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One-dimensional kinetic Ising models with long-range exchange of two spins with opposite signs

are considered. The exchange probability is a power-law function of the distance between exchanged

spins. Rigorous lower bounds for the dynamical exponent z are obtained from the initial response

and the scaling hypothesis of the relaxation time. The dependence of the z exponent on the max-

imal exchange distance and on the exchange probability is studied. Nonuniversal behavior in the

ferromagnetic model with two difFerent alternating coupling constants is found. The z exponent is

also obtained from the domain-wall argument.

I. INTRODUCTION

Kinetic Ising models~ are the simplest models exhibit-
ing nontrivial critical dynamical behavior. They can be
described as an Ising model in contact with a heat bath,
which is responsible for a stochastic dynamics. Essen-
tially, we have two types of dynamics: (A) the dynamics
without order-parameter conservation and (B) the dy-
namics with order-parameter conservation. The Ising
model with Glauber dynamicst is used to describe sys-
tems, such as magnets, in which the order parameter
relaxes to its equilibrium value. Systems with order-
parameter conservation, such as phase separation in bi-
nary alloys, are described by Kawasaki dynamics, ~ in
which two nearest-neighbor spins of opposite signs are ex-
changed. Note that the conservation law occurs on a local
scale. It is well known that the systems with Kawasaki
dynamics are in a dynamical universality class different
from the one constituted by systems with Glauber dy-
namics, because of the existence of conservation laws.

Recently, a long-range exchange model has been in-
troduced in order to describe systems in which the order-
parameter conservation occurs in a global scale. The
spinodal decomposition in a binary fluid mixture in-
cluding convection fIow of particles is an example of
such systems. 5 In this system the growth law for the
ordering process is different from that for a conserved
order-parameter system described by the usual Kawasaki
dynamics. 4~ In fact, it has shown by numerical simula-
tions that the global conservation law changes the dy-
namical exponent and it is very important for the deter-
mination of the dynamical universality class. 7 In order
to investigate the effects of the conservation laws only in
a global scale, a kinetic Ising model with the exchange
probability being a power law of the distance between the
exchanged spins has been proposed. s A generalized time-
dependent Ginzburg-Landau equation has been derived
by using a coarse-grained picture and, in particular, the
critical behavior has been studied by the renormalization-

group method.
In this work we consider the critical dynamics of the

one-dimensional kinetic Ising model with a Kawasaki dy-
namics. The exchange probability between two spins
with opposite signs is a function of the distance r be-
tween them, as already proposed. s However, we intro-
duce a slight modification: The exchanged spins can be
separated up to a maximal distance R. This problem is
analyzed by means of the initial response, s and we obtain
rigorous lower bounds for the critical dynamical expo-
nent z. At high temperature, we solve exactly the equa-
tions of motion for the local order parameter. It is worth
mentioning that one-dimensional problems are important
in critical dynamics because they can be studied ana-
lytically without using the dynamical renormalization-
group method, which presents some problems in this
context. c We also consider the dynamical behavior
of ferromagnetic models with two different alternating
coupling constants. It is well known that this model
has a nonuniversal z exponent depending on the ratio
of the couplings. tz ts However, one could expect a uni-
versal exponent when a spin can exchange with every
one of the spins of the chain because now the system can
choose the fastest way to relax. Moreover, we also ob-
tain the z exponent by means of a generalization of the
domain-wall argument (DWA). t4 Although the DWA is
supposed to give an upper bound to the dynamical ex-
ponent, it turns out that it predicts the exact value of
z in one dimension 12 This paper is organized as follows.
In the next section the dynamical model is defined and
some equilibrium properties are discussed. The initial
response is briefly discussed in Sec. III. In Sec. IV we
present the high-temperature behavior, the lower bounds
of the z exponent, and the evaluation of the z exponent
by means of the DWA for the model with one constant
coupling. We discuss the dynamical behavior of the al-
ternating coupling constants model by using the initial
response and the DWA argument in Sec. V. Finally, a
brief discussion of the problem in d dimensions and our
concluding remarks are presented in the last section.
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II. LONG-RANGE
EXCHANGE DY'NAMICAL MODEL

