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We present geometric and energetic properties of sodium clusters with 8, 14, 20, 30, and 40 atoms
using an effective many-body interaction among sodium atoms in the framework of an improved
isothermal molecular-dynamics approach. These clusters undergo two phase transitions and the two
transition temperatures increase with the cluster size. These phase transitions are the equivalents
of bulk melting and of boiling in a finite system. However, finite particle effects are particularly
strong. These clusters show a more pronounced thermal expansion than the bulk, with significant
nonlinear effects. Both the shape and size change rather dramatically with the temperature and the
ionic degrees of freedom give a dominating contribution to the entropy, thus effectively controlling
the thermal behavior of these clusters.

I. INTRODUCTORY REMARKS

There are several reasons why it is interesting to study
finite-temperature properties of atomic clusters, in par-
ticular of simple metal clusters. Most of the theoretical
studies are performed at zero temperature, while most of
the experimental results obtained so far are for relatively
hot clusters and it is very likely that these clusters
are melted. On the other hand, the properties of finite
systems at nonzero temperatures are of unquestionable
theoretical interest, in particular because of the pres-
ence of phase transitions in these finite systems. The
relative role of the surface versus volume effects is signif-
icantly enhanced in atomic clusters in comparison with
the bulk. Since the ion cores are so much heavier than the
electrons and the physical phenomena of interest occur
in a region where the ionic density of states is extremely
high, 5 a classical description of the ions seems more than
reasonable. One the other hand, a quantum description
of the electronic degrees of freedom is supported by the
experimental evidence of pure quantum phenomena, rem-
iniscent of the similar nuclear phenomena.

In this paper we attempt to elucidate to some extent
the role of a finite temperature in sodium clusters. The
approach chosen by us is not irreproachable and for that
reason some justification is appropriate. One can dis-
tinguish roughly two dominant trends in the literature:
(i) pure adiabatic picture with an explicit treatment of
the ionic degrees of freedom, which can be subdivided
in two subclasses (ia) explicit treatment of the electronic
degrees of freedom and (ib) implicit treatment of the elec-
trons via an effective many-body classical potential for
the ions; and (ii) featureless ionic background and ex-
plicit finite-temperature treatment of the electronic de-
grees of freedom. We shall not discuss here the quantum-
chemistry calculations, which because of their rather am-
bitious goal, are limited to relatively small clusters. 6

The approach (ia) seems to be accepted as the most

"fundamental" way to describe atomic clusters at zero
as well as at finite temperatures. It amounts to a clas-
sical description of the ionic degrees of freedom —which
seems to be a very reasonable approximation, with the
exception of very light atoms such as H, He, and to some
extent Li—and a density-functional theory within the
local-density approximation (DFT-LDA) for electrons,
augmented with a pseudopotential interaction between
ionic cores and valence electrons. From the point of
view of a pure practitioner, the main drawback of this
type of approach is the appalling amount of computer
time required to extract relevant physical information. It
is for this reason that several groups decided to simplify
the treatment of the electronic degrees of freedom by us-
ing relatively old ideas, originated in condensed-matter
physics, such as the tight-binding approximation (see
Ref. 10 for a sample of references), embedded atom, ii
etc. The "natural" extension of these methods to finite
temperatures still does raise some questions. Although
one can accept this type of approach for the description
of insulators, where the gap between the occupied and
unoccupied electronic states is sufFiciently large and the
assumption that the electrons are at all times essentially
at zero temperature seems reasonable, the applicability
of the strict adiabatic approximation for metals or atomic
metallic clusters is questionable. One possible approach
seems to be the generalization of the DFT-LDA to fi-
nite temperatures. However, this line of thought im-
plies a relatively quick relaxation of the electronic degrees
of freedom. At low temperatures the relaxation times in
many-fermionic systems have a 1/T2 behavioris and ionic
and electronic relaxation times can become comparable.
Moreover, atomic clusters are likely rather floppy objects
and level-crossing phenomena can occur. In such a case
nonadiabatic effects could prove to be quite important
and in any event this seems to be yet a terra incognita.

