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Crystal surface with adsorbed impurities: Phonon frequencies and polarizations
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One considers a perfect crystal with a surface on which an incomplete layer of impurities or a layer of
an alloy is adsorbed. A general method allowing one to calculate the phonon spectral density given by
the imaginary part of the averaged Green function over the diferent configurations is presented. This
function is decomposed into two parts. The first one gives the shift of phonon frequencies and the fre-
quencies and polarizations of new surface phonons. The second part accounts for the broadening of the
phonon lines which is dependent upon the statistical distribution of the adsorbates. Quantitative results
are given for the case of copper adatoms adsorbed on the sites of the (100) face of a copper crystal. In
this paper the broadening of the phonon line is not considered and the evolution of phonon frequencies
and polarizations is given in terms of the adsorbate coverage.

I. INTRODUCTION II. MODEL AND GKNKRAL THEORY

For a long time, it has been recognized that atomic im-
purities in a three-dimensional crystal yield a more or less
important modification of the crystal properties. In par-
ticular, those depending upon the phonon spectrum have
been studied in detail. In this way, numerous methods al-
lowing one to calculate the phonon spectral density have
been proposed. '

After a long time spent on the study of crystals with
ordered surfaces, surface physicists have oriented their
works toward the study of crystals with disordered sur-
faces. The disorder will modify the propagation of pho-
nons along the surface, particularly those which are lo-
calized in its vicinity.

In order to study this problem, it is first interesting to
consider a perfect crystal with an ordered surface on
which an incomplete layer of impurities with a given dis-
tribution is adsorbed. This has been the subject of recent
works and it will be investigated in this paper.

Qualitatively speaking, the modification of the phonon
spectrum by such a layer of impurities will depend of
their wavelengths. For phonons of large wavelength
compared to the mean impurity or defect distance, the
perturbation to their propagation will certainly be small.
On the contrary, phonons of wavelength smaller than the
mean defect distance will be scattered by the impurities
adsorbed on the surface. The scattering process will yield
a shift of the phonon frequency and a broadening of the
phonon line. Furthermore, new surface phonon branches
can appear, as it is the case for an ordered layer of impur-
ities such as p(1X1), c(2X2), . . . structures, or in vici-
nal surfaces where the surface unit cell contains more
than one atom.

The results presented at the end of this paper will illus-
trate on a quantitative basis these qualitative expecta-
tions. Before that we present the calculation method,
which is quite general, and consider the incomplete layers
of adsorbed impurities as a perturbation which involves
the description of the scattering process within the
framework of the T matrix.

Let us consider a perfect crystal with a surface. The
surface crystallographic plane is composed of N unit
cells and in the direction normal to this plane (z) the
crystal is supposed to be infinite. Then the cyclic bound-
ary conditions are applied in the directions parallel to the
surface.

One assumes that there is one adsorption site in each
unit cell for given types of adatoms or admolecules which
can be considered as adsorbed impurities. The impurity
coverage 0, that is to say, the ratio of the number of oc-
cupied unit cells to their total number N, can vary from
0 to 1. In order to describe a given configuration of sur-
face impurities we ascribe to each adsorption site a vari-
able xI, which can take the value 0 or 1 according to
whether the site is vacant or occupied. Then, a given set
of xI variables, composed of N numbers 0 or 1, corre-
spond to a well-defined configuration.

With the same set of variables x&, an adsorbed layer
of alloy can also be described. Two atoms of types A and
B correspond, respectively, to the values 1 and 0 for the
site variable. For instance, the atom mass on a site lm is
then given by

Mt =M~ xt +M~(1 —xt )

and the force constant between atoms can be written in
the same way. Obviously, the case of adsorbed impurities
is recovered upon setting equal to zero the force con-
stants in which a B atom is involved as well as the mass
M~.

The dynamical matrix D of this system is an infinite
square matrix which can be decomposed into an infinite
set of submatrices of dimensions 3N X3N . Labeling the
different crystallographic planes by numbers 0, 1,2, . . . ,
with 0 for the impurity or alloy plane, the matrix D be-
comes

00 01 02

10 11 12

20 21 22
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where, for example, the terms 00 and 01 come, respec-
tively, from the interaction between impurity or alloy
atoms themselves and these atoms and atoms of the first
perfect crystal plane.

The D matrix is now decomposed into a sum of two
matrices:

D=D, +V,

where D, is the dynamical matrix of the perfect crystal
and V a perturbation matrix due to the interaction intro-
duced by the incomplete layers of impurity or the layer of
an alloy.

The number of nonvanishing 3N X 3N submatrices in
V depends upon the type of interaction between the
different atoms retained in the model calculation. For in-
stance, with only central forces between nearest neigh-
bors the nonvanishing terms are those of the 6N X6N
block composed of submatrices 00, 01, 10, and 11. If one
adds central forces between next nearest neighbors, one
should add the 20, 21, 22, 02, and 12 submatrices.

By definition, the Green matrix for the crystal model is
equal to

G =(co 1 D, —V —i—E) (3)

G =G, +G, TG, (7)

where T is the scattering matrix defined by the integral
matrix equation

T=v &v&+(v —
& v)—)6. T .

