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Three signatures of phase-coherent Andreev reflection
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An efBcient numerical scheme is developed to compute the differential conductance GNs of a
disordered normal me-tal s—uperconductor (NS) junction at voltages V and magnetic fields B A.
sharp peak is found in GNs around V, B = 0 in the case of a resistive NS interface, as observed
experimentally and con6rming the theory of "reQectionless tunneling. " An ideal interface shows
a conductance dip, due to an enhanced weak-localization efFect. Finally, it is demonstrated that
time-reversal-symmetry breaking does not reduce the "universal conductance Quctuations" in GNs
by a factor of 2.

Recent experiments on conduction between a semi-
conductor and a superconductor have opened a new chap-
ter in mesoscopic physics. Multiple scattering by the dis-
order potential in the semiconductor and by the Schottky
barrier at the interface with the superconductor combines
with Andreev reflection by the pair potential to yield
unexpected quantum interference effects. The theory for
these effects is still developing. One of the issues is
whether the sharp peak around zero voltage, observed in
the differential conductance of Nb-(ln, Ga)As and Nb-Si
contacts, can be described by a theory without electron-
electron interactions in the normal metal.

In normal metals, numerical simulations have played
a key role in understanding and predicting mesoscopic
phenomena, because real mesoscopic conductors are
particularly close to the models which a theorist can put
on a computer. A few examples are the numerical studies
of universal conductance fluctuations, scaling exponents
in the quantum Hall effect, and the quenching of the
Hall effect in a ballistic conductor. The basic method
of these and other studies is the recursive Green-function
technique, which forms an eKcient and numerically sta-
ble way to construct row-by-row the scattering matrix of
a tight-binding single-electron Hamiltonian.

This paper has a technical and a physical purpose.
First we will show how the recursive Green-function
technique can be applied efBciently to a normal-metal—
superconductor (NS) junction. Then we will use the tech-
nique to identify features in the conductance which can
serve as "signatures" of phase-coherent Andreev reflec-
tion, i.e., for which the phase coherence of the electrons
and the Andreev-reflected holes is essential. The elec-
tron and hole quasiparticles are noninteracting in our
model. We obtain the conductance peak for a resistive
interface, and (contrary to the original expectations) find
a crossover to a conductance dip around zero voltage as
the interface becomes more transparent. Neither effect is
present in the normal state.

We consider the two-dimensional geometry shown in
Fig. 1(a) (inset). The normal region (width W) consists
of a disordered segment of length I in a perpendicular
magnetic Beld B, attached to two perfect leads. Lead 1 is

where ri„(e') is the submatrix of the scattering matrix
s(e) of the whole system that refers to the reflection as a
hole of an electron incident in lead 1 (e is measured rel-
ative to the equilibrium Fermi energy Ey). Takane and
Ebisawa have computed 8 numerically using a transfer-
matrix technique for V, B = 0. The complexity of their
approach is that one is solving numerically the coupled
problem of scattering by the electrostatic potential and
by the pair potential.

In Ref. 4 it was shown how these two problems can be
decoupled. For the case A « E~ of interest, Eq. (1) is
equivalent to

GNs(V) = (4e /h)TrM(eV)Mt(eV),

M(e) = ti2(e)[1 —n(e)r22( —e)r22(e)] t2i( —e),
(2a)

(2b)

where n(s) = exp[ —2i arcc s(o/Ae)] The ma.trices r and
t are reflection and transmission submatrices of the scat-
tering matrix st of the normal region (the indices 1 and
2 refer to the normal leads). The matrix ti2 also de-
termines the differential conductance G~ in the normal
state, according to the Landauer formula

Giv(V) = (2e /h)Trti2(eV)ti2(eV).

connected to a normal-metal reservoir. Lead 2 contains
a potential barrier and is connected to a superconduct-
ing reservoir. We adopt the usual step-function model
A(r) = Ae(x) for the pair potential at the NS interface
(x = 0), ignoring the depletion of A(r) at the super-
conducting side of the junction. At the normal side,
A(r)—:0 for noninteracting electrons. Because the su-
perconducting coherence length (o ——Ave/orb, is much
greater than the Fermi wavelength Ap = h/mv~, the
precise location of the potential barrier relative to the
NS interface is irrelevant (as long as it is nearer than (o).

We calculate the current I in response to a voltage V
over the junction. At zero temperature, and for eV (
4, the differential conductance GNs ——dI/dV of the NS
junction is given by

GNs (V) = (4e /h) Tr r„,(eV) re, (eV),
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The decisive advantage of Eq. (2) over Eq. (1) is that
Eq. (2) can be evaluated by using standard techniques
developed for quantum transport in the normal state,
since the only input is the normal-state scattering matrix.
The effects of multiple Andreev reQections are rigorously
incorporated by the matrix inversion in Eq. (2b).