We consider the one-dimensional ferromagnetic Ising
model, defined by the following Hamiltonian:

N

PH—= ) Kjsjsj+i,
j=1

(2.1)

( exp [2K2] . (2.2)

For further use, we note that some of the correlation
functions are given by

(s,s ) = tanh(K„), (2.3)

where P = 1/kisT, sj ——+1, and (Kj ——Jj/kisT} are
the reduced ferromagnetic couplings. Here we consider
Jj = Ji for j odd alld Jj = Jz for j evell with Jl & Jz.
The static properties are easily obtained. The critical
temperature is T, = 0. The correlation length near T = 0
depends only on the weak interaction J2, i.e. ,

(s,sjsksi) = tanh(K„) tanh(K„), (2.4)
n=t r=k

where the sites considered satisfy the relation / ) A: )
j & i. The Fourier transform s„of the spins is defined
by

N

Sq = ) Srrr eXP(iq am)
N

rrr, =l
(2.5)

where a is the lattice spacing. Using (2.3) if, is easy to
show that the structure factor S(q) is given by

(1 —I' I' )[1+I' I' + (I' + I' ) cos(qa)]Sq
1 —2I' I' cos(2qa) + I'zl'z

(2.6)

where I'„= tanh(K„) with n = 1,2. The fiuctuation-
dissipation theorem relates it to the static susceptibility
yq by S(q) = kllTyq. The structure factor diverges
at the critical temperature for the critical wave vector
q, = 0 as S(0) (.

The Kawasaki dynamics with long-range exchange of
spins is given by the following master equation:

ctP((s};t)
Ot

Kj j+r Sj r Sj+r '
r Sj r r Sj+r . ~ .

r + liijrj+r(sj+rr Sj)P(. . . r Sj+rr. ~ ~ Sj r
~ . . r't)]

r=l j=1
(2.7)

where P((s};t) is the probability densify that
the configuration (sl, sz. . . , Siv} is realized at
time t, iiij j+r (sj, s j+r) is the transition rate
of the (sl, . . . , Sj, . . . Sj+, . . .} configuration to the
(sl . , Sj+ . . . Sj, . . .}one, and R is the maximal dis-
tance of two exchanged spins. Note that only spins with
oPPosite signs are exchanged (i.e. , liij j+„(sj,sj+„) = 0
if sj = sj+r), implying that the total magnetization is
constant.

In order to assure the equilibrium distribution at long
times, the transition rates must obey the detailed balance
condition, namely,

~jj+r( j r j+r) eq( r jr r j+r . .)

and summing over all configurations. After some stan-
dard algebra steps we obtain

&(sk(t))

r=l j=l

+(skiiik ,k(sk s—k))~j+.—, k]

(2.10)

Unfortunately this equation cannot be solved exactly be-
cause correlation functions of higher order will appear in
the right-hand side of the equation.

(sk(t)) = ) skP(si . Sk siv;t) (2 9)

= &j,j+r (sj +r r sj )Peq ( ~ ~ r sj+r ~ ~ ~ sj r ~ ~ ~ ) ~ (2.8)

Here Peq((s}) is the Gibbs probability of the (s} con-
figuration. This condition determines only partially the
transition rates. So we can choose urj, j+„(sj,sj+„) in
several forms. In the next sections we will choose the
standard transition rates.

Let us define the function (sk(t)) as

III. INITIAL RESPONSE RATE

In this section we establish a rigorous lower bound for
the relaxation time from the initial response rate of the
system. For the sake of completeness we discuss briefiy
the initial response method and generalize it to long-
range exchange models. Let us define a function P by the
relation P((s},t) = Peq((s})P((s},t) Then the mas. ter
equation (2.7) can be written as

in order to consider the time evolution of the local mag-
netization. The equation for the evolution of this object
is obtained by multiplying both sides of Eq. (2.7) by sk

~,4(( }t) = -L4(( }t),8

where the L operator is defined by

(3.1)
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L4(( k t) = ) j,j+.( j. j .)
sj+ t)