This relation is formally similar to those which define
the T matrix in the scattering theory by the way of the
so-called distorted-wave Born approximation. The dis-
torted Hamiltonian Ho and the perturbation potential
correspond to D, + & V) and V —

& V), respectively. In a
scattering problem, we should calculated the T-matrix
elements between eigenfunctions of Ho. Here we are in-
terested in the calculation of the so-called spectral densi-

where 1 stands for the unit matrix. In order to reduce
the strength of the perturbation in the following pertur-
bative development, we introduce the average of the V
matrix over the different configurations leading to the
same coverage 8 and denoted by & V). Performing the
average of each term one notices that the average of the
x& variable &x& ) is equal to the coverage 8, whatever
the statistical distribution of atoms in the 0 plane may be.
The average of the product x& xI ~ is the two-body
correlation function, which, with the stationarity hy-
pothesis, depends only upon the distance between the two
referred sites. G is rewritten as

6 =[ 1 —D, —
& V& —(V—

& V&) — ]

or by defining an "average" Green function

G, =[co 1 D, —
& V) —iE]—

6 =G, +G, (V—
& V))G

This last expression can be transformed into a more con-
venient form

ty, a function of eigenfrequency co, proportional to the
imaginary part of the Green function G

From relation (8) the scattering matrix is equal to

T=[1—(V—
& V&)6. ] (V—

& V&) .

With this expression one can demonstrate easily that the
T matrix has the same structure as V with respect to the
non vanishing submatrices. Therefore, the propagator
G between any pair of atoms labeled p and q and for the
directions a, o, that is to say, any term of G [Eq. (6)], is
equal to

~gq (co)=„g,q(co)+ g gpG, P(co)PT y(co) yg, (co) .
r, s P, y

(10)

It is therefore equal to the sum of two terms: a direct
propagator G„and an indirect one for which the prop-
agation passes through a scattering process (pTy) be-
tween impurity or alloy atoms and perturbed atoms of
the perfect crystal, or in general a scattering process in
the perturbed layers.

This decomposition and the above consideration are
also valid for the Green function & G ) averaged over
the different configuration which is given by the average
of Eq. (7). As G, is a constant with respect to this
operation we get

&G )=G, +G, &T)G,

and

&ago) —ag cr+ yyag p&pTy)yg cT

rs P, y

We can now look for the properties of the two propa-
gators with this last equation.

The dynamical matrix which defines the Green matrix
G, , or the free propagator, is equal to D, + & V ) . The
average of the perturbation matrix yields a matrix in
which the term corresponding to the interaction of any
pair of atoms or atom on itself is identical to those ob-
tained by a translation of any lattice vector. With cyclic
boundary conditions, the translational invariance is
satisfied as in the perfect crystal and

G, (co)= gexp[iK (R —R~)]„6,„(co,K), (13)
K

p q n an

where K is a vector of the Brillouin zone or phonon '

momentum parallel to the surface, and R and R are the
vectors giving, respectively, the position of atoms p and q
located in the crystallographic planes n and nq.

On the other hand, the matrix D, + & V) is equivalent
to the dynamical matrix of the perfect crystal on the sur-
face of which a complete layer of atoms is adsorbed. But
in this layer, the atom mass on each site is equal to the
average of Eq. (1)

Mi =M„8+M~(1—8)

and the central force constants are multiplied by
&x, )=8or &x, x,

One can thus expect that the adsorption of an averaged
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with

~ FTi'(co, K~)= g exp[ —iKi (R„—R, )](~Tr(co) & . (16)
R

By writing expression (16), we assume that the summa-
tion does not depend upon the position of atom r in its
crystallographic plane labeled n„, or with respect to
atomic positions R„and R„(~T~(co)& is only a function
of their respective distance. Upon this condition, the
sum over R„ in (15) yields a delta function
5(Ki —K2 —Cx). Considering the first Brillouin zone and
omitting numerical factors, this expression reduces to

gexp[iK (R Rq)] 9 (co K)
K

p q n n

with

(17)

„Q„(co,K)= g g g g „G,~ (co, K)~ FTr (ci), K)
P

P y n„n

layer of impurities or alloy atoms will yield a shift of the
surface phonon frequencies of the perfect crystal and the
appearance of new surface phonons. Correspondingly,
the bulk phonon density will be modified. A11 these
e8'ects are depicted by the imaginary part of the average
Green matrix 6, and for a given K vector by the imagi-
nary part of „G,„(co,K).

The expression of the indirect propagator can be
transformed by introducing in the second term of (12) the
Fourier expansion of G, given by Eq. (13). A simple ma-
nipulation leads to

g g g g exp[i(K, R —K2 R )]g „G,~ (co, K, )

p y K) K2 n„

X g exp[i(K~ —K, ).R„]
R„

X Q r G, „(~,K2)~ FTr (co, K, ) (15)
n

where I stands for the imaginary part.
As indicated above, the first term of (20) gives a contri-

bution to the spectral density at a given K value, com-
posed of the bulk phonon density and surface phonons
which are represented by 5 functions. Therefore, around
a surface phonon frequency, on a more or less large inter-
val of an co value, the imaginary part of G, (co, K) is strict-
ly equal to zero.

Let us consider now the second term of (20). It is first
necessary to notice that the ( T(co) &-matrix elements are
complex numbers. Their real or imaginary parts do not
vanish on the whole interval of allowed co values, except
perhaps in some isolated points. Therefore, the FT func-
tion [Eq. (16)] included in the definition of 9 [Eq. (18)]
should exhibit the same behavior with respect to the vari-
able ~. Then among the four products of three terms giv-
ing a contribution to the imaginary part of 9'(co, K), three
of them contain at least one imaginary part of G, (co, K),
i.e., the products I I I, I R,R„and R,R,I . The
real part of G, (co, K) does not vanish over the whole in-
terval of co variation. Consequently, in the vicinity of a
surface phonon, these products vanish and for this partic-
ular frequency they exhibit a 5 function as I G, (co, K)
does. Therefore, these three terms yield a modification of
the polarization amplitude of the surface phonons and of
the bulk spectral density. The remaining term, i.e., the
product R, ( G, )I ( TF )R, ( G, ), has a definite value for
each frequency and consequently modifies the spectral
density on all frequency values. Particularly in the vicini-
ty of a surface phonon this term yields, for each frequen-
cy, a finite contribution and the characteristic 5-function
phon on line can be destroyed. The phonon line is
broadened.

