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Height-height correlations for self-affine surfaces with finite horizontal cutoffs are generally modeled

by exponential forms. Three mathematically acceptable, alternate forms for the height-height correla-
tion function are investigated, to explore their impact on the analysis of diffuse x-ray-reAectivity data.
The appropriateness of these functions to actual physical samples is explored through comparison with
x-ray-reAectivity and scanning-tunneling-microscopy data recorded on known self-affine surfaces.

I. INTRODUCTION

A wide variety of surfaces and interfaces occurring in
nature are well represented by a kind of roughness associ-
ated with self-affine fractal scaling, defined by Mandel-
brot in terms of fractional Brownian motion. ' Examples
include the nanometer scale topology of vapor-deposited
films, the spacial fluctuations of liquid-gas interfaces,
and the kilometer-scale structures of mountain terrain. '

Physical processes which produce such surfaces include
fracture, erosion, and molecular beam epitaxy, as well as
fluid invasion of porous media. All rough surfaces ex-
hibit perpendicular fluctuations, which are characterized
by a mean-square roughness o.= (z (x,y) ) '~,
z(x,y)=h(x, y) —(h(x, y)), where h(x, y) is the height
function and ( ) is the spacial average over a planar
reference surface. The roughness is termed "Gaussian" if
z(x,y) —z(x', y') is a Gaussian random variable whose
distribution depends only on the relative coordinates
(X, F)—= (x' —x, y' —y ). For an isotropic Gaussian rough
surface, the mean-square surface Quctuation g (R ) is writ-
ten as

g(R)=([z(x', y') —z(x,y)] ),
R =&(X'+I'),

where the average is taken over all pairs of points on the
surface which are separated horizontally by the length E.
The function g (R ) is related to the height-height correla-
tion function C(R)=(z(R)z(0)) by

g (R ) =2(z(x,y) ) —2(z (x,y)z(x ',y') )

=20 —2(z(R)z(0)) .

If the surface exhibits self-affine roughness, g(R) will
scale as g (R ) o- R, where 0 (H ( I is referred to as the

"roughness" exponent.
The mean-square roughness of any physical self-affine

surface will saturate at sufficiently large horizontal
lengths. It is thus characterized by a correlation length
g, such that

R «g, g(R) ~R'~,
R ))g, g(R)=2cr

(2a)

(2b)

Diffuse x-ray-reflectivity measurements, sensitive to sur-
face height-height correlations, can be employed to ex-
perimentally probe the parameters g and H Investi. ga-
tors generally use the correlation function suggested by
Sinha et al. ,

C (R)=o2e —~«&~ (3)

to fit diffuse reflectivity data. ' ' Several reasons justify
this choice. Equation (3) is mathematically convenient,
and also allows for correct scaling of g (R) in the Eqs. (2)
limits. Exponential forms for correlation functions are
well founded in equilibrium critical phenomena, where
the asymptotic, noncritical behavior of the total pair
correlation function of a Quid, "C(R) -R 'e ', as well
as that of simple Brownian motion considered as an
Ornstein-Uhlenbeck process, C(R)-e ', ' are treated
as such. Numerous self-affine surfaces are formed, how-
ever, under nonequilibrium conditions. ' This, along
with the fact that experimentally relevant length scales
require that C(R) be correct for R -g [as well as in the
Eqs. (2) limits], suggest that further examination of the
form of C (R ) is in order.

We propose here three mathematically acceptable, al-
ternate forms for C(R) (Sec. II), and examine their im-
pact on the analysis of diffuse reffectivity data (Sec. III).
Through comparison with diffuse reflectivity and scan-
ning tunneling microscopy (STM) data for known self-
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affine surfaces (cold-deposited Ag), we examine the extent
to which these functions might provide a better descrip-
tion of the height-height correlations for actual samples
(Sec. IV). Our efforts reveal that the original exponential
form for C(R) remains as the most satisfactory form, for
the samples that we have examined.

