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Disordering kinetics in surface overlayers
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The disordering kinetics of the 0/W(110)-p(2X1)+p(2X2) overlayer, prepared initially in a well-
ordered state, are studied with low-energy electron diffraction profile analysis. The decay of the peak in-

tensity, used as a measure of the growing disorder, cannot be fitted to a power law as in the case of order-
ing processes. The full width at half maximum of the time-dependent structure factor S(q, t) is constant
with time, which suggests that the average size remains constant. Diffusion activation energy extracted
for the temperature dependence of the disordering is 1.0+0.05 eV, which is different from the value of
0.6 eV measured in ordering processes. The difference can be explained by the adsorbate-adsorbate in-
teractions, which contribute differently to the diffusion barrier, in the two experiments.

The evolution of a surface overlayer towards equilibri-
um, after a quench from an initial to a final state of
different symmetry, has revealed' the growth laws that
control nonequilibrium processes. The most common
thermodynamic parameter used in the quench is the tem-
perature T, and all the experiments performed so far on
two-dimensional systems monitor the evolution of a sys-
tem from an initial random to a final ordered state. The
change of symmetry and the time dependence of the
growing domains can be easily monitored with
diffraction. In such ordering experiments it has been
verified that the average domain size L grows like a
power law in time' L = A (T)t, with A (T) a
temperature-dependent growth rate and x a universal ex-
ponent which is independent of the details of the system.
In addition, the domain size distribution is time invari-
ant, suggesting self-similar growth, as measured from the
scaling of the nonequilibrium structure factor
S(q, t)/S(0, t)=F [q/w(t)], where w (t) is the full width
at half maximum (FWHM) at time t. Additionally these
experiments, if repeated at several final temperatures, can
determine the temperature-dependent growth rate A ( T)
and by using a simple dimensional argument, one can es-
tablish that the diffusion coefficient is related to A (T)
with the relation Da 3 ' ". This implies that the diffusion
activation energy can be extracted from the growth rate
activation energy ED =Ez /x.

Several ordering experiments have verified the
above predictions. In particular, '"' for the 0/W(110)-
p(2X1)+p(2X2) system, a growth exponent of x =

—,
'

was measured extending the validity of the Lifshitz-
Slyozov growth law to systems with finite-density, mul-
tidegenerate, separating phases. The diffusion activation
energy extracted from this ordering experiment is
ED =0.6+0.05 eV. This is considerably lower than the
diffusion activation energy ED =1+0.05 eV measured in
an equilibrium experiment with the current fluctuation
method. In the fluctuation method, the overlayer is
equilibrated with the (2 X 1) and (2X2) phases fully
developed, while in the ordering experiment, the average
overlayer configuration is, at least initially, random. The

difference between the activation energies in the two ex-
periments was attributed to the adsorbate-adsorbate in-
teractions that are present in 0/W(110). A lattice-gas
model with competing interactions (nearest-neighbor at-
tractive and next-nearest repulsive interactions) is a good
description "of the system. The interactions contribute
differently to the diffusion barrier in the two experiments,
because the overlayer configuration is different. In the
equilibrium experiment the attractive interactions have a
larger contribution and can account for the observed 0.4
eV difference with the ordering experiment.

Although a considerable amount of work has been
performed to measure surface diffusion, most of the avail-
able techniques are limited to noninteractive systems. In
most of the techniques in current use, the solution of the
linear diffusion equation in a given geometry is compared
to the measured profile. For systems with interactions,
however, the diffusion coefficient becomes coverage
dependent and the nonlinear diffusion equation should be
employed. Solutions to nonlinear diffusion equations are
nontrivial, so it is not clear to which theoretical expres-
sion the measured quantity should be compared. Order-
ing experiments, however, provide a method to measure
surface diffusion coefficients on interactive systems, be-
cause an easily measurable signal can be fitted to a simple
expression (the power law) to extract A (T), and the
diffusion coefficient.