This broadening due to phonon scattering by impuri-
ties or alloy atoms can be seen in another way. Using the
usual iteration procedure, we get from Eq. (8) the infinite
expansion of the T matrix. Its averaged value is then

& T&=&(V—
& V&)G.(V —

& V&)&

Xr G, „(co,K),
s q

(18) +&(V—
& V&)G. (V—

& V&)G. (V—
& V&)&+ .

where the summations over index planes n, and n, are ex-
tended to all planes between which the ( T&-matrix ele-
ments have nonzero value.

With expressions (13) and (17), the average Green ma-
trix element (12) can be written as

(&Gq &
= g exp[i K (Rz Rq ) ]

(21)

Let us consider the first term. It contains two matrices
V —( V&. Due to the averaging procedure on the prod-
uct, each term of the resulting matrix can contain corre-
lation functions such as

(x, x, &
—&x, &(x,

X [„G,„(co,K)+„Q„(co,K)],n n (19)

„p„(co,K)= I [„G,„(co,K)+„Q„(co,K)],n n n n (20)

which shows that the average over the spatial distribu-
tion of impurities or alloy atoms yields an averaged
Green function having the property of translational in-
variance. Then the quantity of interest which should be
calculated is the spectral density for a given K vector, be-
tween planes n and n and for the two directions of pho-
non polarization a and o.. It is equal to

i.e., a correlation function of position of two impurities
from which its value at a very large distance has been
subtracted, a distance for which the two atoms become
decorrelated. Then there remains in the contribution of
this first term of the ( T & matrix element the fiuctuation
of the correlation function around its large-distance
value. Therefore one can expect that it will yield a
broadening of the phonon line.

The second term of (21) will exhibit the correlation
function of position for three atoms from which, as
above, the large distance value has been subtracted. The
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terms of higher order contain the same type of correla-
tion function between a larger and larger number of im-
purities. Each term will contribute to the broadening of
the phonon line. The whole expansion contains the set of
correlation functions, which is in principle necessary to
describe completely the statistical distribution of impuri-
ties or alloy atoms.

To the end of this analysis, it appears that the method
of calculation allows one to decompose the spectral densi-
ty into two components, one giving the surface phonons
lines, the other the broadening of these lines. As a first
step we expose, in this paper, only the calculation of the
first contribution and give some results relative to a sim-
ple case as an illustration.

III. CALCULATION OF THE DIRECT PROPAGATOR
OR THE GREEN FUNCTION FOR A CRYSTAL

WITH ADSORBED AVERAGE LAYER—
GENERAL METHOD

We intend now to calculate the matrix G, defined by
Eq. (5). Due to the translational symmetry of the matrix
D, + & V) each of these terms are given by Eq. (13). Then
the matrix to be calculated is G, (co, K), defined by the re-
lation

G, (co, K)=[co 1 —D, (K)—
& V(K)) —iE] (22)

The terms of this matrix „G,„(co,K) account for then an

propagation of the phonon of frequency co and momen-
tum K between the two crystallographic planes labeled
n and n for the directions 0. and cr, respectively, in the
planes n and n . If X is the number of the crystallo-
graphic planes of the bare crystal the matrix, G, (co, K)
has a dimension equal to 3(%+1)X 3(X+1).

We should therefore ascribe the same dimensionality to
the D, (K) and & V(K)) matrices. Labeling the plane
which contains the impurities by the subscript 0, the sur-
face plane of the crystal by the subscript 1, etc. , the
& V(K) ) matrix can be decomposed in four submatrices
equal to zero except the first squared block of dimension
3(n+1)X3(n+1) if n is the number of crystal planes
perturbed by the adsorbed impurities. The D, matrix can
be decomposed in the same way, but here the nonvanish-
ing block is the fourth one of dimension 3N X 3X.

In order to calculate the matrix G, with a perturba-
tion method, it is convenient to decompose
D(K)+& V(K)) into two others matrices D0(K) and
& U(K) ) such that

G0 (co, K)=[co 1 —D0(K) —ie]

which introduced into expression (22) leads to the rela-
tion

b 0
&U(K)) =& V(K)) —b,

S

where b is a 3 X3 diagonal matrix composed of the terms
of & V(K)), which account for the interaction of the
average impurity on itself. Now one defines a Green ma-
trix G0 (K) equal to

(1 —G0 &U))G, =G0 (24)

The Green matrices G0 and 6, are decomposed into
four submatrices having the dimension of the four corre-
sponding submatrices of & V(K) ) or & U (K) ):

G11 612 V 0
&U) =

() ()
6

G21 G22

In this way, relation (24) splits into four equations

[I G011U]Ga11 =G011 ~

G, 2, —G021[1+uGa» ],
Gollv ]Ga 12 G012

(25)

(26)

(27)

6,22
=G021VGa12+ G022 ~ (28)

„p„(co,K)=2' g b„„(b„„)"5(co —
011,)

k, K =const
(29)

where the subscripts np, nq label two crystal planes and
the superscripts e, o two directions. The b coefficients
are the terms of the unitary matrix which diagonalizes
the dynamical matrix.