A further simplification (ib) relies on the use of an ef-
fective many-body interaction among atoms, derived as
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before in the Born-Oppenheimer approximation for the
electrons. z i4 is In particular, the strongly delocalized
character of the valence electrons in simple metallic sys-
tems is at the origin of the many-body character of this
effective potential and it cannot be simulated by two-
body forces only. In this way one loses some pure quan-
tum features, such as shell efFects, odd-even efFects, etc.
However, one has the advantage, like in a Thomas-Fermi
approximation, of describing the gross properties of the
clusters, since volume and surface effects seem to be mim-
icked rather well by this type of model. is

The last listed type of approach, (ii), emphasizes solely
the role of electrons, while the ionic degrees of free-
dom form a simple featureless jellium background, with-
out any dynamic or thermodynamic properties. i 2 i7 is

The main raison d' etre for such models is the hypothe-
sis that the electron dynamics dominates completely the
properties of simple metallic clusters, as manifested in
abundances, odd-even effects, electromagnetic and op-
tical properties, supershell effects, etc. While perfectly
suited to explain this range of phenomena, the jellium ap-
proach has its own inherent limitations, especially when
finite-temperature properties of metallic clusters are con-
cerned. The gross properties of metallic clusters are
rather poorly described in such pure electronic models.
For example, the volume energy (total energy per parti-
cle) derived in a jellium model is about 2.26 eV (Ref. 17)
as contrasted with the cohesive energy for sodium 1.113
eV. This fact alone sheds strong doubts on the treatment
of the ions as a physically featureless background. In the
pure jellium model the shape and stability of a cluster are
totally governed by the electronic degrees of freedom. If
the volume energy is so strongly affected by the ions, a
similar strong effect for the surface tension, due to the
ionic degrees of freedom, is plausible.

Moreover, a large series of molecular-dynamics (MD)
calculations2 4 point to the existence of a large number of
isomers, which are absent in a pure jellium description,
and their presence gives rise to the phase transitions oc-
curring in atomic clusters. The phase space for the ionic
degrees of freedom increases with increase of tempera-
ture/excitation energy at a much faster rate than the
phase space for the electrons. Since the electrons behave
essentially like a degenerate Fermi gas, one can estimate
the electronic density of states using Bethe's Fermi gas
formula

exp /7rz N E/e F

~48E

Pion(&) = ~3N 7 3N —6

(3N —6) i

i=1
(2)

where N is the number of valence (delocalized) electrons
in the cluster, e~ is their Fermi energy, and E is the elec-
tronic excitation energy. For the ionic degrees of freedom
an estimate from below (see Sec. III) for their density
of states can be obtained from the classical formula for
3N —6 intrinsic degrees of freedom in the harmonic ap-
proximation (Debye model) s

where N is the number of atoms in the cluster and w,
are the vibrational frequencies of the normal modes. For
the Na20 cluster one obtains in this way p, ~ = 4 x 10
eV and p;~„- 10 eV at an excitation energy of 3
eV. Consequently, the finite-temperature properties, the
phase transitions in particular, should be dominated by
the ionic degrees of freedom. Since the density of states
is directly linked with the entropy, one can rephrase the
above discussion in terms of entropic effects; the elec-
tronic entropy is much smaller than the ionic entropy.

Experimentally, sodium clusters are likely produced in
a liquid state, with an estimated temperature around a
few hundred degrees. This could serve as an explanation
of the spectacular success of the jellium model. Being in
a liquid state, the ions are rather mobile and therefore
the cluster can be easily deformed. If the contribution
to the surface tension, originating from the ionic degrees
of freedom, is significantly smaller than the electronic
part, one can expect that the electronic degrees of free-
dom (through the quantum shell effects) would play the
major role in determining the shape and the stability of
the cluster. The surface energy for liquid bulk sodium
(cr = [0.699 —3.18 x 10 4(T —T,it;„s)] eV) (Ref. 20)
seems to be in qualitative agreement with the value
extracted from jelliurn calculations, o.

&,ii;„~(T = 400
K)=0.5918 eV. & 1 (The total surface energy is defined
as o.N /3, where N is the number of atoms in the clus-
ter. ) However, the surface tension for liquid bulk sodium
shows a relatively strong temperature dependence, while
the jellium model ~ & seems to underestimate it by at
least one order of magnitude in the temperature range
T = 0—600 K, do„.,ii;„ /dT —2—8 x 10 s eV/K compared
to 3.18 x 10 4 eV/K for liquid bulk sodium. zo This com-
parison seems to indicate that a combined treatment of
the ionic and electronic degrees of freedom is desirable in
order to understand the finite-temperature properties of
these clusters. The apparent agreement between the jel-
lium prediction and the bulk value for the surface tension
might very easily prove to be an accident.