Systems under strongly nonequilibrium conditions are
also realized during the opposite process of disordering.
Initially the system is in a well-equilibrated state and the
domains formed have a maximum size. The system is
raised to a higher temperature where the disordered state
is present. We ask similar questions as posed above, such
as what are the growth laws controlling the evolution of
disorder, is there universality, how can a diffusion barrier
be extracted from the temperature dependence of the dis-
ordering process, and how does it compare to the one
measured in an ordering process. Despite the recent em-
phasis' on studying ordering processes both theoretically
and experimentally, no systematic study of disordering
processes was undertaken to address the above questions.
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The experiments were carried out on the 0/W(110)-
p(2X I)+p (2X2) system at high coverage. It is the pro-
totype of a surface overlayer to test coll~ -tive two-
dimensional (2D) phenomena, both at equilibrium and at
nonequilibrium. We concentrate on the high coverage
0=0.68, to test the role of the overlayer configuration in
determining the diffusion barrier, by comparing the disor-
dering to the ordering experiment. If the system is heat-
ed up to T =550 K, a (2X1)+(2X2) diffraction pattern
is formed, as evidenced by the fully developed ( —,', 0)
and ( —,', —,') spots. After heating in the range 600—800 K
the ( —,', —,') spot decreases in intensity over a period of
several minutes, well within the time resolution of the ac-
quisition system. Above 800 K the loss of the superstruc-
ture intensity is too fast to be followed by the detector.
Similar changes within the high coverage overlayer have
been previously observed in an earlier study of the equi-
librium structure of the system.

Experiments were carried out in a UHV system ' ' of
base pressure 8X10 "Torr, equipped with a low-energy
electron diffraction (LEED) diffractometer, cylindrical
mirror analyzer, and a mass spectrometer. Diffraction
images were recorded with a silicon-intensifier-target
video camera, digitized with a commercially available im-
aging board, averaged for improving the S/N ratio, and
stored on an IBM-AT computed for further analysis, to
extract quantitative information about the evolving
domains. A low thermal mass sample holder was built,
to respond quickly to the temperature quench. The sam-
ple temperature can vary from 130 K, where oxygen is in-
itially deposited up to 2200 K for sample cleaning with
electron bombardment.

Figure 1 shows typical results at T=664 K of the
time-dependent angular profiles S(q, t) of the ( —,', —,

'
) spot,

as the system is quenched from the initial state at T =550
K. Similar results are observed at all final temperatures.

During the disordering process the FWHM's stay con-
stant, well below the expected increase, for the corre-
sponding decrease in peak intensity. This is opposite of
what was previously observed in ordering processes,
where ordering profiles show self-similarity with a time-
dependent FWHM. Similar constant FWHM's during
disordering processes have been observed in other sys-
tems. Instrumental limitations are possibly more pro-
nounced in disordering processes because the initial
domain sizes are larger. However, the initial ( —,', —,

'
)

FWHM was 2—,
' times broader than the instrument

response function, possibly because of the eight different
types of domains that are present at t =0. We have es-
timated the effect of the instrument by convoluting a
Gaussian instrumental function with a Lorentzian line
shape (which is 2—,

' times broader than the Gaussian
FWHM) to be less than 10%%uo for the peak intensity and
3% for the FWHM.

Surprisingly, during the disordering of the ( —,', —,') spot,
a linear relation exists between the peak and the full 20
integrated intensity over the ( —,', —,') Brillouin zone (BZ).
The integrated intensity is changing, because most prob-
ably monomers released out of the ordered domains
redistribute diffracted intensity outside the ( —,', —,

'
) BZ. We

have used the decay of the integrated intensity as a mea-
sure of the growth of the disordered phase, since the con-
stant FWHM is not appropriate. Figure 2 shows the in-
tegrated intensity vs time at several final temperatures. It
is clear that the decay is faster at the higher temperature.
The functional form of the decay is not exponential, and
the long-time behavior has extremely slow varying tails.
The initial fast decay of the intensity is followed by a
slow varying regime. The intensity at the leveling off is
higher, for lower annealing temperatures.

The wide range of temperatures used allows us to con-
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FIG. 1. Plot of the angular ( 2, 2 ) profiles obtained succes-

sively at different times with the substrate temperature T =664
K. The FWHM's are constant.
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FIG. 2. The decay of the ( 2, ~ ) normalized 2D integrated in-

tensity vs time at different substrate temperatures. All the
curves have initially a unity value but they have been shifted by
a constant amount for clarity. No power law can be fitted to the
growing among of disorder measured by tl(0) —I(t)]. The in-
tensity approaches a temperature-dependent saturation value at
long times.
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FIG. 3. Monte Carlo simulation results obtained for the de-

cay of the peak intensity. The system is initially in a perfect
c(2X2) state, chosen because of the computational efficiency.
No power law can befitted to the growth of disorder
[I(0)—I(t)] and long-time saturation is observed as in the ex-
periment.