Now we define an infinite set of coefficients which are
only dependent upon the momentum K:

CO

„a„2 (K)= f „p„(cg,K)T2n n, p n n
CO

dco
~m

(30)

where co is the maximum frequency of the crystal and
T2 the Chebyshev polynomial of first kind and order 2p.
These polynomials are orthogonal over the interval [0,1]
weighted by the factor (1—co /co )

'~ . Introducing
(29) into (30), one gets

By inspection of this set of equations one notices that (i)
when Eq. (25) is solved one can get in principle the other
three unknown submatrices, and (ii) the more interesting
physical information is contained in G, ». Its terms are
the Green functions describing the propagation into and
between the impurity and crystal planes, those which are
directly affected by the absorbed impurities. For these
two reasons, it is sufficient to solve Eq. (25).

This is a kind of nonlinear equation between matrices
of dimension 3(n+1)X3(n+I). One notices that this
size is in general small, depends on the range of forces be-
tween atoms introduced in the harmonic model of crys-
tal, and is independent of the number N of crystal planes.

Then Eq. (25) can be solved exactly with the method of
generating coefficients of Green function. This method
has been developed some years ago in order to calculate
the time or frequency-dependent Green functions. ' It
has been used in different physical crystal
configurations. ' For the sake of clarity, we recall
briefly the definition of the coefficients and how one can
get an expansion of the Green functions, limiting our ex-
posure to those which are frequency dependent.

Generally speaking, the spectral density to be calculat-
ed is defined by the relation
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„a„2(K)= X b:k(b:~)*T2,
k, K =const ~m

(31)

and, as the b matrix is unitary,

n an, 0 n ~n a~o.

„p„(co,K)=
n n

7Tco~ +1 co /corn

or setting

X „5„5+2+„a„2T2
p=1

where 6 is the Kronecker symbol. In this way, the spec-
tral density can be expanded on the basis of Chebyshev
polynomials and one gets

Obviously the Green matrices like GD» and G, » [Eq.
(25)] can also be expanded in the same way, the
coefficient of the expansion being now, respectively, the
a2 and A2 matrices. Now, using the form (34), these
two different expansions are introduced into Eq. (25).
Then each side of this relation becomes a polynomial
with respect to the p variable. The identification of the
terms of the same power contained, respectively, in the
left- and right-hand sides yields a recurrence relation be-
tween the Azp and a2p matrices which allows one to cal-
culate the set of the former knowing the set of the latter.
The result of this operation is given in detail in Appendix
A. Also exposed there is the method of calculation of a2p
matrices which are obtained from the set of generating
coefficient matrices of the bare crystal.

IV. MODEL FOR CALCULATION

co = co cos( 8/2), (32)

„p„(co,K) = 2
vrco sin( 8/2 )

X „5„5+2 g „a„2~cos(p8)
p=1

(33)

(34)

where p=i, expiO, A, ~ 1, and co is a complex frequency
which is equal to

2

co = (p+2+p ') .
4

(35)

Starting from A, values less than 1, the limit A, —+1 gives
the usual Green function of real frequency

„G „(co,K)n n

OO

„5„5+2 g exp(ip8)„a„2~

(36)

Taking account of the relation

„p„(a~,K)= I „G „(ai,K)267

7T

Eq. (33) is recovered, whereas the G real part is given by
OO

CO Sin0 p
—

1

(37)

Now, looking for the function which is generated by
the coefficients a2, one can demonstrate that the Green
function is given, in the complex plane, by the relation

r
QO

„G„(co,K)=, „5„5+2 g p"„a„2~

We consider now a fcc crystal with a (100) surface.
The center of each square unit cell is the locus of an ad-
sorption site. As explained in Sec. II, an adsorbed layer
is modeled by putting on each site an adsorbed atom or
molecule of type A or B. A given configuration of the al-
loyed layer is quantitatively described by ascribing to
each site a variable x& equal to 1 or 0 according to
whether the site is occupied by an impurity A or B. The
average value of the variable x, (x& ), is equal to the
coverage 0 of type-A adsorbate. In order to take account
of possible relaxation the distance between impurity and
surface plane is taken equal to a' (the distance between
crystal planes is a /2).

The range of harmonic forces between atoms is limited
to nearest neighbors. The size of matrices in Eq. (25) is
therefore 6 X 6 and the recurrence relations, allowing one
to calculate the generating coefficients of the unknown
G 1 1 matrix, are relations between matrices of this size.
They contain as an input the tz~ matrices (see Appendix
A) constructed with the generating coefficients of Green
functions of the (100) fcc crystal relative to the surface
plane. They have been calculated previously.

It remains to determine the perturbation matrix V and
its average over the impurity configurations. This opera-
tion is exposed in Appendix 8 and the different terms of
( V) are given. One should note here that the ( V) ma-
trix terms are independent of the distribution of the A
and B species, except the three diagonal terms of the di-
agonal 3X3 b matrix used to build the Green matrix
GD (co, K) [Eq. (23)]. These three terms depend upon the
probability of having couples AA, AB, BA, or BB on
two nearest-neighbor sites.

In the case of an adsorbed impurity (symbolically
B=0), these three terms become themselves independent
of the impurity distribution. Then the whole matrix ( V)
and consequently the Green matrix G, (co, K) have this
property. Therefore, the model for this calculation can
be seen as if an average layer of impurities was adsorbed
on the surface.

For 0 equal zero, the three terms of the b matrix are
equal to respectively, the square of vibrational frequen-
cies in the three directions of an impurity atom adsorbed
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on a crystal at rest and the matrix (U ) = ( V) —b=0
Therefore, 6,» =G0», and a dispersion relation is com-
posed of that of the bare crystal and of the three constant
frequencies pointed out above. This is the starting state
from which the perturbation is applied.