(. ~ .8 ~ . . . 8 . . . , t) (3.2) rs ——Cs(0) Cs (t)dt, (3.5)

with p(v) ) 0 for all v. The characteristic time (rg)
and the initial relaxation rate (vs) for the variable g are
defined by

C, (t) = y(v) exp( —vt)dv, (3.4)

From the detailed balance condition (2.8) we can show
that the Her mitian L operator has the properties
(f'Lg)eq ——(gI f')eq and (g'Lg)ez ) 0, where f and
g are arbitrary functions of (8). Thus the eigenvalues v,
of L are real and non-negative. We consider the time-
dependent autocorrelation function of g,

Cs(t) = (g"[0]g[t]).Q —(g*[0]g[~]).q (3 3)

where g[t] = exp( —Lt)g. It has a spectral representation
of the form

vs ———Cs (0) —Cs (t)1 d
(3.6)

We can write these equations in the spectral representa-
tion and apply the Schwartz inequality in order to obtain
the following inequality:

7g ) Vg (3 7)

If we put g = s~, rg is the relaxation time of the system
for q ~ 0. In order to use inequality (3.7) we must
evaluate the initial rate (v, ). This is easily done and we
find that

kpTpq7.
q

N Er=l Ej=l 1 —COS(q ' Rr) (u)j ,j+r(Sj t 'Sj'+r))eg
(3.8)

where y~ is the static susceptibility and a„ is the spacing
vector between sites j and j+r. In the high-temperature
limit this inequality becomes an equality (conventional
theory). The physical reason is that in this limit (T —t

oo) a spin behaves independently of the others. Thus,
the initial relaxation time is equal to the asymptotic one.
In order to obtain a lower bound to the z exponent we
must evaluate (loj j+r(sj, sj+r))e(l and assume the scaling
hypothesis for the relaxation time

IV. ISOTROPIC MODEL
Let us consider the isotropic ferromagnetic model

(Kj ——K for all j). The transition rates are the gener-
alization of the Kawasaki ones for the long-range model.
The exchange between two nearest-neighbor spins (r = 1)
is described by the following transition rate:

nC' Sq
Bfj j ~l(sj t Sj+l) = (1 8j Sj+l) 1 f (Sj —l sj+2)

rq
——('f(q() for q ~ 0 (3.9)

(4 1)
Here p = tanh(2K). For r ) 2 the transition rates can
be written as

lojtj+r(sjt sj+r) — (1 sjsj+r)f 1 clsj (sj 1 + sjgl sj+—r l —8&+r+l)

+C38j [8&—1 & 81(+j+Sr 1 + sj +r+—1) sj+r lsj+r+l(sj l—+ Sj+l )]) (4.2)

where cl = (1/8)[tanh(4K) + 2tanh(2K)] and c3
(1/8) [tanh(4K) —2 tanh(2K)]. In the last two equations,
C is a normalization constant evaluated in such way that
2/n is the relaxation time for a spin in high temperature.
It is easy to show that

(4.3)

The standard Kawasaki dynamics is obtained by setting
R = 1 or by considering R ) 1 and p, —+ oo. When R ) 1
and p is finite we describe a model in which a spin can be
exchanged with several others; in this case p, determines
how the probability of exchange depends on the distance
between the exchanged spins. The generalized Kawasaki

model with exchange of spins separated by an arbitrary
distance7 is obtained by setting B= N —1 and p = 0.

At high temperatures we have cs = cl ——p = 0. In
this limit, the transition rates (4.1) and (4.2) are given
by u)j j+r(sj, sj+r) = nC(l sjsj+r)/4r" —The equation. s
for the evolution of (sg(t)) [Eq. (2.10)] can now be ex-
actly solved. We do it now for further comparison with
the results of the initial response. For simplicity, let us
consider the case with p, = 0 on the closed chain (i.e. ,

8N+It = SA, ). The equations for R ( N are given by

d(SA,, (t)) aC
2B(ss(t))—) ((ss+„(t))+(ss „(t))]),

r=1

k = 1, . . . , N . (4.4)
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These equations can be solved by using the Fourier trans-
forms defined in Eq. (2.5). We can write that

R
- —1

r(q) = —R —) cos(qna)
n=1

12
aqua~(R+ 1)(2R+ 1)

(4.6)

Comparing this result with the next-nearest-neighbor ex-
change (set R = 1 ), we see that the system now relaxes
faster. The relaxation time diverges as q ~ 0 because
the total magnetization is constant.

