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Quadruyolar ordering in tetragonal TmAgz
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The occurrence of a nonmagnetic transition at 5 K in TmAg2 (MoSi2-type tetragonal symmetry) is an-

alyzed as a ferroquadrupolar ordering within the orthorhombic y-symmetry-lowering mode. The
crystalline-electric-field parameters are obtained by inelastic-neutron-scattering and magnetic-

susceptibility measurements. Both the magnetoelastic couplings and the quadrupolar pair interactions
are then determined by third-order magnetic-susceptibility, parastriction, and ultrasonic-velocity experi-
ments. The great coherency between these determinations allows us to understand completely the mag-

netic properties in both the orthorhombic and tetragonal phases. TmAg2 is then an archetype for com-

pounds ruled by quadrupolar interactions.

I. INTRODUCTION

The study of quadrupolar interactions concerning the
unfilled 4f shell is well developed for rare-earth com-
pounds. It addresses the complex problems of both the
crystalline electric field (CEF) acting on a 4f ion and the
pair interactions between different 4f ions. These prop-
erties have been extensively studied in many systems ex-
hibiting orbital degeneracy, as reported for cubic spinels
such as mixed chromites. The literature concerning
rare-earth ions is rich with very complete reviews of the
Jahn-Teller effect in rare-earth insulators within the
tetragonal zircon structures. ' It demonstrates the
relevance of the mean-Geld approximation to the descrip-
tion of Jahn-Teller orderings such as the paradigm com-
pound TmVO4, as well as to the analysis of the balance
between quadrupolar and spin couplings such as TbPO4.
A main feature of these systems is that the Jahn-Teller
coupling dominates the pair interactions, which are medi-
ated by phonons in these insulators. However, some
shortcomings occur in the pseudospin treatment, which
neglects the exact mixing of the eigenfunctions by the
CEF and therefore the coupling between levels; usually
only low-lying levels are considered.

In rare-earth intermetallics, the existence of quadrupo-
lar interactions has been studied only for cubic symme-
try. ' One-ion magnetoelastic couplings have been ob-
served, which lead to record values for the spontaneous
magnetostriction [1.7% for the tetragonal symmetry-
lowering mode in Cezn (Ref. 5)]. Quadrupolar orderings
have also been observed in the paramagnetic state, for in-

stance in cubic TmCd and TmZn. In these standard sys-

tems, a close coherency has been found between different
determinations of the quadrupolar couplings. This has
been facilitated by an exact knowledge of the CEF. The
main difference from the rare-earth insulators is that in

these intermetallics the pair interactions, mediated by the
conduction electrons, dominate the magnetoelastic cou-
pling. It is these interactions that are then responsible
for the quadrupolar ordering; if negative, they may drive
antiferroquadrupolar orderings as in Ce86 and PrPb3. '

Such thorough studies are made possible by the small

number of magnetoelastic and pair-interaction
coefficients that are present within the cubic symmetry.
Rarer are similar analyses for lower symmetries, such as
tetragonal or hexagonal, although the susceptibility treat-
ment, developed in cubic symmetry, has also been estab-
lished. The literature gives only a few magnetoelastic
coefficients in a few hexagonal RCo& (Refs. 6 and 1)
(R =rare earth) and RNi~ (Ref. 7) compounds. The RAg2
series, with tetragonal symmetry, appears to us a favor-
able case for studying quadrupolar couplings. Indeed,
several compounds, TbAg2, DyAg2, HoAg2, and ErAg2,
exhibit, immediately below the Neel temperature, com-
plex modulated magnetic structures which transform,
through first-order transitions, into commensurate
magnetic structures. Magnetoelasticity and, more gen-
erally, quadrupolar couplings play an important role in
such processes, for instance in cubic TmGa3 or DySb. '

In addition, TmAg2 has been observed to undergo a
second-order transition around 5 K, the nonmagnetic
behavior of which was confirmed by the absence of any
magnetic rejections in a powder neutron-diffraction ex-
periment. ' This transition might then be of quadrupolar
origin.

We present here an extensive study of the magnetic
and magnetoelastic properties of TmAg2. We first briefly
recall the relevant Hamiltonian and the susceptibility for-
malism, which allows us to analyze the magnetic and/or
quadrupolar response to external stresses such as a mag-
netic field and ultrasound waves. We then present the
complete determination of the CEF levels and eigenfunc-
tions from inelastic neutron spectroscopy (INS) and mag-
netic susceptibility measurements. In Sec. V, the analysis
of the third-order magnetic susceptibility, the parastric-
tion, and the ultrasonic velocity associated with the
different symmetry-lowering modes of the tetragonal cell
leads us to conclude that a ferroquadrupolar ordering
within a y-orthorhombic symmetry occurs. In Sec. VI,
low-temperature magnetic properties are found to agree
with the previous analysis. In conclusion, the coherency
of all the results is emphasized, which makes TmAgz an
archetype for such systems ruled by quadrupolar interac-
tions.
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II. FORMALISM

The magnetic properties of the 4f shell are described
for a tetragonal symmetry with the following Hamiltoni-
an:"

&=&CE„+&z+&~+&g+&M~+(E,)+E~+Eg) .

