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A superradiant master equation is solved for a system of fully excited Frenkel excitons interacting
with each other through their induced static dipole moments. The superradiant pulse pro61e and time-

resolved emission spectrum are evaluated and shown to depend strongly on the ratio of the induced stat-
ic and the excitonic transition dipole moments.

Since Dicke' introduced the concept of superradiance
for coherent spontaneous emission of radiation from a
highly excited system of two-level atoms, it has been ob-
served from the gas system of molecules and atoms. An
excitation can propagate coherently among atoms (mole-
cules) in a crystal due to its translational symmetry and
the dipolar interaction of its transition dipole moments.
This elementary excitation is called a Frenkel exciton.
The question of how the superradiance of Frenkel exci-
tons is modified was answered very recently. ' Here two
effects have been found beyond Dicke's superradiance:
chirping, i.e., frequency shifting of the light emitted
within the superradiant pulse, and the appearance of a
slow emission component. While an excitation can prop-
agate coherently through its dipolar interaction of the
transition dipole moments in a crystal, this Frenkel exci-
ton is sometimes accompanied by a static dipole moment.
In J aggregates of dyes, e.g., pseudoisocyanine halides, '

the dye molecule has an induced static dipole moment
relative to the ground state. This excitation can also
propagate as a Frenkel exciton through its transition di-
pole moment. When more than two excitons are excited
in this system, they interact with each other through
their static dipolar interaction. These excitons can be de-
scribed by the XXZ-spin model. This contains the XXO,
Ising, and Heisenberg models as limiting cases. We will
clarify in this paper the characteristic features of superra-
diance phenomena from interacting Frenkel excitons in a
chain which depend strongly upon the relative magnitude
of the induced static dipole moment to the excitonic tran-
sition dipole moment.

First we derive the master equation of superradiance
for the density operator of Frenkel excitons p(t) by fol-
lowing the procedure of I.ehmberg and Gross and
Haroche' and keeping the static dipole moment induced
in the excited state:

dp = —f'p —i [Q, ,p],

—f'p—= ——[s+s-,p], +rs ps+,
2

(lb)

M+
where S =g+,s, s+(s, ) is an excitation (deexcita-
tion) operator at the jth molecule, I is spontaneous emis-
sion rate of a single molecule l =8m d /(3eoh'A, ) with a
transition dipole moment d and wavelength A, of the emit-
ted light, and AQ, =—H, denotes the Hamiltonian of
Frenkel excitons in a linear chain. We consider a system
composed of N molecules. This Hamiltonian is written in
terms of spin operators s —as follows:

&,.=Ho+ Hxxz
N

Ho =ficooS':%coo g—s~',
j=l

(2a)

(2b)

[s;+,s ] =25, .s'. , [s,s. ]=+5;1sj (3)

Here we have kept in Hxxz only the nearest-neighbor
coupling, i.e.,

d 3(e.a)
47T6'oa a

(4a)

N
H = —iri g [J(s+s, +s s.+, )+2J,s s'. , ] . (2c)

j=1
Here Acro is the excitation energy of a molecule corrected
by static dipolar interactions, s'. gives the population
difference at the jth molecule, and a cyclic boundary con-
dition is imposed, i.e., sN+& =s —, and sN+& =s&. Note
that s and s' satisfy the well-known commutation rela-
tions for spin operators:

0163-1829/93/48(4)/2773(4)/$06. 00 48 2773 1993 The American Physical Society



2774 BRIEF REPORTS

2AJ, =— 3(e' a)
4~boa a

(4b)
($+(t)S (t+r) &

= g Q„„(r)Tr[S+Iv2&(v,lp(t)]
where the vector a denotes the relative position between
the nearest-neighbor atoms in a chain, i2 —= lal, and e is
the unit polarization vector of the atomic transition di-
pole moment and c,

' is that of the static dipole moment p,
induced in the electronic excited state. We assume for
simplicity no static dipole moment at the electronic
ground state.

The superradiant emission is characterized by the pulse
profile I(t) and the time-resolved emission spectrum
I(co, t;b, t). The superradiant pulse profile I(t) is ex-
pressed in terms of the expectation value of the electronic
energy (Ho &,:Tr[H—op(t)] as

I(t)= (d /—d—t)Tr[Hop(t)] = rcooTr[S+5 p(t)] .