Before looking at the results, it is important to notice
that an isolated frequency, such as a surface phonon, is
represented in the spectral density by a 5 function. If co~

labels this frequency, expressions (31) and (32) show that
the corresponding generating coefticients are

„a„o=„B„(K), „a„=„B„(K)cos(p8z ),
p q p q p q2p

where „B„(K)is here a condensed notation for then n

product b„(b„)*. Therefore expression (33) gives
q

„p„(coit,K)=2ro5(ro roz )„—B„(K).n n (38)

In a practical calculation, this yields a kind of singular-
ity. The procedure which allows one to reduce it, to get
cori and „B„(K)values and the spectral bulk density, isn n

exposed in Appendix C.

V. RESULTS

Numerical calculation has been done for a (100) sur-
face of a fcc crystal, on which are adsorbed atoms of the
same type as those of the crystal. As previously ex-
plained, the adsorption sites are located on the center of
the surface square unit cell. The harmonic forces be-
tween atoms have their range limited to nearest neigh-
bors. Hence the model is suitable to represent copper
atoms adsorbed on the (100) face of a copper crystal.
Then pI 0=1 as well as all the reduced force constants

We consider the [100] direction, the x axis in our nota-
tion, z being normal to the surface. Due to the symmetry
it is well known that waves propagating in this direction
decouple into waves polarized in the sagittal plane (x,z)
and transverse waves (y). The result are given for the
former, which are currently detected in an experiment.

The contribution to the spectral density of a surface
phonon is a 5 function [Eq. (38)]. Then it can be decom-
posed into surface phonons and bulk phonon contribu-
tion p:
„p„(coi,, K)=2rog „B„( K) (5'—co„)+„p„(ro,K) .

The integration of this quantity over the interval of co,

[O, co ], should be equal to

CO

f „p„(roitK)dro= g „B„(K)+f „p„~(co,K)dro
S

as it is easily demonstrated from Eq. (33). This intro-
duces the unitarity property.

An example of a calculated spectral density is given by
Fig. 1. It is relative to the crystal surface plane on itself
(nz =nq =1) and for two polarizations normal to the sur-

O.S

FIG. 1. Calculated spectral density in the surface plane and
in the direction normal to the surface of the (100) face of a
copper crystal with adsorbed copper atoms at a coverage
0=0.15. The wave vector is equal to 0.55 of the Brillouin-zone
edge value in the [100] direction.

face (a=cr =z). The surface phonons are represented by
vertical bars of height proportional to the coefficient 1B1
of each phonon. Note that this is equivalent to integrat-
ing the quantity p over a small interval 2hco such that
[cori Aco, coit +Ego].

The frequency and the wave vector K are represented
in dimensionless variables by respectively, 0=co/cu and

=K a /2'. For the [100] direction y varies from
Oto1andq =0.

The residual oscillations observed in the phonon bulk
density, their amplitude being the greatest in the gap, are
due to the finite number of calculated coefficients (in this
case 600) and are analogous to a Gibbs phenomena.
Their amplitude decreases as the number of calculated
coefficients decreases.

Some results have been presented in a previous paper.
In particular the dispersion relations for different cover-
age values (8=0.055 and 0.1) have been given. Here we
expose the results in a different way. At a given value of
the wave vector y, we show the evolution of the surface
phonon frequencies A~ and their polarization with the
coverage 0. But as far as polarization is concerned, we
focus our attention on the most important ones, i.e.,
those relative to the impurity plane (n =n =0) and the
crystal plane (n =n =1) for the directions x and z
(a =o.=x or z). In our notation, these are the quantities
XBX ZBZ XBX d ZB Z
0 0~ 0 0~ 1 1~ a 1 1

Note that for 0=0, there are three frequencies. As ex-
plained previously, these are the two frequencies corre-
sponding to the vibration of an impurity atom with crys-
tal atoms at rest, which in the case studied here are equal
to Ax=0. 35 and Qz=0. 5, and the crystal surface pho-
non frequency. The former are polarized uniquely in the
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impurity plane, i.e., 08o and 080 are equal to 1 for Q~
and Qz, respectively. For 8=1 the spectral density of
the bare crystal is of course recovered.

g =0.9. The results for this value are given in Figs.
2—6. Figure 2 shows three surface phonons labeled 1 —3.
To these labels the conventional notations SP (sagittal
parallel longitudinal) and SV (sagittal vertical) have been
added, following their polarization. The subscript 00 or
11 refers the plane of their localization. Moreover, a lo-
calized mode in the gap of phonon bulk density appears.
This last one is mainly polarized in the x direction, in the
crystal surface plane (Fig. 5) and for higher coverage in
the impurity plane (Fig. 3). It corresponds, in the usual
notation, to an S6 mode.

The most important features are the three surface pho-
nons which, as pointed out above, are generated by the
three frequencies for 8=0. These are Qx =0.35,
o+o 1 Qz 0 5 ogo j. ' and for this wave-vector
value Q„=0.496, , 8& =0.989. They evolve with the
coverage until they disappear for coverage greater than
0.7 in the bulk band (2 and 3) or give again the surface
phonon of the bare crystal Qa(1). For 8 greater than
0.5, the former are mainly polarized over z and x direc-
tions in the surface and impurity planes (Figs. 3 and 6),

Boo

0.5—

Cu-Cu{100) [100]

0.5
I

8

1

0.7—
BB

FIG. 3. Copper adatoms on a copper {100)face. Amplitude
of polarization of the surface phonons in the impurity plane
along the direction parallel to the surface, as a function of cov-
erage. The wave vector is equal to 0.9 of the Brillouin-zone
edge value in the [100]direction.