We consider now the case in which a spin can be arbi-
trarily exchanged with any other spin of the open chain
(the result for the closed chain is the same). For T —& oo
we have that

d(»(t))
dt

nCN
((sg (t) ) —m)

2
(4.7)

d(s~(t)) = ——(cc(t)) II —) coc(qoo) ) . (4.2)
n=1

Here the term in cos(qna) is the signature of the exchange
between spins separated by a distance n. Therefore, we
have that (s~(t)) = (s~(0)) exp[ —t/r(q)], with the relax-
ation time given by

2
(q) =— (4.8)

r(0) ~ oo (4 9)

Since one spin can be exchanged with any other spin of
the lattice with the same rate, all the modes q relax in the
same way with the fastest relaxation time, namely, 2/a.
The q = 0 mode, however, is frozen [q (0) —+ oo]. Note
that we cannot obtain the relaxation time of the q = 0
mode by evaluating the relaxation time of the mode q in
the limit q —+ 0 because r(q) is not continuous at q = 0.
It is worth mentioning that these exact solutions at high
temperature are valid for any dimension d.

The high temperature and the critical behavior will
now be analyzed by the initial response. In order to use
the inequality (3.8) we must evaluate (u)~ ~+„(s~,s~~„)),~,
with the transition rates defined in Eqs. (4.1) and (4.2).
Using (2.3) and (2.4) for the equilibrium correlation func-
tions we obtain that

where m = P i(s~(t))/N is a constant independent of
time. Without loss of generality we can choose m = 0
and obtain that (si, (t)) = (s), (0)) exp( —at/2). Each spin
now relaxes in the same way with the smallest relaxation
time, namely, 2/n. In terms of the Fourier transform we
have that (s~(t)) = (s~(0)) exp[ —t/r(q)], with r(q) given
by

o.C
, ,„(s,, s, ,))., =

4
[1 —r(1)][1—~r(1)], (4.10)

nC
(u), „(s , s „)), = 1 —I'(r) —2c [2I'(1) —I'(r + 1) —I'(r —1)]

+2cc(I'(r+ I)+I'(r —I) —2I'(2)]j for r & 2. (4.11)

Here I'(m) = tanh (K).
We consider first the high-temperature limit. When

T —+ oo we have that (tv~ ~+„(s~,sj+z))eq: o.C/4r" for
r & l. In this limit, the inequality (3.8) becomes an
equality, namely,

R N—
1

(4.12)
N 'nC P„,P, ,"r i'[1 —cos(qar)]

Here we have used that k~Ty~ = 1. In the case of R
finite and smaller than N, we expand the term cos(qar)
near the critical wave vector q, = 0 to obtain the follow-
ing relaxation time:

2N~~r=1 (4.13)
n(qa) P„ i r (N —r)—

Note that for p, = 0 and N )) 1, this result agrees
with the exact one (4.6). The case of the arbitrary ex-

changes (R = N —1 and p = 0) must be carefully
analyzed. Now we cannot expand the term cos(qar)
for q —+ 0 and we must evaluate the denominator of
Eq. (4.12). We have that P„icos(qar) = N6qo and

N —1
i r cos(qar) = N/2. Here, 6—

q o is the Kronecker
delta. After trivial steps we obtain a relaxation time

2
for qg0 (4.14)

A

which is the same as the exact one (4.8). Note that a
wrong result has been obtained in Ref. 15 for this case
because an expansion for q —+ 0 has been made.