MD calculations with effective many-body potentials
definitely fail to describe the electronic shell effects. The
amplitude of the so-called shell-correction terms (com-
puted in the spherical approximation, which overesti-
mates them as a result) never exceeds 1—3 eV for clusters
with up to a few hundred atoms and a little bit more for
larger ones. ~ & When converted into energy per atom,
the magnitude of the shell corrections is relatively small,
about 0.025 eV or 300 K for N = 40 (note, however, that
this is still about 20'%%uo of the potential internal energy
for Na4O around T = 500 K, see Sec. III, and therefore
a quite sizable correction). However, as was shown in
Ref. 18(b) allowing for the quadrupole and hexadecapole
deformations of the clusters, the magnitude of the shell
corrections are at most 0.3 eV or so for sodium clusters
with up to 50 atoms, i.e. , almost an order of magnitude
less than estimated in Ref. 18(a). For larger clusters the
contribution from these pure quantum effects becomes
even smaller, smaller than, or at least of the same order
of magnitude as, the uncertainty of the estimated tem-
peratures of the clusters. Nevertheless, the rather fine
details of the abundance distributions seem to correlate
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qualitatively well with the efFects predicted on the basis
of the shell corrections. ' One might therefore conclude
that, if one is not interested in rather fine details, a pure
MD approach to these metallic clusters might provide a
quite reasonable description.

Using the arguments of Kubo, Gorkov, and Eliashberg,
see reviews, one can show that for temperatures of in-
terest in sodium clusters, the ionic contribution to the
specific heat is dominant, since C; „& (3N —6) )) C,'
(see Refs. 23 and Sec. III). Consequently, the structural
changes (phase transitions) are likely to be caused by the
ionic degrees of freedom, which is another way of com-
paring the role of electronic and ionic densities of states.

In spite of all these semiquantitative or qualitative ar-
guments which we have presented in favor of dealing with
mostly the ionic degrees of freedom in metallic clusters
at finite temperatures, we do not mean to imply that
the electronic degrees of freedom are unimportant. On
the contrary, we believe that a combined treatment of
both ionic and electronic degrees of freedom is warranted.
In Ref. 9 such a problem has been studied to a certain
extent, however, from those results one cannot make a
judgement concerning the relative role of different de-
grees of freedom. The quite ambitious method chosen
there (DFT-LDA in conjunction with the Carr-Parinello
method), aimed at a complete description of the system,
did not allow the authors to clearly disentangle the spe-
cific role played by ions and electrons. The relatively
delicate interplay between these two types of degrees of
freedom is likely to lead to interesting phenomena; some
of them we have partially alluded to above (part of which
seem to be beyond the present formulation of DFT at fi-

nite temperatures). Even though in the present paper we
shall focus by default on the role of the ionic degrees of
freedom, we plan to extend our studies in the near future
to a comprehensive treatment of all degrees of freedom
in these clusters.

In the following section we shall formulate explicitly
our approach. In particular, we shall present an im-
proved isothermal molecular-dynamics scheme, based on
a previous development~4 of the Nose-Hoover method. 2s

Section III is devoted to the presentation of our results,
followed by a summary.

II. EQUATIONS OF MOTION
AND ISOTHERMAL DYNAMICS

The delocalized character of the valence 8 electrons
makes the alkali-metal clusters quite different from
noble-gas clusters. In the case of argon clusters one
need only introduce an effective two-body interaction
among the atoms, typically the Lennard-Jones poten-
tial. Electron delocalization makes a two-body interac-
tion among alkali-metal atoms physically unacceptable.
Instead of treating the electrons explicitly we shall use
a phenomenological interaction: the many-body alloy
potential. ' '4-'6

The Harniltonian describing the properties of a sodium
cluster used by us is

N

H=Ek;„+V=) ' +V.
~ = 2m

V is a many-body alloy potential of the form

N N
&COh

N

) exp —pi (3)

The first term describes the attractive part of the inter-
action, due to the hybridization of the valence electrons,
and has a many-body character. It is based on the sec-
ond moment approximation for the electronic density of
states at the site 2 and the assumption that the effective
hopping integrals are isotropic, which is fulfilled in the
case of sodium. The second term describes the closed-
shell repulsion between sodium ionic cores, which can
be decomposed into pairwise interactions. For sodium
we use E, h = —1.113 ev for the bulk cohesive energy,
Zb = 10.4 for the effective coordination number in the
bulk, q = 3 and p = 9 for the distance dependence of
the hopping integrals and the repulsive interactions, and
r0 = 3.66 A for the bulk equilibrium nearest neighbor
distance. For these particular values of the parameters,
this interaction describes successfully the energy and the
elastic properties of the bcc bulk phase, as well as the
bond contraction and energy changes at surfaces.