0.6
B*'

00

2
1

Cu-Cu{100) [100]
y„=0.9

1

0.5

0.5—

0.3—

0.5
I

8

1

FIG. 2. Copper adatoms on a copper I,'100) face. Surface
phonon frequencies as a function of coverage. The wave vector
is equal to 0.9 of the Brillouin-zone edge value in the [100]
direction. BB refers the bulk band limit, SV and SP indicate
sagittal vertical and parallel polarization, respectively.

0.5

8

1

FIG. 4. Same as Fig. 3, but along the normal to the surface.
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Bxx
11

Cu - Cu(100) [100]
q„= 0.9

FIG. 5. Same as Fig. 3, but in the surface plane.

respectively, whereas the latter is strongly polarized
along the normal in the impurity plane (Fig. 4) for 8
greater than 0.4.

For small 8 values, the frequency 1 (SPOO) increases un-

til it becomes equal to the practically constant frequency
2 (SVOO). At the crossing point 8, =0.266 a gap open
which in this case is very small. For 0 less than O„pho-

nons 1 and 2 are strongly polarized in the impurity plane
in the x and z directions, respectively. For 0 greater than
6[, the reverse is true, yielding an exchange of polariza-
tion on a small interval of 8 variations (b,8%0. 1) (Figs. 3
and 4).

The same phenomenon holds for very small coverage
between frequencies 2 and 3. At 0=0, 02=0+ =0.496
and, B, =0.989 (SV»), whereas 03=0.5 and OBO =1
(SVOO). At this point, the frequency values are very close
to each other and are polarized in the two diFerent
planes. Then their interaction depends on the coupling
between these planes which at this very small coverage is
very small also. Therefore, the "width" of the opened
gap is so small that it is undetectable with the precision
of the numerical calculation. Figures 4 and 6 show the
result of polarization exchange. At 0 greater than or
equal to 5 X 10, frequencies 2 and 3 are strongly polar-
ized always on z, but on the impurity and surface plane,
respectively, a situation which is the reverse of that
which prevails for an infinitesimal coverage value.

y„=0.55. The results for this value are given in Figs.
7—11. The evolution of localized phonon frequencies
with coverage is very similar to that found in the preced-
ing case. The phonon 4 (S6) in the gap of the bulk pho-
nons appears in the interval of coverage values between
0.4 and 0.92. It is polarized in the two planes 0 and 1 and
in the two directions x and z. One notices that the polar-

ization, 8, is important and has a maximum around

8=0.67 (Fig. 10).
The evolution of the phonons 1 —3 is similar to that of

)[
822

11

Cu-Cu(100) [100]
q„= 0.9

0.7— BB~

0.6—
Cu — Cu (100) [100]

„= 0.55

0.5 0.5—

0.0 voo

Poo

0,3 I

0.5

FIG. 6. Same as Fig. 3, but in the surface plane along the
normal to the surface.

FIG. 7. Same as Fig. 2, but with the wave vector equal to
0.55.
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)[ Bxx
00

h Bxx
11

Cu — Cu (100) [100]
y„= 0.55

0.5—

0.5
I

0.5

FIR. 8. Same as Fig. 3, but with the wave vector to 0.55. FIG. 10. Same as Fig. 5, but with the wave vector equal to
0.55.

the preceding case. The difference comes from the start-
ing values at 8=0. The Qz =0.5 frequency is located in
the bulk band, Qx is unchanged, but the surface phonon
of the bare surface Qz =0.401 is also polarized mainly in
the normal direction (,B, =0.7097,

& B, =4.31 X 10 ).
As 8 varies, phonon 1 pushes away phonon 2, which

encounters phonon 3 emerging from the bulk band. At
the encounter point (8=0.3) a gap is opened and there is
an exchange of polarization, in particular in the impurity
plane along the direction normal to the surface (Fig. 9).
During this evolution, phonon 2 disappears into the bulk
at 61=0.82, whereas phonon 1 gets progressively and con-

Bzz
00

Cu — Cu (100) [100]
y„= 0.55

Jl

Q
ZZ

Cu — Cu (100) [100]
y„= 0.55

0.5— 0.5

0.5 0.5

FIG. 9. Same as Fig. 4, but with the wave vector equal to
0.55.

FIG. 11. Same as Fig. 6, but with the wave vector equal to
0.55.
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~~~m
0.5—

0.4

0.3—

Cu — Cu (100) [100]

X

BB~ —0.5

plitude normal to the surface '8' to which a contribution
of the amplitude of polarization parallel to this surface
8 is added. To our knowledge there is no reliable

theory in the case studied here, i.e., a surface with ad-
sorbed impurities. Nevertheless, we can expect that the
preceding conclusions will be true provided that the po-
larization amplitude in the impurity and crystal planes
are multiplied respectively by 8 and (1—0) . With this
qualitative rule, it is possible to anticipate the results of
measurements.

=0.9. Due to its polarization along z in the surface
plane (Fig. 6) and along I in the impurity plane (Fig. 3),
frequency 3 should be detected up to a coverage approxi-
mately equal to 0.6. For 0 less than 0.3, its value is given
by the linear relation

0.2

Q3 =0.496+0.240,

0.1
0.5

8 0

FIG. 12. Copper adatoms on a copper (100) face. Surface
phonon frequency and amplitude of polarization as a function
of the coverage. Curve labeled R gives the frequency of a reso-
nance in bulk band. The wave vector is equal to 0.3 of the
Brillouin-zone edge value in the [100] direction. BB refers the
bulk band limit, SV and SP indicate sagittal vertical and parallel
polarization, respectively.

tinuously the characteristic properties of the surface pho-
non of the bare crystal at 8= 1.

y =0.3. For this wave-vector value, the frequencies

0& and Qz at 0=0 are inside the bulk band. The surface
phonon is characterized by Q~ =0.246, ,8, =8.72
X 10

~
8

&
=0.368. The evolution of this frequency

and its polarizations in the two planes and two directions
are given in Fig. 12. All these quantities vary continu-
ously without any noticeable features. However, the fre-
quency Q~ =0.35 at 0=0 gives rise to a resonance locat-
ed in bulk band at a frequency which increases with cov-
erage, but disappears as soon as this value is greater than
0.5 At low coverage it appears as a peak in the spectral
density in the impurity and crystal planes, respectively,
along the x and z directions. As the coverage increases,
this resonance peak is detectable in the polarization rela-
tive to the two planes and two directions.

a relation which can characterize the presence of an ad-
sorbed impurity on the surface.