We define the time-resolved emission spectrum as fol-
lows:
I (co, t; 4t)

I cx)o
d7y—At/2

X f""dr (S (t+r, )S (t+r2) &

—ht/2

Xe
—1$(1 '7 ) (6)

I(t)=r, y &v'lp(t)lv" &&v" ls lv&&vis
V, V, V

This expression describes the measurement of the emitted
light by opening the slit between t —At/2 and t +Et/2
and taking the Fourier transform of the signal in this
time interval. We can evaluate Eqs. (5) and (6) by choos-
ing appropriate basis vectors I lv&). We used the simul-
taneous eigenvectors of HI [J=0 in Eq. (2c)] and transla-
tional operator for practical calculations. Then the pulse
profile I(t) is rewritten as

VlVP

= g +Q„„(r)&v"Is+Iv,&&v, lp(t) v"
& .

V1VP V

(9)

The finite matrix elements of the density operator
( v, lp(t) v"

& are chosen as a vertical vector and the mas-
ter equation (1) is numerically solved as linear coupled
equations. The matrix element of the Liouville operator
0"„"„ is similarly evaluated with the initial condition

(vilplv2&=1 at r=0.
First we will discuss several limiting cases.
(i) J=J,=0. This is the celebrated Dicke's superradi-

ance. The master equation becomes

dpP = —f'p —i[Do,P], (10)

[HH, S']= [HH, S )=0, —

HH commutes with both Ho and f':

[HH, H()] =0,

~[HH P) I. HH fp)=0

(12)

(13)

where A'GO=HO. Equation (10) has been investigated in
many articles. '

(ii) J, =O. The Hamiltonian Hzzz reduces to the XXO
Hamiltonian. This case was already investigated in Refs.
5 and 6, where a Jordan-Wigner transformation was used
to diagonalize the Hamiltonian and chirping and slow
emission tails were demonstrated in the time-resolved
emission spectrum and the superradiant pulse profile.

(iii) J=J, . This corresponds to the Heisenberg limit of
the XXZ model: Hxzz~HH. Because of its sl(2) sym-
metry, namely,

(7)
Therefore, when we define

To evaluate the correlation function (S+(t)S (t+r) &,

we use the quantum re ression theorem. " We introduce
the Liouville operator ( t) as p( t +r )

=L(r)p( t). Th—en

(S (t+r) & =Tr[S L(r)p(t)]

=g (vlS v'&(v'IL(r)p(t)lv&
VV

g (vlS Iv'&0"„'„(r)(v,lp(t)lv2&
VV V lV2

(i le)HH t (i lfi)HH t-pt—:e pte (14)

Furthermore, due to the symmetry Eq. (11), the expecta-
tion value of an arbitrary operator composed of S,S
and S',P(S+,S,S'), can be evaluated as

( I'(S+,S ,S') &,
-

p satisfies Dicke's superradiance master equation Eq. (10):

dp = —f'p —i[Go,p] .

where

= g Q„„(r)Tr[lvz&(v, lp(t)],
VlV2

(Sa) Tr [P($+,S,S'—)p( t) )

rT[P(S+,S,S' p()t) ] . (16)

Q„„(r)—:g (vlS lv'&0„""„(r) .
VV

(gb)

Then the correlation function is expressed by using the
quantum regression theorem as

Thus we can conclude that the emission profile in the
Heisenberg limit is exactly the same as in the Dicke s su-
perradiance since it can be obtained by (S &, and
&s s
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iv J =0. The Hamiltonian becomes that f h I '
a o t e sing

N
H = —2' ~sI z m jsj+1

j=1
(17)

The eigenenergy of H,„=Hp+HI can be described as a
simple product of local spin vectors such as

&,el] &,e e Il&~,
where lg & (ll & ), 1 & ) denotes the up-spin (down-spin) state at
the jth site.

The eigenstate is described by the number difference
between the up-spin (excited) states and the down-spin

+ — =—m, an t e number q of the
pal 1s

I &j I 1 &j+ i ) or that of pairs (
I 1 &j I l &j+ i )

which are equal to each other und th 1'er e cyc ic boundary
condition. Then the eigenenergy is expressed by

(Ho+HI )lm, q &I =EI(m q)lm q &I

=Pi mcoo+2qJ, ——J, Im, q &I .
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FIG. 1. Superradiant pulse profile I(t). (a) Ha eisenberg model

(J=1.41 J =—), (b) XXO model (J=2.00 J =0) ( ) XXZ, c model

,= —1.41), and (d) Ising model (J=0, J,=2.00).
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e time-resolved emission spectra of thee superradiant
emission are calculated and shown in Fi . 2. Th
taneou s emission rate I of a single molecule is chosen to

For every spontaneous emission of one photon fr h'n romt is

q = . Therefore we have three emission lines at

co= I EI(m, q) EI(m —l,—q') I
/A'
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'
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'
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on e emission profile.

e will show numerical results for the system of six
molecules for general cases as well as the discussed limit-

constraint (J +J, )' =2.0. The ener is meas
„„,„„(2 2)ii2 /2 = 1 (hereafter A'= 1 ).