Since we are interested in the thermal behavior of the
clusters, we have to introduce the coupling to a ther-
mal bath. In a recent study of Na7 9 clusters, a cubic

I

coupling scheme suggested previously24 was used. This
scheme was an eKcient algorithm to achieve ergodicity
and also to allow a relatively fast exploration of the phase
space. It works well for small clusters such as Na7 9,
but the cubic term introduced in the equations of motion
makes the integration of the equations of motion rather
diKcult at high temperatures and for large clusters, since
it requires a relatively small time step. For example, the
choice of the time step ranged from 2.0 x 10 to 0.15
x 10 s sec for different temperatures in the study of
Na7 s clusters. ~s Another drawback of the cubic cou-
pling scheme is that the optimal coupling coeKcients are
different for different temperatures and clusters. This
situation can be quite annoying, especially in the case
of relatively large clusters. In this paper, we propose
a coupling scheme similar to the one proposed for the
description of a Brownian particle. We will make the
dependence of the coupling coefficients on the tempera-
ture and cluster size explicit. Furthermore, we can use
the same integration time step for all cluster sizes and
temperatures. In all our simulations, we used 1 x 10
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Similar equations hold for the y and z components. In
the equations above, ep mLpvD is a constant with
the dimension of energy, of the order of the energy corre-
sponding to the highest frequency in the system (one can
call it the Debye frequency w~ = 27rvD for a cluster). I o
is a constant with the dimension of length of order 1
A, po = y'2mT is the average thermal momentum at
temperature T, and ap is a dimensionless constant of or-
der one. n, P, and p are dimensionless constants, cluster
independent, and their temperature dependence is given
by

mL2P~p~ Nt2T' (9)

where tp is the smallest characteristic time scale of the
system, i.e. , to 2vr/uD. In relation (9) the number of
particles N appears explicitly because the amplitude of
fluctuations of the terms in parentheses in Eqs. (6)—(8) is

proportional to ~N. All the constants, whose magnitude

sec as the time step and the simulations were carried out
for 106 steps. Consequently the system was evolved for
1 x 10 o sec for all temperatures. This makes the length
of the simulation about 7 times longer than in the previ-
ous study 3 at high temperatures.

Our coupling scheme to a thermal bath at tempera-
ture T is described by the following equations of motion
for the coordinates x, , momenta p, , and pseudofriction
coefficient (~, g~, and e~ (here for the 2: components
only)

= pxi
X$

m

we have specified only by the order of magnitude, can be
varied within reasonable limits, without critically affect-
ing the quality of the simulation. However, relatively
large variations of these constants might require signifi-
cantly longer simulation times. This might not affect the
ergodic properties of the equations of motion, and there-
fore in theory will lead to correct results, provided that
the simulation is long enough.

A few clarifications, concerning the nature of this type
of coupling to a thermostat, are in order. A complex
system is always characterized by a rather wide range of
characteristic frequencies (modes). In isothermal MD the
thermostat is coupled mostly to some modes. In a three-
dimensional system the density of modes is largest at high
frequency, like in the phonon density in a solid. Conse-
quently, in order to have the most effective coupling to
a thermostat, the characteristic frequencies of the ther-
mostat should be comparable with the Debye frequency
of the system under study. An analysis of the above
equations of motion shows that this is indeed the case.
A quick thermalization implies also that energy is ex-
changed at a reasonable rate among all the modes of the
system (i.e. , relatively small apparent relaxation times).
At the same time the thermalization of the slowest modes
of the system is achieved only if the total time of the sim-
ulation is larger than the characteristic time of these slow
modes and the intrinsic relaxation times of the system. It
is possible to devise an isothermal MD in which coupling
to all modes (both slow and fast) is achieved by a slight
generalization of the type of couplings studied so far. 2s