II. ALTERNATE CORRELATION FUNCTIONS

We propose the following three alternate forms for the
height-height correlation function:

Ci'x, (R ) = cr ( 1 —tanh (R /g ) ),
CI'x2(R)=cr (1—e ' " [2 cosh(R/g) —2]H),

(R) (y2(1 [1 e
—(R/g) ]H)

(4)
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FIG. 1. Height-height correlation functions for cr = 1.0 and
two values of H (0.3 and 0.7). Solid lines: Cz, long-dashed lines:
Cp~ l dot-dashed lines: Cp~2, and short-dashed lines Cp+3.

These functions are put forward solely on account of
their mathematical correctness in terms of the Eqs. (2)
limits, and not on any specific physical grounds.
Nonetheless, it is enlightening to examine the impact of
these alternate forms on the analysis of x-ray-reflectivity
data. Figure 1 depicts each of the functions, as well as
C~, in the range 0 &R & 3g for two different values of H
(0.3 and 0.7). As the value of H decreases, all four func-
tions exhibit increased decay rates for R &g. This is
especially pronounced for C~+2 (dot-dashed line), whose
decay rate exceeds that of Cs (solid line) for the lower
values of H. The rate of decrease is relatively steady for
C~z, (long-dashed line) and C~z3 (short-dashed line), but
slows substantially after R —g for C~zz and Cs. We note
that the primary differences between the functions exist
at R -g. For R «g, and R ))g, the functions are virtu-
ally identical.

III. DIFFUSE X-RAY REFLECTIVITY

A. Theory of the diffuse scattering
from a self-af5ne surface

&&
I T(ki) 'I T(k2) I'~(q. ),

expI —[(q,') +(q,'*) ]0. /2]
(q )

X e ' —1 cos q„X dX,
0

(7a)

(7b)

where k, (k2), are the incident (rejected) wave vectors, ko
the wave vector magnitude, q and q,

' the in-plane x-
component and in-medium z component of the wave-
vector transfer, T(k) the Fresnel transmission coeKcient,
n the index of refraction, L L the area illuminated by
the beam, I0 and A the intensity and cross-sectional area
of the beam, and hA the solid angle subtended by the
detector at the sample.

The diffuse cross-section (recorded at specular condi-
tion) of a self-affine surface with no cutoff [Eq. (7) with
g=" and q =0] has the form'

I(q ) ~(L„L )q ( + '1

A plot of the diffuse intensity at specular condition versus

q, can therefore in principle provide an experimental
determination of the parameter H. Since there are both
specular and diffuse contributions to the scattering inten-
sity recorded at specular condition, the sample is offset
slightly from the specular condition to remove the specu-
lar component. If the incident angle is O&, then the inten-
sity is measured at an angle Oz = O

&
+e where e « O &, but

large enough to eliminate the specular contribution.
The parameter g is determined by examining the

diffuse scattering component of a Yoneda, or rocking
curve scan. In this geometry, the detector is held at a
fixed angle, and the sample is rocked about the specular
condition. A central maximum in the intensity I, for

Specular (angle of incidence 8 equal to angle of
reAection) reQection of x rays from surfaces yields infor-
mation about the mean-square roughness and also the
sample's electron density distribution. ' Such measure-
ments involve recording the scattered intensity as a func-
tion of q, =(4'/A, ) sin(8), where q, is the wave-vector
transfer perpendicular to the surface. The diffuse (angle
of incidence not equal to the angle of reAection) com-
ponent of the scattering is related to height-height corre-
lations of the rough surface. Sinha et al. used perturba-
tion theory on the exact solution of the wave equation for
a smooth surface to calculate the diffuse scattering pro-
duced by surface roughness [Eqs. (4.41) and (4.42) in their
paper]. Experimental data are normally recorded with
the parallel detector slit (in the plane of the surface, and
out of the scattering plane) wide open. ' ' The Ref. 7
expressions for diffuse scattering, integrated with respect
to this y direction, are then given as

~ko(1 —n)
~

I(q, ) =ID (L L )
16m
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such a scan corresponds to the specular condition 0& =Oz.
The scattering profile also has intensity peaks I at the
critical angle 0, for total external reAection 0„0z=O,.
The diffuse region outside of the central maximum can be
fit to Eq. (7) to yield an experimental value for the corre-
lation length.