The superradiant pulse profile I ( t ) is drawn in Fig. 1

for several relative values of J to J. The
mo e ex ibits the same shortest pulse profile D' k '

su erradiap diance from noninteracting atoms (molecules, as
Fig. 1(a) shows. This is because the H

'
b
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be 0.1 with the energy unit (J +J, )'~ /2=1. 0. The
time-resolved emission spectrum of the Ising model with
J=0 and J, =2.0 consists of three peaks at cup

—2J, cop,

aIld ct)p+ 2J ~ At the initial stage, the emission at the
lowest component ct) =~p 2J =6.0 is the strongest; then
three peaks come to have the same order of magnitude
and finally the highest component becomes strongest.
This frequency shifting can be explained as follows: All
spins are in the up-spin state at the beginning so that a
deexcitation induces two pairs of up- and down-spin
states and increases the interacting energy by 2J, . This
emission has a transition energy cop

—2J, . Conversely,
the number of up- and down-spin pairs decreases by an-
nihilation of excitations at the final stage. This gives the
emission peak at cop+2J, . For the case between the
Heisenberg and Ising models, i.e., J=0.765 and J,=1.85,
the redshift at the initial stage and the blueshift at the
final stage become weaker than the case of the Ising mod-
el as shown in Fig. 2(b). For the Heisenberg model, the
emission peak is always at co=cop, as discussed already
and shown in Fig. 2(c). When the dipolar interactions
J=1.85 and J,=0.765 are chosen to be just halfway be-
tween the Heisenberg and XXO models, the sign of shifts
is reversed, i.e., the blueshift at the initial stage and the
redshift at the final stage, as Fig. 2(d) shows. For the
XXO model, J=2.0 and J, =0, the magnitude of the blue-
shifts and redshifts increases, as Fig. 2(e) shows. Finally,
this increases furthermore when we choose J=1.41 and
J,= —1.41. The sign change of J, is realized when the
static dipole moments are induced in the direction per-
pendicular to the chain axis as can be read from Eq. (4b).
The sign change of J is realized, e.g. , in H aggregates in
which the transition dipole moment is also perpendicular
to the chain axis [see Eq. (4a)j. The sign of frequency
shift is changed in this case, but we did not discuss it in
this paper.

In conclusion, we have described the superradiance of
Frenkel excitons interacting via static dipole moments in
terms of the spin-half XXZ model. We have found first
that this system of Frenkel excitons can be described by
the spin-half Heisenberg model when the transition di-
pole moment d and the induced static dipole moment

~p, ~
are equal to each other and that this system shows

the same superradiance as Dicke's one from noninteract-
ing two-level system. Second the system described by the
Ising spin model, in which ~p, ~

is much larger than d,
shows the superradiant pulse profile oscillating in time
and the chirping, i.e., the redshifts and blueshifts, respec-
tively, at the initial and final stages of the emission pulse,
which is opposite in sign to the case of the XXO model.
Third, we have obtained characteristic features for the
general cases with arbitrary ratio of J, /J. When the stat-
ic dipole moment induced in the excited state is perpen-
dicular to the chain axis, the redshifts and blueshifts, re-
spectively, at the initial and final stages, are further
enhanced in comparison to the XXO model with J, =O
but the same value (J +J, )'~ =2.0. We have many
kinds of J aggregates of dyes and charge-transfer excitons
to which the present model is applicable. The charge-
transfer excitons, e.g. , in anthracene PMDA have large
static dipole moments in the chain direction so that
J, /J &1, and both J, and J are positive. However, the
excitons in J aggregates of dyes have the directions and
magnitudes of transition and static dipole moments de-
pending upon the kinds of dyes. The problem of these
systems, however, is that these organic materials are
rather weak against such strong pumping as the popula-
tion inversion is realized. In this respect, the excitons
bound to imputities regularly arrayed in semiconductors
are more likely to show the results proposed in the
present paper.

We have assumed the complete population inversion
for the initial state. The superradiance from the arbitrary
initial state is one of the future problems. The extension
to a two- or three-dimensional system or to the Wannier
excitons is also another problem for future work.
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