One may wonder as well why we have introduced a rel-
atively large number of pseudofriction coefficients. Our
experience2 ' shows that by increasing the number of
pseudofriction coefficients one can ensure a more efficient
exploration rate of the system phase space (smaller ap-
parent relaxation times) and hence avoid problems with
lack of ergodicity. In particular one can achieve a better
convergence in the case of phase transitions when the so-
called critical slowing down phenomenon sets in. More-
over, in the case of isolated systems one wants to make
sure that there are no conserved quantities (whose pres-
ence signals the absence of ergodicity), in particular nei-
ther the total angular momentum nor its direction is a
constant of motion. The price one has to pay, the in-
creased number of differential equations to be solved, is
insignificant, especially for large systems. At the same
time, a quicker decorrelation time among the generated
phase space configurations (which is the essential element
of any ensemble average procedure) ensures a much bet-
ter overall quality of the simulation. This Brownian type
of coupling to a thermal bath has a few advantages over
the usual Nose-Hoover type of coupling or its gener-
alizations introduced previously. The ergodic prop-
erties of the Nose-Hoover coupling depend very strongly
on whether the forces are strong enough and nonlinear.
In particular, this type of coupling completely fails to be
ergodic for a free system or for harmonic oscillators. At
relatively high temperatures, when the system undergoes
thermal expansion, some particles spend considerable pe-
riods of time without interacting with other particles and
as a result the algorithm is (partially) not ergodic. By
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(A(p')) z(T)
d pd q exp

1
lcm

to~OO go

tp

d&A[@(t), q(t) j, (10)

where p, q stand for the rnomenta and coordinates, Z(T)
is the partition function, and A(p, q) is an arbitrary ob-
servable.

In this coupling scheme, both the center-of-mass coor-
dinate and momentum of the cluster are not constants of
motion. When we discuss the thermal properties below,
we will refer everything to the instantaneous center of
mass of the cluster and present only the intrinsic ther-
modynamic properties of the cluster. In order to avoid
evaporation at high T (around and above the "boiling"
phase transition), we have added a linear restoring force
every time a particular interparticle distance r,~ & 3B,
where R = roN ~ and N is the number of particles in
the cluster.

III. THERMAL PROPERTIES
OF SODIUM CLUSTERS

We shall follow Refs. 4 and 23 to classify the cluster
characteristics into two categories: thermodynamic prop-
erties (internal energy, specifie heat, density of states,
phase transitions) and geometric properties (shape, rms
radius, momenta of inertia, relative bond length). The
energetics and geometry of the cluster are strongly cor-
related and their analysis is extremely helpful in under-
standing the thermal behavior of atomic clusters.

judiciously choosing the coupling to thermal bath, the
present algorithm is ergodic even for one free particle
and as a result for all cluster sizes as well and its ergodic
properties become thus independent of the character of
the interaction.

Provided that the equations of motion generate ergodic
trajectories, one can replace the phase space average by
the time average, which is much simpler to compute

zp.,(T) = Ep tl
p(Ep«) exp

l

—
l
dEp, tT i (12)

is the potential-energy partition function. The distri-
bution f(Ep«, T) is peaked near the average potential
energy for the corresponding T, and drops off rapidly on
both sides. This allows for a reconstruction of the density
of states over an energy range comparable to the width of
f(Ep,t, T). s s By piecing together parts of p(Ep«) from
simulations at different temperatures one can reconstruct
the density of states over a signi6cant energy interval, up
to an undetermined multiplicative factor, which can in
principle be determined as well. The logarithm of the
densities of states of the potential energy for the clusters
studied are shown in Fig. 1 along with the logarithm of
the corresponding Debye density of states, Eq. (2), di-
vided by (3N —8)/2. One can clearly see an increased
density of states at higher excitation energies, which we
associate with the softening of the clusters and which
leads to the onset of the phase transitions. The internal
energy and the specific heat can be determined from the
following standard relations:

&(T) = (E o )

1 t'
Ep«p(Epot) exp l( T dEp«)ZT

(13)

The only pertinent physical information comes from
the analysis of the potential energy of the clusters. For
each temperature, we bin the value of the potential en-
ergy at each time step, and construct the histogram
f(Ep«, T). This distribution of the potential energy at
a given temperature T is

f(E „,T) = p(E,t)exp l—( E„,&
Zp«T & T )'

where p(Ep«) is the density of states originating from
the potential energy only, and

A. Thermodynamic properties ~(T) ( P«) ( Pot)
T2 ) (14)

During each time step we have monitored the kinetic,
potential, rotational, vibrational, and total energies of
the cluster. The total kinetic energy carries no useful
information about a system in the canonical ensemble
and we have used it merely as a check of the quality of
our simulation. However, the kinetic energy of a clus-
ter can be separated in an unique way into two nontriv-
ial parts, rotational and vibrational energies. zs Although
one might expect that the rotational energy could be dif-
ferent from that of a rigid body, since the clusters are to
some extent floppy objects, in the whole range of temper-
atures studied we have found that these clusters behave
essentially like rigid bodies. In particular the rotational
specific heat of the clusters is C, t ——3/2 as for a rigid
body. This is due to the fact that in this temperature
range the thermal rotational motion is not fast enough
to lead to any signi6cant centrifugal stretching.