The CEF term &CE„ is written using the operator
equivalent method' within a system of x, y, and z axes
parallel to the [100], [010], and [001] axes of the body-
centered lattice cell, respectively:

&ca„=aq V~02 +Pq( V~04+ Vg04 )

+r J(V606 +V. 606) .

0& are the Stevens operators, V& the CEF parameters,
az, Pz, r J the Stevens coefficients. The 4f magnetic mo-
ment is coupled through the Zeeman term to the applied
magnetic field, H, corrected for demagnetizing e8'ects:

02=3J, —J(J+1),
g2 —J2 J2

2 x y

P,J
= ,'(J;J—&+J.J;) (ij =xy, yz, zx) .

Note that in tetragonal symmetry, the Oz component is
already ordered by the CEF, but this does not exclude the
possible existence of (02 & quadrupolar pair interactions.
Only magnetoelastic contributions linear in strain and re-
stricted to second-rank terms are considered here. They
read in symmetrized notation'" as

(galEal+ga2sa2)00 g YEr02 gsEspME 2 2 xy

The strains c"'s are given in Table I. The 8"'s are the
magnetoelastic coefficients. Note that two-ion magneto-
elasticity is usually weak in 4f intermetallics' and is
therefore neglected here. The related elastic energy is
written as

&z = gJpsH'J . (3)
—1Cal (eal)2+Ca12 al a2+ ] Ca2( ag)2

el 2 P P E, E
2 P

The bilinear interactions of Heisenberg type are taken
into account within the mean-field approximation
(MFA):

&s = —gzp~nM J, (4)

with M=g~p~(J&. n =8*IC is the bilinear exchange
coefficient, which may be related to an exchange interac-
tion temperature t9* through the Curie constant C. The
study of GdAg2, where Gd is in an S state, has shown n

to be isotropic. ' Within the MFA, the two-ion quadru-
polar term reads

+ ,' Cg( er)-' +,'c,'( e)-'+ ,'C,'[(e;-)'+(e;)'] .

The C~p's are the symmetrized background elastic con-
stants in the absence of magnetic interactions (Table I).
Corrective energies E~ and E& result from the MFA
treatment:

E ——'nM

E = &Ra((oo &2+ ~it. r((0 &) + ~ICs((P &)

+,'rc ((p,„&'+& p„&') .

with

a~= —l~ &O,'&O,' —Zr&O,'&0,' SC'&P., &P., —

Z'[(p„&P„+&
p—„&p,„]

Minimizing the free energy with regard to the strains
gives the equilibrium strains as functions of the expecta-
tion value of the corresponding quadrupolar operators.
Replacing these e"'s makes &ME (Eq. 6) undistinguish-
able from && [Eq. (5)]:

TABLE I. Symmetrized strains and elastic constants in tetragonal symmetry.

Representations Strains Elastic constants

a1
xx yy

1/2
2

E
cx2—

3
C zz

xx + ~yy

2

C ' —
3 (2C11+2C12+4C13+C33)

( C11 +C12 C13 33 )
3

C = —'( C11+C12 4C13+2C33 )

I3 1
(c,„—c.yy )v'2 C11 C12

c'= &2c.„y C'=2C„

&1=+2~zx

F2 —+2Eyz
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&g+&ME= —G (02 )02 —G~(02 )02 G—(P )P
—G '[ ( P,„)P,„+( Py, )P, ] (9)

with

(g && )2C&2 —2g &&g ~2( &&2 + (g ~2 )2(

tions. From an experimental point of view, the a mode is
present alone for H parallel to the [001] axis, the y and 5
modes are active for H along the [100] and [110] direc-
tions, respectively.