centrate either on the late time slow regime (at low tem-
peratures) or on the early fast decaying regime (at high
temperatures). We search for a power-law time depen-
dence of the growth of disorder by plotting
[I(0) I(—t)]/I(0) vs t, to test if power laws that are
characteristic of ordering processes also describe disor-
dering processes. The leveling of the intensity is not con-
sistent with power-law decay. Because the domains are
smaller than the coherence length by more than a factor
of 2—,', instrumental effects, as mentioned before, are less
than 10%%uo. A power-law ft, at the higher temperatures,
where the leveling off is unimportant, to extract an
effective growth exponent is not of high quality and it
gives a low value x =0.3. This is equivalent to a growth
exponent of x =0.15 for the average domain size of the
disordered phase (under the usual assumption that the
average domain size is proportional to the square root of
the peak intensity), well below the x =

—,
' value obtained

for ordering processes. Power-law decay is not observed
in other disordering studies. '

As a test of the observations described above, we have
performed Monte Carlo simulations on a model system to
check the absence of a power-law decay during disorder-
ing. A Hamiltonian, with (2X1) and (2X2) ground
states was not used, because it is more difficult to handle
computationally, and extensive runs would be needed to
obtain good statistics. We chose, instead, a simpler sys-
tem, the Ising model with nearest-neighbor repulsion that
has the c(2X2) phase, as the ground state. The ordering
growth kinetics of the model have been studied' exten-
sively, both analytically and with simulations, and the
growth exponent is x =

—,'. If disordering obeys a similar
law, we would expect a linear decay of the intensity in
Fig. 3. The system is initially prepared in a perfect
c (2 X 2) phase and the loss of order is monitored from the
decay of the Bragg peak intensity evaluated at (~/a,
m/a), the Bragg condition for the c(2X2) domains. The
system initially in a perfectly ordered c(2X2) phase is

upquenched at several temperatures —3 (J/k T (0
which includes states in both the ordered and disordered
regions. The critical point for this model at coverage
8=0.5, the ideal coverage of the c (2 X 2), is at
J/kT= —1.86. Spin exchange, i.e., difFusive dynamics,
were followed. The details of the simulation can be found
elsewhere. " The results are shown in Fig. 3 and it is
clear that the time dependence is not linear with time,
thus verifying the absence of a power-law with x =

—,'.
Long-time leveling off tails are observed in the simula-
tions, reminiscent of the experimental observations in
Fig. 2. It is clear that if the disordering kinetics of this
well-studied case of the c (2X2) phase, prepared in a sin-
gle domain initially, is not similar to the kinetics for or-
dering processes, then for more complicated ordered
structures that have multidegenerate phases [i.e.,
p(2X1)+p(2X2)] and more complicated domain size
distribution, stronger deviations from power-law time
dependence should be expected.

A previous Monte Carlo study' of the ordering kinet-
ics of the same model has monitored with time how a cir-
cular region, prepared in one of the two equivalent
c (2X2) phases and surrounded by the other phase is el-
iminated with time. The competition between the two
equivalent phases, driven by the excess free energy in the
boundary, leads to a linear time dependence of the de-
creasing domain size and therefore a growth exponent
x =

—,'. This shows clearly that the growth of the disor-
dered phase is distinct from the elimination of an ordered
phase, surrounded by the equivalent ordered phase of
different type. The latter case is a case of curvature
driven growth, between adjacent degenerate phases, while
the absence of degeneracy in the growth of the disordered
phase is most likely the reason for the asymmetry ob-
served in the growth laws.

We have discussed previously that nonequilibrium ex-
periments, performed at different temperatures, provide
information about surface diffusion which is the mecha-
nism by which equilibrium is restored in the system. Al-
though no analytic results exist of how the surface
diffusion coefficient D is related to the decay of the peak
intensity, we can assume that it is proportional to the ini-
tial slope. Such an analysis of using the initial slope of
the diffracted intensity to extract the diffusion coefficient
has been used previously in a LEED study. ' It is clear
from Fig. 2 that as the temperature is increased the in-
tensity decays at a faster rate. We can assume that
the decaying intensity is a function of the combina-
tion (Dt) which dimensionally has units of length. An
expansion at t =0 for short enough time produces
I ( t) = Io( l cDt +0 (Dt ) +— ) showing that indeed
the initial slope is proportional to the diffusion
coefficient. The only exact result' for the disordering of
an initially c (2 X 2) 1D ordered state is in agreement with
the expansion. Figure 4 plots the initial slope vs 1/T to
test for Arrhenius temperature dependence. A list square
fit gives E =1.0+0.005 eV. This differs by 0.4 eV from
the value found in the ordering experiment and is similar
to the value measured in equilibrium experiments. Is this
expected? We have discussed previously the contribution
of adsorbate-adsorbate interactions to the diffusion bar-
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FIG. 4. Plot of the initial slope lnS vs 1/T of the 2D integrat-