To calculate 8N we proceed as follows. Consider Brst
the scattering matrix sN of the disordered normal re-
gion without the potential barrier. 'We compute 8"N
numerically by means of the recursive Green-function
technique. The disordered normal region is modeled11

by a tight-binding Hamiltonian on a square lattice (lat-

tice constant a), with a random impurity potential at
each site (uniformly distributed between +—U). The2
magnetic Beld is restricted to the disordered segment
(it is smoothly graded to zero in the perfect leads).
This is a justiFiable procedure for the weak-field prop-
erties considered. Conductances were averaged over
some 1000 realizations of the impurity potential. Ex-
cept when stated otherwise, the parameters used are
L/a = 164, W/a = 34, U/uo ——1.25, E~/uo ——1.5
(with uo = 5 /2ma ), corresponding to N = 14 prop-
agating modes at the Fermi level and to I/L 0.12 [we
estimate the mean free path l from the Drude formula
Giv = (2e /h)mNl/2L]. These parameters were chosen
to reach the quasi-one-dimensional (1D), metallic, diffu-
sive regime l « W « L « %l.

The full scattering matrix 8N of the normal region is
constructed analytically from the separate scattering ma-
trices sN and 8N of the disordered region and the poten-
tial barrier. For the transmission matrix one has

ti2 ——ti2 (1 —riirzz) (4)
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and similarly for the other submatrices of 8N. We have
used two models for tunneling through the potential bar-
rier. Model A is the simple model of a mode-independent
transmission probability F and in model B as a check
we also worked with the mode-dependent scattering ma-
trix of a rectangular potential barrier (thickness a/10 and
height ranging from 5up to 45up). The two models give
very similar results, if compared at the same value of the
mode-averaged transmission probability. Here we only
show results for model A.

It is instructive to first discuss the classical resis-
ance RNs" of the NS junction. The basic approxima-

tion in RNs" is that currents rather than amplitudes are
matched at the NS interface. From such a calculation,
which we omit here, we find (for / « L)

RNs" ——(h/2Ne ) (Td + 2(1 —I')I' ),
G„(e /h)
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FIG. 1. Filled circles: numerically calculated resistance
BNs of a disordered NS junction, vs the transmission proba-
bility per mode I' of the potential barrier at the NS interface.
Open circles: resistance A~ of the same junction in the nor-
mal state. (a) is for zero magnetic field, (b) is for a flux of
10h/e through the disordered region. The dotted and solid
curves are the classical Eqs. (5) and (6). The dashed curve is
the theory of Ref 6, which fo.r I' » t/L 0.12 coincides with
Eq. (7). The inset in (a) shows the geometry of the simula-
tiou. The inset in (b) shows the variance of the Quctuations
in Giv and GNs as a function of the average Giv [+ for B = 0;
x for a Qux of 10h/e; solid lines are from Eq. (6); dotted
line is a guide to the eye]. Nate the absence of a factor-af-2
reduction in Var t &s on applying a magnetic field.

R' "= (6/2Ne ) (T„+(1 —I')I' i), (6)

where the contribution of a resistive barrier is of order
I i. In the absence of a potential barrier (i.e. , for I' = 1),
~class ~class= RN . Our simulation reveals deviations from
these classical results due to quantum interference eKects
as we now discuss.

Reffectionless tunneling In Fig. 1 w. e show the re-
sistance (at V = 0) as a function of I' in the absence
and presence of a magnetic Beld. There is good agree-
ment with the classical Eqs. (5) and (6) for a magnetic
Beld corresponding to ten Aux quanta through the dis-

where Td is the mode-averaged transmission probability
through the disordered region. For a resistive barrier
(I' « 1), the contribution from the barrier is of or-

4er F because tunnehng into a superconductor is a
two-particle process: Both the incident electron and the
Andreev-rejected hole have to tunnel through the bar-
rier (the net result being the addition of a Cooper pair
to the superconducting condensatez). Equation (5) is to
be contrasted with the classical resistance RN" in the
normal state,



48 THREE SIGNATURES OF PHASE-COHERENT ANDREEV REFLECTION 2813

ordered segment [Fig. 1(b)]. For B = 0, however, the
situation is diH'erent [Fig. 1(a)]. While the normal-state
resistance (open circles) still follows approximately the
classical formula (solid curve), the resistance of the NS
junction (Hlled circles) is much smaller than the classical
prediction (dotted curve). Our numerical data show that
for I' » I/L we have approximately

BNs(B = 0, V = 0) = R~ ",

B=O

.O-y.
~ ~ ~ ~

I

eV=O

3

which for I (& 1 is much smaller than BN&". This is the
phenomenon of reflectionless tunneling: In Fig. 1(a) the
barrier contributes to BNS in order I",just as for single-
particle tunneling, and not in order I', as expected for
two-particle tunneling. It is as if the Andreev-reflected
hole is not reflected by the barrier. The interfering tra-
jectories responsible for this effect were Grst identified
by van Wees et al. , in a semiclassical calculation. The
effect has subsequently been studied in Refs. 4—6. The
numerical data of Fig. 1(a) are in good agreement with
the theory of Volkov, Zaitsev, and Klapwijk. Their an-
alytical formula (dashed curve) reduces to Eq. (7) for
I' » l/L and also describes the crossover &om the I'
dependence to the I' dependence of the barrier resis-
tance at I' I/L.