The strain induced in the disordered phase by a mag-
netic field is given by

G~= +Er
C

(12)

B"c"= y~gH
C~0

with

x")
XQ

p

(1—ny0) (1—G"y„)

(17)

G=(~'+re .
C0

(13)

In the ordered phases or in the presence of large external
stresses, the Hamiltonian has to be self-consistently diag-
onalized with regard to the three magnetic components
and the five quadrupolar ones. However, perturbation
theory can be applied very fruitfully to the disordered
phase. It is then possible to obtain analytical expressions
of the free energy associated with each of the symmetry-
lowering modes and then to describe the corresponding
couplings. Calculations are extensively described in Ref.
11. The magnetization induced by a magnetic field along
the [001], [100],and [110]directions may be expanded as

This expression includes the renormalization of the ap-
plied field by the bilinear interactions, and of the quadru-
polar response by the quadrupolar pair interactions. For
a magnetic field applied along a (a&a2a3) direction, the
change of length measured in the (p&p2p3) direction is
given by

PlP2P3
ppp 5l
ala2a3 I a, a2a3

a1

3 6
+ E(X2( 2p2 p2 p2 ) + Er(p2 p2 )

2

+&2E p,p~+ &2p3(s', p, +E2p~) .

m=y H+y'"H3+

with

X0

1 —ny0
'

2G~(y~ ~) 2G&(y~ ~)
~(3) ~(3)+ a + P

nXo)' 1 —G X 1 —G"X

(14)

(15)

Thus different sets of experimental configurations allows
us to study separately the u, y, and 5 modes and to deter-
mine the corresponding magnetoelastic and pair interac-
tion coefficients. For instance, the linearized experimen-
tal temperature variation leads to B~ and G~ by compar-
ison with the variation of I/(y' ')'

H
I
g 100 g010 I/2

100 100

(16)

The modes p=y, 5 are absent for H along [001]. The
mode c., which is weak in TmAg2, will be not considered
in the following.

yM is the usual (first-order) magnetic susceptibility; y0
is the single-ion susceptibility, which is anisotropic be-
tween the [001] axis and the basal plane. The third-order
magnetic susceptibility gM' describes the initial curvature
of the magnetization curve and depends on four single-
ion susceptibilities: g0

' describes the curvature of the
magnetic response in the absence of any magnetic in-
teraction. It is anisotropic between the [100], [110],
and [001] directions. The strain susceptibility,
y =B(O~z)/Bop' characterizes the response of the Q„
quadr upolar component to the associated strain;
y„' '=B(0~2 ) /BH is the equivalent in the presence of a
magnetic field. The y„'s and g„''s are anisotropic, be-
cause they concern different quadrupolar components.
The single-ion susceptibilities are deduced immediately
from the CEF levels and eigenfunctions (see expressions
in Appendix A of Ref. 11. Typical temperature depen-
dences are also given in Ref. 11). These susceptibilities
have to be renormalized by possible quadrupolar interac-

Cox
1/2

„,[ I —G'Xy]' "[1 —nX0]

(20)

A third experimental probe to determine the B"'s and
K"'s is the analysis of the softening of the elastic con-
stants. For instance,

C~=C( (Br)—Xy

I —E~y (21)

This technique has been extensively developed in cubic
intermetallics' as well as in tetragonal zircons.

From an experimental point of view, the initial step is
the knowledge of the CEF, which determines the single-
ion susceptibilities. The fit of the first-order magnetic
susceptibility along the [001] axis and in the basal plane
confirms the CEF parameters and provides us with the
bilinear coefficient 0*. The third-order magnetic suscep-
tibilities, parastrictions, and elastic constants subsequent-
ly give the different pairs of B"and K" coefficients.
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renders the determination of the level scheme more com-
plicated. INS, therefore, has to be interpreted in con-
junction with additiona1 experimental probes. In the
present case, as for HoAg2, ' the first-order magnetic sus-
ceptibility is used, because it shows clear CEF features
and is not influenced by quadrupolar terms. In the disor-
dered phase, the Hamiltonian reduces to

YAg &CEF—+Rli+&z+Eq . (22)
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FIG. 1. Low-temperature thermal dependences of the electri-
cal resistivity in TmAg2 and YAg2 (upper part) and of its deriva-
tive Oower part). This latter is normalized by a ratio 93.8
J/pQ cm to the quadrupolar specific-heat anomaly.

For Tm ions, the tetragonal symmetry removes the de-
generacy of the J=6 multiplet into seven singlets and
three doublets. The 2)6 rotation group reduces to

2) =2I, +I +2I +2I' +31 (23)

with the irreducible representations of the 2)4 point
group. ' The corresponding CEF eigenfunctions are re-
ported in Table II. The off-diagonal VI terms mix the
eigenfunctions within a given set of I; irreducible repre-
sentations and, therefore, determine first the a, P, y
coefficients in Table II and, second, the intensity of the
INS spectrum. J„J+, and J transitions can be
separated only for large single crystals, which are not
available in TmAgz. The lack of these informations for
polycrystalline samples may lead to ambiguities in deter-
mining the V& 's, which have to be resolved by magnetic-
susceptibility measurements.

