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Determination of the spatial extension of the surface-plasmon evanescent field
of a silver film with a photon scanning tunneling microscope
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(Received 4 December 1992; revised manuscript received 9 March 1993)

A photon scanning tunneling microscope is employed to probe the surface-plasmon field in the evanes-

cent region of a silver film for p (parallel to the plane of incidence) and s (perpendicular to the plane of
incidence) polarizations of the light beam at several angles of incidence near the critical angle. The in-

teraction between the field and the probe is measured and compared to theoretical calculations involving

a single four-media model. A systematic analysis of images obtained for several positions of the optical
fiber above the film is presented and it is shown that, for tip-to-sample distances smaller than half the
wavelength of the incoming light, the collected intensity curves are identical in any area of the sample.

I. INTRODUCTION
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FIG. 1. Schematic of the photon scanning tunneling micro-
scope.

In this paper, we study the evanescent behavior of the
surface plasmons (SP), previously described by Ritchie, '

excited in metallic films in the Kretschmann
configuration. The extension, above the surface, of the
nonradiative surface plasmons is detected locally by the
optical probe of the photon scanning tunneling micro-
scope (PSTM). This microscope described by Reddick,
Warmack, and Ferrell at the Oak Ridge National Labo-
ratory and since developed by several groups ' is the op-
tical analogue of the well-known scanning tunneling mi-
croscope (STM). In our configuration a transparent
sample is placed on the base of a hemicylindrical prism
(index of refraction n, ) illuminated by a laser beam in to-
tal internal reliection (TIR) as represented in Fig. 1. To-
tal internal reAection occurs at the prism-air interface
and the evanescent field in the medium of lesser index of
refraction (n3=1 for air) is converted into progressive
waves by a sharpened optical fiber brought sufficiently
close to the sample (typically a few tens of nanometers).
The probe is scanned over the sample surface and varia-
tions of the intensity detected by the fiber are measured
and treated by a suitable detector-computer system.

A theoretical study of the field collected by the optical

fiber is given in Sec. II. A comparison between these cal-
culations and the experiment is developed in Sec. III. In
Sec. IV we discuss the PSTM-field isointensity lines in the
medium above the sample as a function of the sample
probe distance. We give our conclusions in Sec. V.

II. TRANSMITTED FIELD: FOUR-MEDIA MODEL

The basic purpose of the PSTM is to locally detect the
transmitted field in the evanescent region of diFraction of
a sample. In the present study, the optical fiber of the
microscope is first brought close to the surface and then
moved back in order to follow continuously the intensity
decrease as a function of fiber-sample distance. The
problem to be studied is a four-media problem, since the
presence of the fiber modifies the electromagnetic field
transmitted by the silver film. The field is frustrated by
the sensor and propagates up to the detector. To calcu-
late the intensity of the light transmitted in the fiber we
have considered the fiber as a semi-infinite medium of
quartz with an index of refraction n 4

=n i
= 1.458.

Indeed, we have shown in a previous paper that even
with this rough approximation the theoretical variations
of the electric field above a plane surface were in good
agreement with the experiments. This model described
the shape of the decay but neither the value of the col-
lected intensity nor the lateral variations of the elec-
tromagnetic field.

The transmittance in the fiber has been calculated by
dividing the Aux of the Poynting vector through a unit
surface of the glass by the Aux of the incident light.
From the boundary conditions at the three interfaces
z =0, z = —d&, z = —d2, the transmittance in p polariza-
tion in the fourth medium can be expressed as in Ref. 8.

The intensity of light transmitted in the fiber as a func-
tion of its distance to the sample is presented in Fig. 2
for several values of the angle of incidence in p polariza-
tion. The values of the parameters wavelength, indices of
refraction, and film thickness are, respectively, A, =632.8
nm, n 2

=0.05 —j4.3, and d, =50 nm.
In Fig. 2 it can be seen that the intensity of light col-
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III. EXPERIMENT
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B. Penetration depth

For the general case of rough surfaces, one defines a lo-
cal penetration depth d I(zo) at a distance zo:

2I(zo)
d„,(zo ) =

dI
dz z

where I(zo) is the intensity of light collected by the fiber
at a distance z0. The local penetration depth is related to
the local slope at each point of the decay curve. We have
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FIG. 5. Depth-penetration minimum d» as a function of the
angle of incidence in the two modes of polarization.

FIG. 4. Experimental transmittance in the fourth medium in
s polarization as a function of the distance between the silver
surface and the fiber tip, in s polarization. (1) O~=44. 9, (2)

O~ +0.5', (3) Op
—0.5', (4) Op + 1', (5) Op
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calculated the minimum value of the local penetration
depth (d, ;„)for each curve of Figs. 3 and 4. In Fig. 5,
d &;„is shown as a function of the angle of incidence for
s and p polarizations. For s polarization, d

&
is twice as

large as for p polarization, and it appears that the minima
occur for angles of incidence close to 6I . We conclude
that a better vertical resolution is obtained when the
PSTM is operated in p polarized light for these angles of
incidence. The figures presented in Sec. IV have been ob-
tained in these experimental conditions.

The curves shown in Figs. 3 and 4 have been obtained
for a fixed position of the tip, say 2, above the sample
[Fig. 6(a)j. For another position of the fiber, say B, the
decrease in intensity as a function of the distance present-
ed the same characteristics in terms of local penetration
depth for probe-to-sample distances ranging from z; to
z, +300 nm, as has been schematically represented in Fig.
6. It can also be seen in Fig. 6(b) that when the fiber-
sample gap increases, the local slopes of the decaying
field display stronger relative variations. Propagative
waves become indeed dominant (diffused light due to the
roughness of the surface) with respect to the evanescent
ones. They give rise to interferences modifying
significantly the local slopes. Thus, it can be expected
that the amplitudes Az of the isointensity lines of the
electromagnetic field depend on the position z of the tip.

IV. PSTM IMAGES OF A THIN SILVER FILM

In the constant-intensity mode, the PSTM gives an
image which is a map of the isointensity lines of the elec-
tromagnetic field due to the interaction of light with the
sample-fiber system. The feedback loop of the electronic
controller maintains the current constant by acting on
the elongation of the piezoelectric tube in the direction
perpendicular to the sample surface. A PSTM image is
the recording of these corrugations when the optical fiber
attached to the piezoelectric tube is scanned over the
sample.

We have examined in a previous paper' the PSTM
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