The frequency 1 should be measured in the interval of
8 [0.4, 1] because it is then strongly polarized along z in
the impurity plane (Fig. 4). For coverage less than 0.4,
the possibility of detection is doubtful. But if it is, one
should observe the exchange of polarization between fre-
quencies 1 and 2. This will yield an increase of the peak
width for the coverage corresponding to the small gap be-
tween these frequencies.

=0.55. Frequency 1 could be measured from cover-
age 0.2, 0.3, up to 1, due its polarization along the normal
in the impurity and crystal planes (Figs. 9 and 11). For
the same reason frequency 2 seems to be detectable in the
whole interval of coverage where it appears. However, it
is closed to the bulk band frequency for 0 greater than
0.25 and then possibly cannot be readily separated from
the bulk phonon contribution in a measurement. If this
is the case, the exchange of polarization with frequency 3
cannot be seen and this last frequency will not be detect-
ed too.

«p =0.3. The surface phonon can be surely detected in
the whole interval of coverage variation except perhaps
when its frequency is closed to the bulk band limit as ex-
plained above. But the most important point here is to
characterize without ambiguity in the measurement the
presence of the resonance which appears even at very
small coverage.

VII. CONCLUSIONS

VI. MEASUREMENTS

Experimentalists are able to detect surface phonons
and to measure their frequencies. In a measurement
these phonons appear as isolated peaks over a more or
less intense background. A peak intensity is proportional
to the cross section of the single phonon exchanged be-
tween the incident particle and the surface.

Different theories indicate that the cross sections of the
measured phonon is proportional to its polarization am-

We have considered in this paper a perfect crystal on
the surface of which is adsorbed an incomplete layer of
impurities or a layer of alloy. A theoretical approach,
similar to that used in the case of a three-dimensional
disordered crystal, ' is proposed, allowing one to calculate
the average Green functions and therefore the phonon
spectral density. These functions are decomposed into
two terms giving, respectively, the new surface phonon
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frequencies and their broadening.
The first term, which corresponds to virtual-crystal ap-

proximation, has been calculated in the case of copper
atoms adsorbed on the (100) face of this metal. For cov-
erage less than approximately 0.5, new surface phonons
appear and their frequencies evolve with adatom cover-
age. At a higher value of this quantity the whole system
can be seen as a crystal with vacancies on the surface.
For small coverage in vacancies, there is only one surface
phonon of frequency and polarization close to that of the
surface phonon of the perfect surface. The strong
modification to the dynamic of surface with impurity
atoms is then due to adatoms.

The present results can be tested in an experiment and
could help to characterize the presence of adatoms on the
surface, as it is the case in surface roughening. Then sur-
face phonon measurements can be used to separate the
effect of roughening of the onset of strong anharmonicity.
In this last case, the dispersion relation of surface pho-
nons should remain approximately that of the perfect
surface.

0
UGa»

sll
Ga 1 1 0

(0 b——iE) ' 0
(A2)

sll

This matrix equation is first multiplied on the left-hand
side by the matrix

T

0 —b —ic 0
0 p

in which the two diagonal block are diagonal matrices.
Then the G matrices are replaced by their expansion
(Eq. (34)], which can be written

G, „= 1+2 Q QA2P0 1 —p

this notation Q is a dimensionless frequency as it is usual
in this type of calculation. Equation (25) can be rewritten

(0 —b —iE)
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APPENDIX A

The Green matrix Go (Q„IC ) [Eq. (23)] is equal to

(0 —b —iE) ' 0

0 (A1)

where the matrix (0 b —iE) is—a 3X3 diagonal matrix
and G, is the Green matrix of the bare crystal. Then,
Go» in Eq. (25) is similar to Go, except that the G,
block is reduced to a 3n X 3n block with n the number of
the crystal planes directly affected by the impurities. In

G, » = 1+2 g Pa2
4 p

~2 1 2 P

Afterwards one multiplies each member by the number
(0 /4)(1 —p ) in order to suppress the denominators
(1—p ) '. Using the relation (35), each member is
transformed into a polynomial with respect to the p vari-
able. Identification of the terms of the same power yields
the recurrence relations. In order to give their expres-
sions in compact form, we define the matrices:

0 0
with g0= 0 1

0 0
g2p= 0 a2p

b 0
0

0

0

1 0

0 0

where the first blocks 0, 0, b —0 &2, and 1 are a 3 X3 di-
agonal matrix. Then

Ao=1, A2= [u+B+g2],
m

4
A4 — [(u+B ) A2+g2v ]+g4 —1, ,

Q

A6=
2 [(v+B)A4+2g2vA2+(g4 —

—,
' l, )v —,'B]+g6——g2+goA2,

m

[(v —B)A6+2g2uA4+2(g4 —
—,1, )uA2 BA2+g6u] +g—sg4+goA4,

Q

4~2n-
m

n 2

(~+ ) A 2n —2+ g2vA 2n —4+2(g4 2 s )~A2n —6 B 2n —6+ X g2p A 2n —2p —2+ 2g2n —2v
p =3

+g2n g2n —4+g0~2n —4+ s ~2n —8
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The generating coeKcient matrices a2 are those of the
bare crystal with a surface. A general method of calcula-
tion has been exposed in Refs. 6 and 7. They are those of
an infinite crystal with a surface.