III. THE TmAg2 SYSTEM

All the properties will be described with reference to
the MoSi2-type body-centered tetragonal structure
[I /mmm space group, a=3.652, c=9.140 A (Ref. 16)].
The atomic arrangement is generated from a motif of a
Tm ion (0,0,0) and a Ag dumbbell (0,0,+z, with
z= 0.327+0.003). Among all the compounds of the
series, TmAgz is the only one which remains paramagnet-
ic. ' However, it exhibits a specific-heat A,-type anomaly
at T=4. 74 K, which was assumed to be driven by a
Jahn-Teller distorsion. a.c. resistivity measurements on
monocrystalline and polycrystalline rods and grids clear-
ly reveal the metallic behavior of TmAg2 and YAg2 (Fig.
1). The progressive loss of resistivity below T& is associ-
ated with the increasing order parameter. The tempera-
ture derivative of the resistivity confirms the second-
order character of the transition, which is observed at
T& =5.0 K in our measurements.

Monocrystalline samples were spark cut from a Bridg-
man ingot: a monocrystalline sphere 3 mm in diameter
was used for magnetization and parastriction studies,
parallelepipedic samples of typically 3 X3X3 mm were
used for ultrasonic velocity and magnetostriction mea-
surements. The different axes have been identified by ro-
tating sample x-ray diffraction.

IV. DETERMINATION OF THE CRYSTALLINE
ELECTRIC FIELD

A. Magnetic-susceptibility results

TABLE II. The CEF states and eigenfunctions of Tm + in

tetragonal symmetry. In the absence of mixing by V4 and V6

terms, a&, a3, a4, a', ",P5 ', and y5
' are equal to unity, the other

coefficients are null.

I (2)
1

I4&+I —4&
v'2

I4&+I —4&
v'2

I4& —
I

—4&
v'2

I (1)
3

I (2)
3

I6&+ I

—6& I2&+ I

—2&
+P3

I6 &+
I

—6 & I»+ I

—»
P3

I (1)
4

I (2)
4

Isothermal magnetization curves were collected along
the [001], [100], and [110] directions in fields up to 76
kOe and temperatures ranging from 1.5 to 300 K. The
susceptibility values were then deduced in vanishing field
(Fig. 2). Within the experimental accuracy, the magnetic
susceptibility is isotropic in the basal plane, as expected

Whereas in cubic symmetry the two CEF parameters
are usually determined unambiguously by INS, in lower
symmetry the increased number of CEF parameters

I (1)
5

I (2)
5

I (3)
5

l"I+s &+p', "I+»+y',"I+»
a"&I+s &+p&'&I+3 &+y'"I+I&
aI3&l+S & +p&3&l+3 & + y&3&I+1 &
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gles ranging from 11' to 101 . Their relative efficiencies
were calibrated by means of a Vanadium scatterer. The
elastic resolution was about 0.7 meV. The samples were
polycrystalline plates of optimum thickness for E0=17
meV, typically 1.5 mm. Background scattering, mea-
sured without a sample, was subtracted after correction
for the sample transmission to give the normalized cross
section. Additional data were collected with the low-
incident energy spectrometer I%6 (Eo =3.16 meV) in or-
der to detect the possible existence of low-lying levels
close to the ground state.

Among the EO=17-meV spectra, we first consider the
8-K spectrum, which results from excitations from the
ground state and very low-lying levels. Immediately
above T&, i.e., in the tetragonal phase, six transitions are
observed at 1.25, 3.8, 5.1, 7.7, 9.0, and 10.1 meV (Fig. 3).
Spectra at higher temperatures are marked by the growth
of deexcitation processes. Due to the presence of
numerous transitions between excited levels, the inelastic
profiles are smooth. These high-temperature spectra are
analyzed only in order to check consistency with the level
scheme deduced at low temperature. With EO=3.16
meV, the CEF origin of the low-temperature excitations

FIG. 2. The temperature dependence of the reciprocal first-

order magnetic susceptibility along the c axis and in the basal
plane. Full lines are calculated within the tetragonal symmetry.

T& is the y-quadrupolar transition.

I I I I I I I I I I

T =lio K

for the tetragonal symmetry.
At high temperature, the reciprocal susceptibility is

least in the basal plane. However, the anisotropy is rela-
tively weak: Ay '=y[oo, ] g[&oo] 3 kOe/p~ «300 K.
Both temperature variations are parallel above 100 K.
Their slope leads to a Curie constant of 1.285 kOe K/pz
(7.18 K/cm ), a value close to the free-ion value (7.16).
As in HoAg2, this behavior indicates that (i) the contribu-
tion of conduction electrons to the magnetic susceptibili-
ty is weak, and (ii) only the second-order CEF term is siz-
able at high temperature: indicative values of Vz and n

may be deduced from expressions in Ref. 19:

0 I I

2-10 -6
I

8
1.5

CC

0.5a

-2
I I I I

6 10

T=50&

3 (2J —1)(2J+3) o
X[001] X[110] 2 5(

+J 2

—I T —e*
X[ooi]( T)+2X[iio](T)= 3

(24)

-12 -8 -4 0 4 8 12

TmAg2
= 17 meV

V2 and 0* are about 7 and —2 K, respectively.
With decreasing temperature, the anisotropy of the

susceptibility decreases and changes sign around 11.5 K.
At lower temperature, the direction of easy magnetiza-
tion is the c axis. Qualitatively, this results from the in-
creasing role played by higher-order CEF terms V4 and

V6, which overcome the Vz term at low temperature.