once the density of states is known. We have computed
these quantities using the above relations and checked
them also against the corresponding averaged quanti-
ties obtained during each separate simulation, and the
agreement between the two methods was satisfactory.
However, in spite of the fact that our simulation time
is rather long (1 nsec), the temperature dependence of
some quantities is often not very smooth and some flue-
tuations are still present (their magnitude will be evident
in some of the quantities presented in the following sub-
section, for which an equivalent of the density of states
cannot be defined). This is indicative of the fact that
even longer simulation times and/or an optimization of
the coupling scheme to the thermostat are needed. The
extracted density of states proved to be a rather smooth
function of the energy (the inherent statistical fluctua-
tions, due to Gnite simulation times, are indistinguish-
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ing state. ~ is 2s si "Above the melting point" they start
behaving like liquids, as one can see more easily in the
behavior of their pair-correlation function (see the next
subsection and Ref. 23).

As a side remark, we would like to stress the advan-
tage of performing an MD calculation in the canonical
rather than microcanonical ensemble. One finds often in
the literature the statement that the two approaches are
essentially equivalent with respect to the amount of phys-
ical information extracted and for that reason diferent
authors rather often prefer microcanonical simulations to
canonical ones. In a canonical simulation one can rela-
tively easily extract the density of states, which is unac-
cessible in a microcanonical one, and the thermodynamic
behavior of the system can be easily inferred and under-
stood. For a finite system, the density of states plays
a similar central role as in statistical physics of large or
infinite systems. In particular, it is much less expensive
to perform a canonical MD and find structural isomers
than in a straightforward search. If an isomer exists, its
presence will show up at sufficiently high temperatures,
as, in particular, a more careful analysis of the behavior
of the density of states shows. (To some extent a sim-
ilar ideology is behind the popular simulated annealing
method. )

In spite of the fact that we are dealing here with such
small systems, we decided to estimate the latent heat of B; Geometric properties

A very sensitive indicator of structural changes in a
cluster is the rms relative bond length

(r,', ) —(r ~)'

("i )
(15)

The temperature dependence of the rms relative bond
length is shown in I ig. 4. As we have mentioned above,
at low temperatures, "below the first phase transition, "
the cluster behaves like a small crystal, with the atoms
oscillating with small amplitudes around their equilib-
rium positions. At temperatures around 200 K the atoms
are at their equilibrium positions for relatively long pe-
riods of time. However, from time to time an atom
jumps from one equilibrium position to another due to
thermal fiuctuations. s The rms relative bond length
changes drastically around this temperature, indicative
of a structural change. At still higher temperatures, the
atoms become extremely mobile and move across the en-
tire cluster. In the region of the second phase transition
850—1000 K, we observe a second increase in b. This is
partially linked with the fact that some atoms can evap-
orate, even though at a not very significant rate yet. At
temperatures above 1000 K, the evaporation of atoms
is significant and the precision of our results is therefore
reduced. A better approach will be a grand canonical en-
semble at these temperatures, suited for the description
of the liquid-vapor coexistence. The structural transition
in these sodium clusters can be seen also in the behavior
of the (unnormalized) pair correlation function f(r,~); see
Fig. 5. Below the first phase transition the interparticle
separations are rather well defined, as one would expect
for a small crystallite. In the Huid phase, even though

fusion for sodium from these simulations. Since the first
phase transition occurs around 200—300 K, and the tran-
sition peak is very broad, we will simply take 500 K as
the temperature at which we regard the clusters are com-
pletely in a liquid state. If there is no phase transition,
the potential internal energy at temperature T would be
(3N —6)T/2, as for pure harmonic oscillators (note that
the ionic degrees of freedom are treated classically). We
shall identify the excess over the internal energy of pure
oscillators as the energy necessary to melt the cluster,
i.e. , the energy needed to cause a structural change of the
system. We estimate the heat of fusion to be a value be-
tween 2.36 and 3.45 kJ/mole, which compares unexpect-
edly well with the value 2.6 kJ/mole for bulk sodium. 2O

One can try to estimate in the same manner the heat of
vaporization as well. At high temperatures the quality of
our simulations is worse, due to significant evaporation.
Nevertheless, we obtain a value which is approximately
equal to the experimentally measured heat of vaporiza-
tion for sodium 89.6 kJ/mol (within 15—20%). This is
not very surprising, since the effective interaction we are
using has the correct asymptotic behavior of the cohe-
sive energy for large systems built in, and the heat of
vaporization is almost equal to it.
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one can see a well-de6ned short-range correlation among
particles, the long correlation is almost completely lost
and at very high temperatures the presence of the vapor
phase is obvious.