B. Selected numerical results

102

10

100

As discussed above, the slope of an "ofF'-specular"
refiectivity curve under ideal conditions (g= ~, q„=0), is
2+(1/H). In practice, however, the correlation length g
is finite and the experimental data are not recorded at
precisely q =0. Theoretical off-specular curves for a
typical set of experimental parameters [g=4000 A,
@=0.03'(q —10 A ), H =0.3, cr=7 A, A, = 1.5337 A,
and n =1—6.3X10 ig—5X.10 ] are depicted in Fig.
2 for the functions Cz and C~~, . In spite of the finite
values for g and q, each curve tends towards a linear re-
gime with slope —[2+(1/H)] at sufficiently large q, .

The inset to Fig. 2 depicts the value of H obtained
from a fit to the slope of off-specular data, versus the ac-
tual value of H, for C~z, (circles) and Cz (stars). The
function C~ yields a consistently low value for H, with
the discrepancy ranging from 0.02 for low H, to 0.04 for
the higher values. The corresponding discrepancy for
Cp~~ is -0 to 0.02. The Fig. 2 data are representative of
a wide range of parameters which have been examined
for all four functions. In general, we observe that linear
fits to data recorded above q, a=1 yields values for H,
which are lower than, but within 0.05 of the true value of
H.

Figure 3 depicts selected Yoneda curves generated
with the same parameters as above, except that g and cr
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FIG. 3. Yoneda curves for Cz (solid lines) and Cp&& (dashed
lines) for H =0.3. Left side: o =7.0 A and g= (a) 700, (b) 2000,
(c) 4000, (d) 7000 A. Right side: /=4000 A and o = (e) 7, (f) 15,
(g) 25, (h) 36 A. The scaling factors are, respectively, 10 (a) and
(e), 10 ' (b) and (f), 10 (c) and (g), and 10 (d) and (h).

are, respectively, varied from 700—7000 A (left side), and
7 —36 A (right-hand side), for both Cz (solid lines) and

Czz& (dashed lines). The two correlation functions yield
curves which are distinctly different in form. The value
for g obtained from a fit to a Yoneda curve clearly de-
pends on the assumed form of the correlation function.
The extent of these differences is highlighted in Fig. 4,
which depicts the quantity d, —d =ln(I, )

—ln(I ) for
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FIG. 2. 06' specular reAectivity curves for H =0.3,
/=4000. 0 A, o.=7.0 A, and @=0.03'. Solid line: Cs and
dashed line: Cp&, . The inset shows the value of H determined
from the slope according to Eq. (8) vs the actual value of H, for
Cz (stars) and Cp&& (circles) ~ The solid line in the inset corre-
sponds to H« =H.
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FIG. 4. Plots of d, —d for Cz (solid lines), and Cp~~ (dashed
lines). Left side: o =7 A and g = (a) 7000, (b) 3000, and (c) 1000
A. Right side: o.=7 A, and (a) H =0.3 and (b) H =0.7.
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both Cz and Cpz& and a variety of parameters. The
differences in the curves result directly from differences in
the decay rates for R (g and R )g, as H varies. It is evi-
dent that a physically appropriate form for the correla-
tion function is essential if a meaningful value for g is to
be obtained.

IV. COMPARISON WITH EXPERIMENT

We have thus far argued that the form of the correla-
tion function near R -g is indeed important to the
analysis of diffuse x-ray data, in particular when the
analysis involves a Yoneda scan. However, we have pro-
vided no compelling physical justification to select a par-
ticular function. We next examine the physical appropri-
ateness of the various functions through direct compar-
ison with x-ray reflectivity and STM data, recorded on
known self-affine surfaces.