B. Inelastic neutron spectroscopy results

The INS experiments were performed at the Institute
Laue-Langevin high Aux reactor on the I1V4 time-of-Bight
spectrometer, with incident neutron energy Eo = 17 meV.
A total of 49 detectors were positioned at scattering an-

-2 0 2 4 6 8 10 12
ENERGY TRANSFER (meV)

FIG. 3. Inelastic neutron-scattering spectra with incident
energy Eo = 17 meV collected at different temperatures in
TmAg2, with the I%4 spectrometer (squares). For the fit (full
lines) at 8 and 50 K, the elastic and quasielastic peaks have been
removed. The same VI parameters are used here as for Fig. 2:
V, =9 K, V4=2 K, V4 = —395 K, V, = —16 K, and V,=230
K.
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is well confirmed by their temperature dependences (Fig.
4). The analysis of the spectrum at 1.6 K, below T&, will
be discussed in Sec. VI A.

C. The crystalline electric field

1.6

1 ~ 2
T = 30 K

O. S
~ t g ~ ~

0 ' ~

~ ~ ~ ~ t ~ ~(t ~ ~ ~ t ~ tf
-3 -2

The description of both types of experimental data was
achieved with the same self-consistent diagonalization of
Eq. (22) by a least-squares procedure as for HoAgz. In a
first step, V2 and 0* were kept at the value estimated
from the high-temperature susceptibility data (7 and —2
K, respectively); V4 and V& were the four variable pa-
rameters. In spite of the peculiarities of the susceptibility
(the change of easy magnetization direction at 11.5 K)
and of the large number of CEF excitations observed at 8
K, the search leads to a great number of VI sets for each
experiment, without a clear common solution. This is
closely reminiscent of the conclusions for the same
analysis applied to HoAg2.

In the next step, each partial solution is tested against
the other experimental results. The search for the best
compromise is then realized by successive cross checks

between fits of magnetic data and of the 8-K spectrum.
In all the fits (Figs. 2 and 3), Vs and V& rapidly converge
to —16+1.S and 230+10 K, respectively. The V& param-
eter is weak and equals 2+3 K. V4= —39S+20 K.
Treating V2 as a free parameter does not drastically
change its weak value: V2=9+3 K. Bilinear interac-
tions are characterized by 0*=—2.5+0.2 K. As for
HoAg2, again, varying the different parameters within
their uncertainty ranges does not alter noticeably the lev-
el scheme and eigenfunctions.

The CEF level spacing and eigenfunctions are reported
in Table III. The large V& coefficients drive the large
mixing of the eigenfunctions. Only the levels lower than
12 meV can be observed within the Eo = 17-meV incident
energy. The excitations to the four highest energy levels
are calculated to be weak. They were observed at 8 K us-
ing an ED=68-meV incident energy around 14 and 16
meV in agreement with this level spacing, however super-
imposed with phonon contributions. Our trust in this set
of VI is reinforced by the comparison with the set ob-
tained in HoAg2 ( Vz =47+10 K, V4 =6+3 K,
V~ = —390+20 K, V~ = —15 K, and Vs =+195+5 K).
This nice coherency is the signature of constant contribu-
tions to the CEF throughout the series. Preliminary
analyses of results obtained in ErAgz also confirm this
conclusion. CEF properties appear to be ruled by large
mixing parameters V4 and V|;. The relative weakness of
diagonal terms, especially V2, explains the frequent ex-
istence of changes of the easy magnetization direction be-
tween the c axis and the basal plane (one in TmAg2, two
in HoAg2).