APPENDIX B with

O 1 1 O
xvZ Zvx* 2 ~ (501)d S Zvx xvZ*

Sc x 0 1 1 0

V = V»" — 2(5o )d S zVy «Vz'
0 1 1 0 Sc y 0 1 1 0

0 VI =i Vo = —2(5 ')d, (C +C ),

1+1,m, 1 "l,m, o ~l, m, o c

with

~l, m. O ~AXI, m, O+I B( X!,m, O)

4a'
a +4a'

In order to recover the symmetry, one proceeds to a uni-
tary transform y 'Vy, where y is a diagonal matrix of
terms (pI 0)

' . All the matrix elements between
atoms belonging to planes 0 and 1 are then expressed in
functions of the quantity

F01 +I, m, O

Pl, m, O

This operation is equivalent to a change of basis for the
displacements ul 0 which become ul OQIII, I 0 and are
unchanged for the others.

Now we proceed to the average of y
' Vy. Due to the

symmetry of translation, any displacement can be written
exp(iK Rl bl, ), and the matrix reduces to a 6X6 matrix
called ( V) in the text. Its nonvanishing terms are

"V"=»V» =2d, (5')+2(5 )(1 C„C, ) ="b"=»b»—,

zvZ 4(50)d zbz

V1
—»1V»1=2dg(po ) V =4d (po )

xvy yvx 2(500)S

xvx xvx — 2(501)d C

«Vy =»V» = —2(50') d, C, ,

In order to determine the V matrix element, one writes
the equation of motion of the atoms with atomic displace-
ment u proportional to exp(icot). As usual the mass,
force constant, and frequency are transformed into di-
mensionless quantities, using atom crystal mass M and
the nearest-neighbor force constant between crystal
atoms a, as scaling quantities. Then the equations are
written with the dimensionless frequency 0=01(M/a)'
the force constant ratio pA B =a„B/a between the im-
purity and atom of the crystal surface,
p A „„BBB

=a „„ABBB /a between impurity atoms,
PI, , O I AXI, , O+I B(1 XI, , O) I A, B ™A,B /~
impurity atom, and pl 1=1 for a crystal surface atom.
This di8'erence in the p value yields a V matrix which is
not Hermitian. For instance, two symmetric terms with
respect to the diagonal can be written

I, m, O "I+1,m, 1 dcl~l, m, O/Pl, m, O

2aa
d

a
a +4a' a +4a'

C =cos(vrtp„) S„=sin(cry„),
aK„—=my„,

and the equivalent definition for the y direction

F1
0 ~1 mo

Pl, m, O

=
I:XI,m, OxI+1, m+1, 0(&AA

—2&AB+&BB )

+(I AB ~BB )(+ImO+XI+1, m+1, 0) ~BB 1 P!,mO,
The average values of P ', 5, and 5 ' do not depend upon
the distribution of the A and B species, as in the case of
an alloyed layer

(p ') =p„e+p (1—8),

(5")= " 8+ '
(1—8),

1/P A t/PB

(5')= "8+ '(1—e),
Pw Pa

or on the distribution of an impurity (IBB=pB =0)

(n")=p„e, (5")=
+PA PA

But the average of 6 depends upon the A and B species
distribution because it contains the product of two
nearest-neighbors variable x. For a random distribution,
it is equal to

(5 ) =8 +(1—8)
Pa pg

+8(1—8)PAB +1 1

pg pg

The case of adsorbed impurities is singular. 6 reduces
to

00 ~AAXI, m, O

XI+1,m +1,0 (~AB ~BB
P~&l, m, O

and its average does not depend upon the impurity distri-
bution
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APPENDIX C

Each generating coefFicients can be decomposed in a
sum of partial coefficients relative to surface phonons and
bulk phonons contribution:

cos(P8tt ) sin[(P+1)8z ]„B„P+
nto sin(8+ /2) "~ sinO„

(C3)

„A„2~(K)= g „B„(K)cos(p8+ )+„A„2 (K), (Cl)1l 1l 2p P
R n n 2p

where s is the number of surface phonons at the given K
value. In a numerical calculation, the number of
coefficients „A„2~(K)calculated is limited to a number,

say P. Then a surface phonon gives a contribution to the
spectral density equal to

P

„B„ 1+2g cos(p8z ) cosp8
neo sin 8/2

2 Q gO
neo sin(8/2) "~

cos[(P+1)8~ ] cosP8 —cos[(P+1)8]cosP8+
X

cosOg cosO

(C2)

which has a maximum value for 0=0+ equal to

roughly speaking proportional to P.
This yields, in the spectral density graph, a peak sur-

rounded by oscillations of large amplitudes (see, for in-
stance, Ref. 10). So the approximate value of co+ (8z ) can
be identified: for 0=8+ a maximum proportional to P
should appear at the same position in the different spec-
tral density calculated „p„(for instance, n~ =n, a =o,
a=x, y, or z). Then from expression (C3), an approxi-
mate value of each „B„canbe obtained.n n

These are the starting values for a least-squares adjust-
ment where one compares the exact p value and the value
given by the sum of surface phonon contribution. One
assumes that the contribution of bulk phonons vanishes.
This is true if the adjustment is realized for co values
chosen on each side of the co+ values and far from small
Ace, and if the number P is sufficiently large. With the
exact coR and B values known, expression (Cl) gives the
generating coefficients relative to the contribution of bulk
phonons.
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