For each spatial configuration of the cluster, we have
calculated three geometric quantities: the rms radius of
the cluster, which characterizes the cluster size; the shape
parameter P, for the degree of asphericity of the cluster;
and the shape parameter p (0 ( p & x/3), which de-
scribes the triaxiality of the cluster. These parameters
provide an average information about the size and shape
of the clusters. The rms radius and shape parameters
P and p are related to the principal momenta of inertia
(II & I2 & Is & 0) through the following relations:

Iy= r 1+—Psin~ p+ ~, k=1 2 3,
2 . ( (4k —3)7t I

)
(16)

where

r2
a = —[1 —2P sin(p+ 7r/6)j & 0.

3 (18)

p = 0, then II = Iz & Is, and the shape of the clus-
ter is an axially symmetric prolate ellipsoid (cigar) with
0 & P & 1. For P = 7r/3, II & Iz = Is and the shaPe cor-
responds to an axially symmetric oblate ellipsoid (pan-
cake) and 0 & P & 1/2. For all the remaining angles in
between, the shape is a triaxial ellipsoid. For P = 1/2
and p = x/3 the shape is a disk of zero thickness, while

P = 1 and p = 0 correspond to a linear chain. The region
of allowed values for P and p has the shape of a triangle
in the plane where P is the radial distance and p is the
angle at origin; see Fig. 6.

The temperature dependence of the average principal
momenta of inertia and their relative covariances are dis-
played in Figs. 7 and 8 and the rms radius of the cluster
r, and the shape parameters P, p along with their corre-
sponding covariances, are displayed in Figs. 9—ll. From
these plots, one can see that all these clusters tend to ac-
quire a cigarlike shape at high temperatures. This might
seem a bit peculiar, but is quite easy to understand. One
can show that the shape space measure is proportional
to P sin 3pdPdp. s Consequently shapes with small val-

is the rms radius of the matter distribution. The condi-
tion that the semiminor axis of the associated ellipsoid
of the inertia is positive 1.0- =1000K, NaPO
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0

FIG. 6. The allowed region for the shape variables P and

ues of P are strongly suppressed and for the same reason
pure oblate or prolate shapes are suppressed as well. At
the same time the shapes with as large values as possi-
ble for P are strongly favored by this measure and for
this reason prolatelike shapes (for which large values of
P, 1/2 & P & 1, 0 & p & m/6 are possible) start dom-
inating at high temperatures. For 0 & P ( 1/2 oblate-
like (vr/6 & p & vr/3) and prolatelike (0 & p & 7r/6)
shapes are equally probable, according to the shape mea-
sure only. One has to keep in mind that these distribu-
tions reBect the shape of the free energy of the cluster
in the shape space, which takes into account both en-

ergetic and entropy properties of the system (the shape
space measure is already included). We could have de-
folded the shape measure from these plots (this is the
adopted convention in nuclear physics calculations of de-
formed nuclei2 s2), but since any average will involve this
measure anyway, such a way of displaying the shape prop-
erties of the cluster seems to us to a certain extent mis-
leading. At low temperatures, these clusters are almost
incompressible (their rms radii have relatively sharp dis-
tributions), but at the same time they can change their
shape rather easily (the distributions for both P and p
have significant widths). At high temperatures, these
clusters become apparently soft as well, having the char-
acteristics of a compressible Quid. This apparent soft-
ness is to some extent an indirect indication of the pres-
ence of the vapor. In spite of the shape differences of
their ground geometries, the high-temperature behavior
of their shapes is quite similar. The character of the
shape parameters distributions changes dramatically in
the vicinity of the phase transitions. The smallest prin-
cipal momentum of inertia has the largest Huctuations,
since atoms evaporate more readily from the sides of the
cigar for obvious reasons (more chances).