TmAgz and HoAg2 demonstrate the necessity of com-
plementary experimental probes in addition to neutron
spectroscopy. Magnetic susceptibility is very relevant to

C
2.5

1 5

1

T=6K

I ~

TABLE III. (Upper) CEF energy levels (in K) and eigenfunc-
tions calculated for the parameters V2=9, V4=2, V4. = —395,
V& = —16, and V&=+230 K. The exponent of each I,. is la-
beled, in agreement with Table II, according to the maximum
component of the eigenfunctions. (Lower) Nature of the excita-
tions observed at 8 K with Eo = 17 meV as incident energy.
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FIG. 4. I%6 spectra collected in TmAg~ with incident energy

Eo =3.16 meV at the temperature indicated.
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this procedure because it does not introduce additional
parameters, except for the bilinear exchange coefficient
0*. Conclusions pointed out during the study of HoAg2
are confirmed. V2 is clearly smaller than observed in in-
termetallics within hexagonal or tetragonal symmetry
(from 100 to 500 K, according to the series). Studying
the surroundings of a R ion in RAgz reveals that it is not
too far from cubic symmetry. A crude point charge esti-
mate considering the c/a ratio, the z dimension of the Ag
dumbbell, and Ag+ and R + ionic states describes the Vz
value perfectly, although somewhat fortuitously. Indeed,
it is well accepted that CEF parameters result from a bal-
ance between the contributions from point charges and
the conduction band. However, since the symmetry of
the ligands determines at least partly the symmetry of the
band close to the 4f site, both types of contribution to V2
may be expected to be weak.

The other parameters behave more normally. For in-
stance, in the cubic CsC1-type series, involving RAg, V&

and V& are quasi-independent of the compound con-
sidered and close to —15 and +315 K, respectively. '

The values observed in HoAgz and TmAg2 are not too far
from these, although the ratio V&/V&= —21 for cubic
symmetry changes to around —14. Within the CsC1-type
series, averaged values are —40 K for V4, which gives
—200 for V4, in RAg2, the absolute value of V4 is small
and the ratio V~/V4 differs considerably from the value
required for cubic symmetry ( V~/V4= 5). In conclusion,
as in any metallic series, the CEF parameter can be ex-
plained only if the electronic contributions calculated
from an accurate knowledge of the conduction band is
considered character by character (s,p, d, f), as was done
for CsC1-type compounds.

Note that INS and first-order magnetic-susceptibility
measurements lead to the conclusion that V4 and V& have
opposite sign. According to their respective signs, x and
y axes are related to either the ( 100) axes or the ( 110)
axes of the body-centered cell; this results from the prop-
erties of the 2)4 rotation group. The correct set of V4 re-
lated to the (100) axes can be determined only by study-
ing anisotropic properties within the basal plane, as is
done in Sec. V. The description of our data will only
be possible with the above set ( V~ = —390 K and
V~ = +230 K) due to temperature dependences that are
clearly di6'erent for the single-ion susceptibilities.

In TmAgz, the ground state is then a doublet I'5" built
essentially from the ~+5) and ~+1) components. The
magnetic behavior of this doublet ((J, ) =+3.09) would
lead to an antiferromagnetic ordering, with the c axis as
the easy magnetization direction, if the quadrupolar or-
dering did not occur at a higher temperature. The
(15"~Oz ~I ~5") =0.37 matrix element is small, in accord
with the weak anisotropy between axes at low tempera-
ture (Fig. 2). Due to this small value, the quadrupolar in-
teraction energy within the a symmetry, G ( 02 ), is re-
duced, and a quadrupolar transition at T&, keeping the
tetragonal symmetry, would require huge 6 values,
which is very unlikely. On the contrary, the orbital de-
generacy of the I'~" doublet may be removed by y or 5
orthorhombic symmetry-lowering modes. Indeed, the

matrix elements ( I ~5'i
~ OP I'&'z ) = 15.21 and

(I &'i~P„»~I 5'z) =4.20 are large. According to the
strength of the total quadrupolar coefficients 6, 6&, a
quadrupolar ordering of orthorhombic symmetry can
occur at T&, requiring, however, a weaker coefficient for
the y symmetry.

The following set of CEF parameters, V2=9 K, V4=2
K, V4= —395 K, V&= —16 K, and V&=230 K, as well
as the bilinear exchange temperature, 0'= —2.5 K, will
be kept fixed in all following sections.

V. MAGNETIC AND MAGNETOELASTIC
PROPERTIES IN THE TETRAGONAL PHASE

A. Third-order magnetic susceptibility

0.1

0.09
0

O. OS

0.07

0.06
0

TmAg
T=7K

400 SOO

H (kOe )

[100]

[001]

[1 10]

I

1200 1600

FIG. 5. Plots of (M/H)/(H ) along the main crystallograph-
ic directions of the tetragonal phase at 7 K in TrnAgz.

For the 4/mmm symmetry class, the description of the
magnetization requires polar tensors H of even rank.
In the notations of Birss, the fourth-rank H4 tensor in-
cludes five elements xxxx, zzzz, xxyy, xxzz, and zzxx,
which are associated with the y-, a-, 5-, and a-
symmetry-lowering modes, respectively. As stated in
Sec. II, the c, case is not considered here. For a high-
symmetry field direction, the expressions are very simple
and reduce to Eqs. (16).