Now, let us consider the behavior near the critical
temperature (T, = 0). We obtain from (4.10) and
(4.11) that (u)~ ~+i(s~, s~+i)),~ nC exp( —4K) and
(u)~,~+„(s~,s~+„)),~ 3ofCr "exp( —4K). Then, in-
equality (3.8) can be written as

k~Ty~N exp(4K)
7.

q
&

4oC 3 „ 1 r & N —r 1 —cos qar —2 N —1 1 —cos qa
(4.15)
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( Q(q~() (4.16)

Here we have used that C = 1/(N —1) and expressions
(2.2) and (2.6), respectively, for the correlation length
and k~Tg~. Note that the dependence of rq on q ap-
pears, for q ~ 0, because of y~. If we assume the

The generalized Kawasaki model in which a spin can
be exchanged with any other spin of the lattice with a
probability independent of the distance (p, = 0 and R =
N —1) will now be studied. The full evaluation of the
denominator of (4.15) must be done (as in the case of
T ~ oo and for N )) 1); we obtain

scaling hypothesis (3.9) for the relaxation time, we ob-
tain that z & 3. Moreover, as the lower bound usu-
ally coincides with exact result in one dimension and the
DWA furnishes the same exponent (as it will be shown
later), z = 3 could be the exact value of the dynamic
exponent. This result is in agreement with the relation
found in Ref. 7 between the z exponent and the stan-
dard Kawasaki model exponent z~, namely, z = z~ —2.
Reference 15 obtained a wrong exponent because of the
expansion for q ~ 0.

When p = 0 and B (( N we can consider the limit
q ~ 0 and expand cos(qar) up to second order in q. Now
we have that

2k~ Ty~NR exp(4K)
oq2a2(2NR(R+ 1)(2R+ 1) —3R (R+ 1)2 —8(N —1))

(4.17)

If B= 1 we have the next-neighbor exchange model and
it is very easy to obtain from the above equation that
zk & 5. Using the relations of Sec. II for the correlation
length and gz we obtain that

g(qa() (4.18)

in the case that R && 1. For bounded B we have
the same exponent of the standard Kawasaki dynamics
(z ) 5). However if we consider the maximal distance of
the exchanged spins to be proportional to the correlation
length, i.e. , R g, Eq. (4.18) gives us z ) 3, the same
result obtained above for the model in which a spin can
exchange with any other spin. This result has already
been obtained in the literature. Therefore for p = 0 we
can conclude that if R « ( we are in the dynamical uni-
versality class of the standard Kawasaki model (zR = 5).
On the other hand, if R ( or greater the dynamical
exponent is z = 3.

We discuss now the case with p g 0 and R « N. We
consider inequality (4.15) in the limit q ~ 0 and expand
the term cos(qar) up to second order in q. After some
standard steps we obtain that

(4.19)

If R « (, the denominator of the equation is given by bN,
where 6 is a constant. So we have that z & 5 independent
of the value of p, . The most interesting cases occur when
R (. First we consider p = 1. Since R )) 1, we find
that P„r ln(R) and P„r(N —r) NR /2. Then
we obtain that z & 3 with logarithmic corrections. For
p = 2 we have that C vr and Q„(N —r) NR.
It is easy to obtain that z & 4. When p, = 3 we have
that C 1.2 and Q„r i(N —r) N ln(R). Using
these two values we obtain that z & 5 with logarithmic
corrections. For p & 3 we And that the z exponent is
equal to the standard Kawasaki value z~ ——5. Therefore

(2 (5
PgtU A

(4.20)

which gives us z = 5. It is easy to see that this is the
fastest way (perhaps the only way) of decay of a wall.
Note that this value coincides with the lower bound of
the initial response and with the exact value.

When B = N —1 and p, = 0 a spin can be exchanged
with any other spin and then the system can choose a

we can conclude that for R ( and p ) 3 we have that
z & 5. The result z = z~ for p, & 3 agrees with the work
of Hayakawa and Family. s For R g and p & 1 we find
that z & 3. If 1 ( p ( 3, the z exponent changes with
p, . In particular for p = 2 we find z ) 4. It means that
z = 4 could be the exact value of the dynamical exponent
for p, =2.