We have tried to extract the coefficient of thermal ex-
pansion from our results. Unfortunately we did not have
enough statistics for a precise determination of the lin-
ear and quadratic expansion coefficients. Nevertheless,
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as one sees from Fig. 9 the clusters display a rather well-
defined nonlinear thermal expansion. This fact might
play a quite significant role in explaining the red shift
of the Mie plasmon in sodium clusters. In the jellium
calculations, routinely used in describing the optical re-
sponse of sodium clusters, the bulk density for the jellium
is assumed. Besides melting and boiling in a quite dif-
ferent way than the bulk, sodium clusters seem to have
also a rather distinct thermal expansion behavior. Since
the experiments are likely performed with liquid clus-
ters, their larger volume can easily serve as an argu-
ment in favor of a lower plasmon energy. The classi-
cal Mie plasmon frequency will change approximately as
6AM' /(A)M' = 3b'r/2r —when the radius of the cluster
changes. At 400—600 K (the estimated temperature of
the clusters in nozzle experiments) the linear dimensions
of a cluster seem to be about 6—15% larger than at T = 0
K (and significantly larger for higher temperatures), al-
ready of the right order of magnitude to explain the ob-
served redshift of the Mie plasmon. At the same time, at
these temperatures the volume distribution of the clus-
ters have a quite sizeable width Ar/r —0.04—0.07 (and
significantly larger at higher temperatures), which can
explain at least part of the width of the plasmon. In
Fig. 12 we present the spherical part of the ionic den-
sity, extracted from our simulations at several selected
temperatures. [The relatively large fluctuations of p(r)

near the origin are due to obvious volume effects; near
r —0 the probability of finding an ion at a distance r
from the center of mass of the cluster is proportional to
r2p(r) and correspondingly the statistics is lower. ] With
increasing temperature this density becomes flatter. The
radius of the cluster does not seem to vary significantly;
however, the surface diffuseness is greatly increased after
the first phase transition, which explains the thermal be-
havior of the rms radius discussed above. This relatively
large apparent surface diffuseness is partially due to the
fact that the cluster is rather strongly deformed as well ~

One can conclude that the anomalous thermal expansion
of sodium clusters, when compared to the bulk, is mainly
due to these surface effects.

An additional contribution to the width of the Mie
plasmon in sodium clusters at finite temperatures will
arise from shape fIuctuations. The rough estimates we
presented here should be looked upon only as order
of magnitude effects. The shape of the cluster in its
ground state and that with one Mie plasmon excited can
be quite different and the ultimate shape and width of
the plasmon should be estimated using a more detailed
procedure. 33

A comment concerning the potential use of such distri-
butions in jellium-type calculations is in order. These dis-
tributions represent ensemble averages. The time scales
for the ionic degrees of freedom are significantly lower
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than for the electronic degrees of freedom. If one would
like to include such thermal efFects in the calculations of
the electronic properties and optical response of a clus-
ter, one should perform the corresponding jellium cal-
culations for one member of the ensemble at a time and
take the ensemble average only afterwards. In particular,
spill-out of the electron density can be more pronounced
for some members of the ensemble.

IV. CLOSING REMARKS

Since the energy scale characteristic for the ionic de-
grees of freedom is relatively small, a huge phase space
becomes available upon increasing the temperature of the
cluster. These entropic effects show up in rather drastic
structural changes and, without being extremely pedan-
tic concerning the adequacy of the terminology, one can
characterize these changes as phase transitions in finite
systems. With increasing temperature, the clusters go
first through a glassy/molten or Huctuating state (200—
300 K) and eventually become totally liquid (above 300
K). In this temperature range they are almost incom-
pressible, but highly deformable. At still higher temper-
atures (850—1000 K) they start boiling, vaporization sets
in, and they become rather soft/compressible. In con-
tradistinction with noble-gas clusters, 4 the melting and

boiling do not seem to be a geometric or particle number
effect and the same behavior is observed for all the clus-
ters we have studied (N = 7, 8, 9, 14, 20, 30, and 40).2s

The thermal expansion properties of these clusters seem
to be more pronounced when compared to the bulk and
it is mostly due to an increased surface diffuseness and
deformation of the cluster. Thermally induced rotation
is never fast enough to lead to any rotationally induced
efFects and in the temperature range studied, one can
safely characterize these sodium clusters as rigid bod-
ies with respect to rotational degrees of freedom. The
onset of the new phases can be observed in both thermo-
dynamic and geometric properties of the clusters, which
have a strong temperature dependence.

The present approach does not account for the elec-
tronic degrees of freedom explicitly and therefore elec-
tronic shell efFects are not accounted for. We expect,
however, that, due to the large ionic entropy effects we
observe, similar behavior should be observed in a more
complete description of these clusters. The electronic
shell efFects should be rather important at relatively low
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temperatures, below melting. It will be extremely inter-
esting to study the efFects of the large geometric Huc-
tuations on the electronic properties and on the optical
response in particular (unless in a combined treatment
the clusters do not become more stiK, which does not
quite seem to happens).
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