ed intensity decay, measured from Fig. 2. An activation energy
1.0+0.05 eV is measured which is higher by 0.4 eV from the ac-
tivation energy measured in the ordering experiment, because of
the interaction contribution.

rier, which depends on the configuration of the overlayer.
In the disordering experiment the initial arrangement of
the atoms is similar to the equilibrium experiment, since
the ordered phases are fully developed. Mostly, the at-
tractive nearest-neighbor interaction contributes to the
barrier, which raises the activation energy by 0.4 eV.
Therefore, ordering and disordering experiments per-
formed in parallel can provide detailed information about
surface diffusion, the energetics controlling it, and the
role of the interactions.

The almost constant FWHM is a puzzling feature of
the disordering processes. It has also been observed in
previous studies. It was explained before by the highly
anisotropic vacancy mobility within the dimer rows that
effectively reduces diffusion to 1D process. In the current
experiment, we have a full 2D process because of the
rhombic symmetry of the substrate. The constant
FWHM suggests that the average domain size distribu-
tion is constant. Initially, the surface is covered with
large domains of different degeneracy, because each
phase is fourfold degenerate. Several different mecha-
nisms are consistent with an invariant average size. Dis-
ordering involves first the rate of nucleation of the disor-
dered phase within the ordered domains (which is expect-
ed to be larger for larger domains) and the rate of elim-
ination of the whole domain (which is expected to be
lower for larger domains). It is possible that the two
rates compensate each other, so the probability of elim-
inating a domain is independent of its size. If this is the
case, the fraction of domains eliminated will be the same
for all sizes. This mechanism not only maintains the
same average size during disordering but it implies that
the domain size distribution is time invariant, i.e., scaling
holds. Figure 5 shows S(q, t)/S(O, t) vs qlw(t) to test
for this invariance, where S(q, t) is the profile at time t
and w (t) the FWHM of S(q, t) Although there are devi-
ations from a perfect collapse of the data onto a universal
curve, the deviations are not more than 15 /o and they are
more pronounced at the "wings. " Deviations at the
"wings" reAect the increasing number of smaller size
domains, while the number of larger size domains de-

FIG. 5. S (q, t) /S (0, t) vs q /m ( t), where S(q, t) is the none-
quilibrium structure factor and u(t) the FWHM at time t plot-
ted to test whether scaling is obeyed. Deviations at the "wings"
of the profile are related to the constantly increasing monomer
number while the number of larger domain sizes is decreasing at
a constant rate.

creases as described above at a constant rate. Additional
evidence supporting scaling is the linearity observed be-
tween peak and 2D integrated intensity, which would
have been violated if S(q, t) does not follow the same
functional expression at all times. It is interesting to ad-
dress the question of scaling theoretically, to determine to
what extent it is valid during disordering and if there are
deviations as observed experimentally.

We have studied the disordering kinetics in a surface
overlayer as a function of time at several final tempera-
tures. Contrary to ordering processes, no power-law
growth with universal growth exponents is obeyed. A
leveling off is observed, which is lower for higher, final
quench temperatures. Monte Carlo simulations on a
model system confirm this result. The FWHM's are con-
stant during the disordering process, suggesting that the
average size is invariant with time. As deduced from the
almost time-independent profile line shapes, the probabil-
ity of eliminating domains is size independent for large
domain sizes. The absence of degeneracy in the disor-
dered phase might be responsible for the absence of
power law in the decay of the intensity and the constant
FWHM's. Activation energy extracted from the decay of
the peak intensity is 1.0+0.05 eV, in agreement with the
results of equilibrium experiments, confirming the role of
the overlayer configuration in modifying the diffusion
barrier. Ordering and disordering processes provide very
large experimental signals, because of the catastrophic
change in the symmetry of the system, to be used as a
universal method to determine surface diffusion
coefficients in systems with interactions.
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