The dynamical critical behavior of long-range exchange
models can be better understood by a simple physi-
cal argument based on the movement of domain walls
(DWA) proposed for the ferromagnetic Ising model with
the standard Kawasaki dynamics by Cordery, Sarker, and
Toboshnik. 4 For asymptotic times near the critical tem-
perature (T, = 0) we have domains of aligned spins sep-
arated by sharp walls. The behaviour of the relaxation
time is determined by the time it takes for a domain wall
to move a typical distance ( in the fastest unsay. The z
exponent evaluated by the DWA is an upper bound to
the exact exponent. ~

Let us discuss first the exchanges of next neighbors
with opposite spins. The DWA consists of the following
three steps: (i) Two nearest-neighbor spins of opposite
signs, situated on the domain wall, are exchanged with a
slow rate m; (ii) the exchanged spin, e.g. , the down one,
moves through the domain of spins up and comes out at
the other side; for a domain of size ( this happens with
probability P~ ~ (; (iii) the whole domain has moved
one step in a time 1/iiiPg, since the domain wall makes
a random walk, the two previous steps must happen (
times. From (4.1) we evaluate that ur = to...+i (s, , s,~i)
o.( 2. Then we have that
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mechanism of relaxation that does not involve step (ii).
The exchange can now occur between two spins situated
in different domain walls which are separated at least by a
distance of order (. The exchange rate is m. The number
of spins in domain walls is of the order of N/(. Since a
spin on a given domain wall can be exchanged with any
other spin out of the total N/(, the rate at which this
domain wall moves a step is iuN/(. From (4.2) we obtain
that iu = ci/N Si.nce this must happen (2 times, we
obtain that

~=( tb for 0& p&2

~=( t, for p&3

(4.22)

(4.23)

we have that tb & t„meaning that mechanism (b) is
the fastest way of decay of a domain wall. On the other
hand, for p & 3 we obtain that t & tb and the mech-
anism of the standard Kawasaki dynamics is the fastest
way of relaxation. Therefore, the relaxation time will be
given by

(4.21)

Note that if the spin i exchanges with an inner domain
spin, the diffusion mechanism increases the time of decay.
So the above mechanism is the fastest one. Therefore we
have that z = 3 and this value agrees with the lower
bound of the initial response (4.16).

Let us consider the model with p, g 0 and R (. There
is now a competition between the two mechanisms pre-
sented above: (a) the diffusion of a spin by next-neighbor
exchange and (b) the exchange between spins on domain
walls separated by a distance (. In case (a) the domain
wall spends an average time t = (3/nC to move a step.
This time is obtained by considering steps (i) and (ii)
of the mechanism of the standard Kawasaki discussion.
Note that C depends on p. In case (b) the domain wall
spends an average time tb = ("/nC to move a step. This
time is obtained by considering the transition rate (4.2)
with the spins on two adjacent domain walls. The other
mechanisms in which a spin in the domain wall exchanges
with an inner domain spin happen always with a time ei-
ther close to t~ or close to tb depending on the distance
between the spins in the erst exchange. For 0 & p & 2

I

We obtain that z = 5 for p, & 3, z = 4 for p, = 2 and
z = 3 when 0 & p & 1. It is worth mentioning that even
the logarithmic corrections are obtained for p = 1. All
these exponents coincide with the lower bounds of the
initial response, indicating that they could be the exact
ones.

V. ALTERNATING BOND MODEL

We consider here the alternating ferromagnetic bond
model (Kq„+1 = Ki and Kq„+2 ——K2 for n = 0, 1, . . .)
with Kq & Kq. The transition rates for r = 1 are the
natural extension of the standard Kawasaki ones, namely,

u), ,+, (s, , s,+,) = —(1 —s,s;+,)

1 +1 ——('g; si+isi+2+ 'g, si—isi)
2

(5.1)

= tanh(K, 1+K,+1) + tanh(K, +1 —K, 1) . (5.2)

For r & 2 the transition rates are given by

aC
~i,i+r (si I si+r) (I sisi+r) ( I + si [Al si+r 1+ A2si+r+1 A—3si 1A—4si+14r&

+B1~i—18i+1~i+r—1 + B28i—18i+1~i+r+1
B332+r—1si+r+1si+1 B4si+r 1si+r+18i 1]—)— (5.3)

Here Ai has the following expression:

