
distance r from the origin are still alive at a distance r
has to be of the form

(30)

This result is however not in agreement with the one ob-
tained by Perlsman and Schwartz, who predict a loga-
rithmic behavior of N(r). Note that our experiments
could as well be fitted by a logarithm, but the slope of the
line depends on the micrograph.

The b exponent is thus a very interesting piece of infor-
mation on the dynamics of branching during crack prop-
agation. In our case, b =l2/l, is approximately equal to
0.13, which means that the average time to be expected
between two branching points on the backbone is approx-
imately eight times longer than the lifetime of a branch.

In a further work, we will show that the same hy-
pothesis implies that the probability distribution of the
heights P(r, z) scales as

P(r, z)= (z»r&) . —=1
z

As shown earlier, this is in perfect agreement with our
experimental results, for which, however, logarithmic
corrections cannot be excluded. Note that the probabili-
ty P(r, z) no more depends on z for z high enough (in
practice, for z ) r~, see Fig. 7). It has been verified that
the backbones of our structures also have roughness
indexes close to 0.8. One can then think of the branched
structure as a "fiuffy" fractal (see Fig. 11), with branches
growing on a "basement" of roughness 0.8. The validity
of this image is confirmed by the behavior ofz,„(r):z,„(r):

z,„(r)=zo+z,

[Eq. (23)], the upper frontier of the branched structure of
width zo having the same roughness 0.8 as the backbone.

As discussed above, the probability of the distribution
of averaged heights P (r, z(r)) is also found to be broad:
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FIG. 11. Sketch of the "Huff" fractal. Branches grow on a
backbone which still contains some "connected" overhangs
(thus z is not everywhere single valued on the backbone). How-
ever, the roughness index of this backbone is also 0.8. When far
enough from the backbone, the probability distribution of
heights P(r, z) is independent of r, and scales as 1/z. This de-

caying density of points belonging to branches around the back-
bone is pictorially represented by thick segments.

pressed in Eqs. (24)—(28).
A further work should compare the properties of the

backbone to those of the whole structure. The analysis of
a profile parallel to the direction of the crack propagation
should also reveal particularly useful. Furthermore, a
comparison between the statistics of the branched and
nonbranched fracture surfaces of the same material
should be particularly rich. This could be performed on
an aluminum alloy of the 7000 series subjected to fa-
tigue. ' For low enough fixed AK values, the crack veloc-
ity is low enough, and the fracture surface exhibits no
branches. If AE overpasses a critical value, branching
occurs, while the measured velocity of the main crack
sticks to its critical value.

A careful study of the modifications of the fracture sur-
face statistics at the onset of the "branching transition"
should also give information on the nature of the mi-
cromechanisms responsible for crack propagation and
branching. This information could be particularly
relevant in the case of intermetallics, subjected to drastic
changes in fracture mode due to dynamical effects.

P (r,z(r))= 1

The value p'=0. 67 is in agreement with the results found
on the moments

( q) dz
q

z

=r"~(z,„(r))" (35)

where $,„=0.1 is an "effective" exponent characterizing

max '

z,„(r)=zo+r, — -r 'r 0. 1 (37)

This is in rather good agreement with the results ex-

As the leading term in z
„

is constant, apparent ex-
ponents g(q) are equal to

(36)
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