The set of isothermal magnetization curves, which pre-
viously gave us the anisotropic first-order susceptibility,
is used again here (Fig. 5). The initial slope of M/H as a
function of H is obviously positive along the a axis,
whereas it remains negative along the c and b directions,
as classically expected. The yM' temperature depen-
dences are reported in Figs. 6—8. Along the c axis, data
are described only by bilinear interactions with 0*= —2.5
K. Introducing a nonzero 6 contribution produces a
worse fit to the data, in particular at high temperatures
(Fig. 6). This results from the (Oz) values, which are
very different within the ground state (0.37) and the first
excited singlet (

—23.5). This constitutes the first evi-
dence of weak a-symmetry quadrupolar interactions.
The same conclusion is also valid along the b axis (Fig. 7).
Varying 0 within its uncertainty range induces changes
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FIG. 6. The temperature variation of the third-order magnet-
ic susceptibility along the c axis in the tetragonal and ortho-
rhombic phases. Curves are calculated without any interaction

0*=—2.5 K) (full(dotted line) or with bilinear temperatures (0 = —. u
line: without a-quadrupolar interactions; hatched line: in the
preresence of a interactions characterized byb G =15 mK).

FIG. 8. The temperature variation of the third-order magnet-
ic suscepti i i y a ong'b 1't 1 the a axis of the body-centered tetragonal
cell. Curves are calculated with 0*= —2.5 K and y-
quadrupolar contributions either null (hatched curve) or de6ned

a.larger than varying G or G . Here again, G is close to
zero (G =0 +3 mK). G appears small (G =0+10
mK).

Along the a axis, yM'' is positive up to 40 K (Fig. 8).
Obviously, positive G values are needed for a good
description, which is achieved with G r = 17+1 mK.
Here again, the fit does not exhibit a great dependence on
G; in addition, the large values necessary would induce
a temperature variation clearly different from the experi-
mental one.

B. Parastriction

4. 10 . At every temperature the quadratic field depen-
dence of the measured strength has been checked. n e. In the

the fieldcase o srnf small strain, sensitivity is limited by e
ata haveavailable in this apparatus. Complementary data ave

been collected with strain gauges (sensitivity around
2. 10 ) in fields up to 50 kOe and in temperatures from
1.6 to 250 K. As explained in Sec. II, linearized tempera-
ture variations are analyzed with equations similar to Eq.
20).

The y-symmetry-lowering mode has been studied with
a magnetic field applied along the [100] axis, the change
of length (A,

~~,
A, ~) being measured parallel and perpendicu-

lar to it:

Data have been obtained with a capacitance dilatome-
ter under magnetic fields up to 5 kOe with a sensitivity
of 1 A and an accuracy of 1% for temperatures from 6 to
300 K. The size of the monocrystalline sphere, about 3
mm in diameter, limits the relative change of length to

al
ohio~ 100

1 1CK2

c. + —c.a2 1 y
&oo

(25)

-2

-4

-6

-8

-10 J

10 20
T (K)

I

30 40

FIG. 7. The temperature variation of the third-order magnet-
ic susceptibi j.ty a ong e'b'1' 1 th b axis of the body-centered tetragonal
cell. Curves are calculated with 0*=0 (hatched line) and with
0*=—2.5 K (full line: without any quadrupolar contribution;
dotted line: with a G = 10-mK quadrupolar term).

The fact that A,
~~

and Xj are opposite within the experi-
mental accuracy confirms that c, is negligible in compar-
ison to E~. The difference A,

~~

—
A,&=&2m, ~ is negative, thus

8~ also is. The linearized temperature variation is com-
pare o q.d t E . (20) in F.',g. 9: the slope gives Br, the verti-
cal shift from the behavior with only 0* gives G .
good agreement is observed with the G~ value obtained
in Sec. V A: GO=18+2 rnK. The background constant
C(=14.2 10" K/at leads to Br= —31+2 K/at. Note
that the calculated variation leads to a spontaneous strain
at 5 K, i.e., at the experimental value for T& (see Sec. VI).

The same procedure was followed for the 6 symmetry
and changes of length along [110] and [110], with the
field along the [110] axis. These magnetoexpansions are
given by equations similar to Eq. (25). Here agatn, A,

~~

and
A, ~ are opposite, but about 100 times smaller than for the

y symmetry. The opposite sign indicates the a contribu-
tions are negligible. The small values may be the signa-
ture of a weak 5-symmetry magnetoelastic coupling.
However, it is di%cult to analyze these data as due only
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3.5

3

0

1.5

G.r (mK)K.r (mK)gr (K)

XM
(3)

parastriction
Cr=C» —C»
T0

—31
+31 +10

17
18
17
18

TABLE 1V. Quadrupo»r Para meters determined in ™Ag2
for the orthorhombic y-symmetry- ow
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0
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Indeed a misorientation of 3 betweenop g.
the [110]axis and the field direction could, y i se, r'

h k " —k " values. The temperature dependence
of the data indicate the two contributions a gre anta onis-

kl ositive. The y-symmetry- owering
mode is here confirmed to overwhelm the u- an
symmetry ones.