Ai ——-[ tanh(K, +„1+ K;+r + K, 1 + K,) + tanh(K, +„1—K,+r + K, 1 + Ki)
+ tanh(Ki+„1+ K,+„—K; 1 + K,) + tanh(K;+„1 + K,+„+K, 1 —Ki)
—tanh( —K,+„1+K.+r + K.—i + Ki) + tanh(K, +, i + Ki+r —Ki-1 —Ki)
+ tanh(K, +„1—K,+„+K,-i —K.) + tanh(Ki+r —i —Ki+r —Ki—1 + Ki)]

and Bi is given by

B, = -,'[ tanh(K, +„,+ K,+, + K, 1+K,) - tanh(-K+, -1+K,+, + K'-1+ K*)
+ tanh(K, +„1—K,+ + K, 1 + K, ) —tanh(K, ~r 1 + K,+r —K,—1 + K;)
—tanh(K, +„1+K;~r + K, 1 —K, ) + tanh( —K,+„ i + K,+r + K, 1 —K,)
+ tanh(K, +„1+ K,+r —K, 1 —K, ) —tanh(K, +„1—K;+„+K, 1 —K,)]

(5.4)

(5 5)

The other coefficients A„are obtained from Ai. To ob-
tain A.2 we change Ki+„q and Ki+„, respectively, by
Ki+„and K;+„~. If Ki+„~ and K, q are exchanged,
we obtain A3. The coefficient A4 is obtained by exchange
of K;+„1and K;. In the same way, the B„(n) 1) are

obtained from B~. When we exchange Ki+„z and Ki+,
we have Bg. B3 is obtained from the exchange of Ki+„
and K, i. Finally we get B4 if we change K;+„and K,
by K, and Ki+„, respectively. Note that in the limit of
Ji = J2 we recover ci and cs defined in Eq. (4.2).
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In order to use inequality (3.8) of the initial response,
we must evaluate (iv, ,;+„(s,, s;+„)),q with vi;,;+„(s,, s,+„)
given by Eq. (5.1) or (5.3). In fact, because of the sym-
metry of the lattice, we must evaluate only the rates with
i even and i +r even, and the rate with i even and i +r
odd. For r = 1 we obtain that

(ivi, i+i(si~ si+l))eq = (1 v2)(1 —rivi) for i even

t(v2, vl) = [v2vi] [vi + vl] —2vi,

T(v2, vl) = t(v2, vl) + 2vl —2vlv2

(5.8)
(5.9)

The average (vi, ,+„)eq for i odd and i + r odd can be
obtained from (5.7) by the exchange of vl and v2. For i
even and i + r odd we obtain that

]+
x [Al + B2v, ]

+2&+ (vi, v2) A2 + 2Bl v2

X (i'+ —Vl —UlV2))

(5.10)

If we exchange vl and v2, we have the equilibrium average
for i odd and i + r even.

Near the critical temperature T, = 0 we can expand
all these equilibrium averages. For the case r = 1 we
find that averages (5.6) for odd and even i have the
same behavior, namely (iso),q nC exp[—2(Kl + K2)].
If i and i + r are even (odd), we find that (vol), q
2nCr "exp[—2(Kl + K2)]. When i is even (odd) and
i + r is odd (even) the average rate behaves as (iv2),q
4nCr i' exp[ —2(Kl + K2)].

For the case B = 1 we obtain the usual result of the
literature. ls A nonuniversal behavior is found, and we
have that z = 4+ Jl/ J2. Here we are especially interested
in the case B = K —1 and p = 0. In this case a spin can
be exchanged with any other and, in principle, the system
could choose the fastest way of relaxation in order to
avoid the nonuniversal behavior. Near T = 0, inequality
(3.8) can be written as

kisTyqN(N —1)
n exp[ —2(Kl + K2)](D —4(N —1) cos(qa))

(5.11)

(5.6)

where v„= tanh(K„) and p„= tanh(2K„). The aver-
age of the rate with i odd is obtained by exchanging K'l
and K2 in this equation. The equilibrium average of the
transition rates (5.3) for r even and i even can be written
as

Co,
( 1 —[vlv2]"r 2

rf
+Alt(V2) Vl) + A2t(vl ) V2)

+B2T(v2, vl)
+BiT(vl, v2)), (5

where the functions t and T are given by

(2+T
rq & g(qa() (5.13)