The experimental signature of reflectionless tunneling
is a sharp peak in the conductance around V, B = 0.
We have calculated the B and V dependence of GNs,
assuming 4 » eV [so that n = —1 in Eq. (2)]. The con-
ductance peak is evident in our simulations for I' = 0.2
(dotted curves in Fig. 2). While G~ depends only
weakly on B and V in this range (open circles), GNs
drops abruptly (Hlled circles). The width of the con-
ductance peak in B and eV is, respectively, of order
B, = h/eLW (one Hux quantum through the normal
region) and eV, = (vr/2)Avail/L = E, (the Thouless
energy, which is the typical correlation energy for disor-

dered conductors). is Our expressions for V, and B, are
parametrically smaller than those of Ref. 3. At finite tem-
peratures, I and TV are to be replaced by the normal-
metal phase-coherence length l4„ if it is smaller. This
complicates the comparison with experiments, where l~
is not well known.

Enhanced weak localization. We now turn to the dash-
dotted curves in Fig. 2, which refer to an ideal in-
terface (I' = 1). The behavior of G/v (open circles)
is as expected for weak localization: A magnetic Geld
breaks time-reversal-symmetry (TRS) and therefore de-
stroys the weak-localization effect, which is observed as
an increase in G~ by an amount bG~ of order e /h.
An applied voltage does not break TRS and thus has no
significant effect on G~ in the voltage range considered.
The anomalous behavior of GNs (Hlled circles) can be
understood in terms of the enhancement of weak local-
ization in an NS junction, predicted in Ref. 4. The en-
hancement requires the phase coherence of electrons and
Andreev-reflected holes, and is thus destroyed not only by
a magnetic Geld but also by an applied voltage. A mag-
netic Geld fully destroys the weak-localization correction,
increasing GNs by an amount bGNS. An applied voltage
destroys only the enhancement, and thus increases GNS
by the smaller amount bGNS —bG~. We emphasize the
novelty of this effect: In the normal state, weak localiza-
tion cannot be detected in the current-voltage character-
istic, but in an NS junction it can.

The crossover in the I-V characteristic from the con-
ductance peak (reHectionless tunneling) to the conduc-
tance dip (weak localization) occurs around I' 0.2—0.4
for l (& L. We note that the crossover is accompanied by
an "overshoot" around eV = E, indicating the absence
of an "excess current" (i.e. , the linear I Vchara-cteristic
for eV » E, extrapolates back through the origin). We
have no analytical explanation for the overshoot.

Anomalous conductance fluctuations. So far we have
considered the average of the conductance over an ensem-
ble of impurity potentials. The variance of the sample-
to-sample fluctuations of the conductance is shown in the
inset of Fig. 1(b) as a function of the average conductance
in the normal state. A range of parameters I, W, U, E~
was used to collect this data. The results for Var G~
are as expected theoretically" for "universal conductance
Huctuations" (UCF):

0
0 2 4 6 0 2 4 6

eV (E,) f faux (h/e)

FIG. 2. Voltage and magnetic field dependence of GNs
(filled circles) and G~ (open circles) Lines conn. ecting the
data points indicate the value of I' (dotted: I' = 0.2; dashed:
I' = 0.6; dash-dotted: I' = 1). Note the crossover from a
peak to a dip in GNs around V, H = 0 on increasing the bar-
rier transparency.

VarGN = 0.53P '(e /h) .

The parameter P equals 1 in the presence and 2 in the ab-
sence of TRS. The 1/P dependence of Var G~ is a funda-
mental result in the theory of UCF. Our data for Var GNs
at B = 0 show approximately a fourfold increase over
Var G~, consistent with previous numerical and ana-
lytical work. The case B g 0 has not been studied pre-
viously. Our simulation shows that Var GNs is essentially
unaffected by a TRS-breaking magnetic Held. This is the
first demonstration of the anomalous P dependence of the
conductance fluctuations in an NS junction, surmised in
Ref. 4 on the basis of general considerations.

In summary, we have presented a numerical simula-
tion of phase-coherent conduction from a disordered nor-
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mal metal to a superconductor. Our results predict the
crossover from a conductance peak to a conductance dip
around zero voltage upon lowering the potential barrier
at the NS interface. Neither eKect is present in the nor-
mal state. To observe this crossover experimentally, one
would need to vary in a controlled way the transparency
of the potential barrier, e.g. , by creating the barrier elec-
trostatically by a gate on top of a two-dimensional elec-

tron gas. Our discovery of the anomalous magnetic-field
dependence of conductance Huctuations in an NS junc-
tion remains a theoretical challenge.
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with S. Feng and J.-L. Pichard.
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