We first consider the Yoneda data reported by Chiarel-
lo et al. recorded on a 1100-A-thick Ag film, which was
thermally evaporated onto polished quartz held at 80 K.
Fits employing Cs yielded H =0.46 and /=1450 A for
this sample. Figure 5 shows the Ref. 2 Yoneda data,
along with curves generated for the four functions con-
sidered here, each employing the same values of H and g.
To facilitate the comparison, experimental data are
shown on both the left and right sides of the figure. In-
spection of Fig. 5 reveals C~ and Cp~p to be the best
matches for the overall shape of the experimental data.
In particular, we note that the region between the central
maximum and the outer "wing" area is concave upward
in the experimental curve. This feature is not present for

(x10 nm) (x10' nm)
0.6 1.3 3.1 3.1 1.3 0,6 0.6 1.3 3.1 3.1 1.3 0.6

10—2

the CpxI and Cpx& curves, unless the value of g is in-
creased to physically unrealistic values.

Fits to the Yoneda data described above are dominated
by horizontal lengths exceeding 60 nm (Fig. 5, upper
scale). In order to focus on a somewhat shorter horizon-
tal length scale, as well as to explore an alternate experi-
mental approach, we examined STM data recorded on a
second cold-deposited silver film sample. The sample was
prepared by thermal evaporation of 1000 A of Ag onto
polished quartz held at 106 K. Four 500X 500 (nm) im-
ages were recorded in a dry N2 environment with a com-
mercial (Digital Instruments Nanoscope II) STM, with a
grid density of 400 lines by 400 points per line. Height-
height correlations were computed directly from the four
data sets, averaged, and then fit to the various functions
considered in this work (Fig. 6).

The best fit to the data by the Cz function yielded the
values H=O 64 .(Fig. 6, inset) and /=13. 0 nm. The
value of g compared favorably with characteristic cluster
sizes observed in the STM images. We note the
discrepancy between H and g for this sample and those of
Ref. 2 sample, potentially due to differences in the two
samples' preparation conditions. Further studies on sam-
ples prepared under identical conditions' will be neces-
sary to resolve this issue. For the present work, we focus
on the appropriateness of the functional form used to
model actual height-height correlations.

Examination of four curves in Fig. 6 reveals Cp~2 to be
the best fit to the data for the entire range of lengths
probed, and Cs to be the best fit for the range R (2g.
Once more, the functions Cpz& and Cp+3 are 1ess descrip-
tive of the actual experimental data. We conclude that
for R «g, actual height-height correlations are in fact
quite adequately described by the original exponential
form which has been assumed in previous investigations.
At large length scales, the height-height correlations ap-
pear to be tending more towards a form R'e, suggest-
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FIG. 5. Comparison of Ref. 2 Yoneda data to theoretically
generated curves for the four functions considered here, em-

0 0

ploying H=0.46, /=1450 A, a =8.5 A. The upper scale de-

picts the characteristic horizontal lengths =2m/q probed in
this scan, which range from about 60 to 600 nm.

FIG. 6. Plots of the best fits of the four functions considered
here to correlation data obtained from scanning tunneling mi-

croscopy (squares). Cs (solid line), g= 13 nm; Cps I (long-dashed
line), g= 15.2 nm; CpK3 (medium-dashed line), g= 16.2 nm CpK3
(short-dashed line), /=11.0 nm. The inset shows the linear ftt

to determine H =0.64+0.02 according to Cz.
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ed by the decreased decay rate of the data in the range
2$&R &4g.

VI. CONCLUSIONS

We have presented here three mathematically accept-
able, alternate forms for the height-height correlation
function of a self-a%ne surface with a finite horizontal
cutoff. We have explored their impact on diffuse x-ray
reAectivity data, and found only a slight effect on the pa-
rameter H, which is obtained from a fit to Eq. (8). This
can be understood in terms of the relatively short lengths
which are sampled to determine H. Well below the hor-
izontal cutoff g, all four functions scale in a similar
manner.

Not surprisingly, the value of g obtained from fits to

the x-ray Yoneda scans is highly sensitive to the form of
the correlation function which has been assumed. Our
comparisons with diffuse x-ray reAectivity and STM data
reveal two of the functions, Cs and C~+2 as satisfactory
in form. The function Cz+2 exhibits exponential decay
for R ))g, where Cttc2(R)-2Ho e ~. The function,
C& is the exponential form which is in common use. We
consider it the preferable function on account of its
mathematical simplicity, and the fact that for H =0.5, it
reduces to the simple physical case of Brownian motion.
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