Therefore we have a nonuniversal behavior, characterized
by a dynamical exponent z = 2+ Jl/J2. This behavior
can be understood in terms of the DWA as follows. Near
T = 0 and for asymptotic times, we have several domains
separated by sharp walls. But now the two spins of a do-
main wall can interact by either a J2 bond or a Jl one.
The rate of exchange of the spins belonging to di6'erent
domain walls is determined by these interactions. If the
interaction between the spins of a wall is J~ and in the
other wall we have the same bond, the rate is very slow
and is proportional to exp[ —4(Jl +. J2)]. In the other
cases the rates are constants. Then, in the beginning the
system can choose the fastest way of relaxation and avoid
the slow ones. After a finite time, however, only J2 inter-
actions appear between the spins of the walls determining
the nonuniversal behavior. We have made some numeri-
cal simulations, not shown here, that have confirmed this
picture.

VI. CONCLUDING REMARKS

Before we enter into the concluding remarks, let us
briefly discuss the results for the d-dimensional lattices.
The main result (3.8) of the initial response can also be
used to derive an inequality for the z exponent valid for
d-dimensional lattices. Now, a„ is a d-dimensional vec-
tor and r is a d-folded index. For R = 1 we have the
Kawasaki inequality z & 2 + (p/v), where p is the ex-
ponent of the susceptibility and v is the exponent of the
correlation length. This inequality is obtained as follows.
For d & 1 we have that (vi),q will be finite near T,.s Note
that (vi)eq is proportional to ( in d = 1 only because
Te = 0. Moreover, we have that (vi)eq has several correla-
tion functions which have 1 as an upper bound. Near T,
the susceptibility behaves as kiiTyq ( ii g(qa(). For
small q, using that (iv),q n and writing the equations
in the scaling variables qa(, we obtain that

(6.1)

Assuming the scaling hypothesis for the relaxation time
we get z & 2+ p/v for R = 1. Let us consider R = N —1

and p = 0. Again (vi)eq has several correlation functions
which have for upper bounds the value 1. So we can
assume that (iv),q is a constant. However, now we cannot
expand the term cos(q . a„) for small q. When this term

where D is given by

N —2
2

D = 8 ) (N —2n) [1 —cos(2nqa)]

N/2

+16) (N —2n + 1)(1 —cos[qa(2n —1)]} . (5.12)
n=l

Again we cannot expand the term in cos(qna) for small q.
After the evaluation of these series and doing the others
steps already discussed, we obtain
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is evaluated we obtain terms proportional to 6q o and to
N. Therefore we have

zq )(.f(Qa() (6 2)

which gives us z & p/v. This lower bound is the same as
the one obtained for the Glauber dynamics.

In conclusion, we have described one-dimensional fer-
romagnetic Ising models with Kawasaki dynamics near
T, by using the initial response and the domain wall ar-
gument (DWA). The exchange transition rates between
two opposite sign spins separated by a distance r is pro-
portional to r ". The maximal distance of exchange be-
tween them is R. If R is much smaller than the equilib-
rium correlation length (, we obtain that the dynamical
exponent z is equal to the standard Kawasaki exponent
z~ ——5. When a spin can exchange with every other spin
with a rate independent of the distance (R = N —1 and
p = 0), the order parameter is only conserved globally
and we obtain that z = 3. It means that the system is
in a dynamical universality class different from the stan-
dard Kawasaki dynamics. This result agrees with the

hypothesis of Tamayo and Klein7 that z = z~ —2. For
models in which the maximal distance of exchanges is
proportional to the correlation length we obtain a z ex-
ponent depending on p. For 0 & p, & 1 we have z = 3.
For p & 3 we obtain the same exponent of the Kawasaki
dynamics with exchanges of next-neighbor spins z~ = 5.
For p, between 1 and 3, z changes with p, . In particular,
we obtain z = 4 for p, = 2.

We have also studied the one-dimensional ferromag-
netic model with alternating interactions Jq and J2, with
Jj & J2. For R = N —1 and p = 0 we find a
nonuniversal behavior, characterized by a dynamical ex-
ponent depending on the ratio of the couplings, namely,
z = 2+ Jg/J2.
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