C. Ultrasonic velocity

ments of ultrasonic longitudinal and transverse wavessurements o u trasonic
100, and [110] directions.

The pulse-echo overlap method was used. Data was tak-
en by decreasing ethe temperature from 300 K. Only the
C -C]2 mode is discussed here. It exhibits a very pro-

low-temperature value expected from YAg2 ig.
Echoes are lost e owb low 7 K due to the damping of the elas-

21). The C$tic wave. This softening is described by Eq. ( . e
the YA one: the tem-lattice behavior is deduced from t e gz

15 I p I

0

g 13

11
I
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TmAg

KY = 10 mK

B~ =32 K

of the arastriction withinFIG 9 The temperature variation of p~ ~

urv
' *=—2.5 K, withurves are calculated with 0the y symmetry. Curv

l wT =5K, dataadru olar interactions. Belowp
correspond to es

' " witd "destraining" e6'ects associate wit e p
of the sample into strain domains (see Fig. 1

e endence exhibits the same slope, only the
d. Th fit 1 d o h300-K absolute value is adjuste . e

K 3(Bi' Ki') airs varying from (30 K,K 11 mK) to (37p '
eludes the values previous-mK): this range of solutions inclu

of theS VA and VB. The full study of t e1 observed in Secs.
11 b resented in a forthcoming pa-elastic constants wi e pr

er 24

D. Conclusion

o conclude this section, the CEF parameters are well

'fi 11 devoted to quadrupolar interac-tal probes speci ca y evo
tions ea o a1 d t great coherency between in epen en

(Table IV). Quadrupolar interactionsdeterminations a e
d 'th the y-obviously present in Tm g2,mA associate wi

malerin mode. The other cx and normasymmetry-lowering mo e.
d for instance, theare strongly unfavored an, or in

E~ is made difficult by the y con-determination of c, and E is ma e i cu
roduced through any misorientation. istribution introduce r

f b th the magne-task is complica e yted b the weakness o o
toelastic coefficients and the suscepti i sties. e

B and B coefficients in a specific study.follow the an
suall obtained inThe B~ value agrees with values usua y o

tallies. According to its one-ion origin,
1 da Stevens coe cien earenormalization by t e az

1-t e cubicBr/a = —3100 K/at, as for instance in CsCl-type cu ic

sli htly smaller than the pair interaractions (Kr=10 mK
between the 4f sites. e mTh TmAg case is reminiscent of

r TmZn and TmCd cubic intermetallics,
where the dominating pair interactions

5—", respectively) are the driving mechanism for the qua-
drupolar ordering, an w ere
be mainly consi ere o e'd d t be a consequence of the quadru-
polar ordering rougp d th ugh the magnetoelastic coupling. e

ettercorn etition between ob th interactions is, however, betP
&E'r/Gi'= —"). Note that the case ofbalanced in TmAg2

tetragonal insulators 4 isRXO is the opposite, for which the
is responsible for the structura 1magnetoelastic coup ing is respon

'

rtransition (K~/G~= —
—,).

I
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I I I

100 150 200
T (K)

I

250 300
VI. LOW- TEMPERATURE PROPERTIES

A. The y-quadruyolar transition

FIG. 10. The temperature dependenceence of the Cr =C» —Cl2
sonic mode. C$ is the background elastic constant deduced

from measurements in YAg&. e u cu
parameters indicated.

For a second-order transition,
'

e
' '

n it is well known that the
t'bility associated with the order parameter, heresuscep i i i

aI1 2 7 7d ( 0 ) respectively, diverges at the
'

g
1

'
the relationship between G a~ andsition. Figure 1 gives e
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T& from the temperature variation of g '. A perfect
agreement is observed between the experimental values
GO=18 mK and T& =5 K. The second-order character
of the transition is confirmed by the temperature depen-
dence of (02) calculated by the diagonalization of Eq.
(1). It is drawn in Fig. 12 with the (Oz ) thermal varia-
tion. The same calculation also gives the thermal
behavior of the specific heat, which is compared, in the
absence of data, to the resistivity derivative (Fig. 1).
Within the experimental accuracy, both curves represent
the same variation of the quadrupolar energy.

Also drawn in Fig. 11, the thermal variation of g&
shows how unfavored the 5-symmetry-lowering mode is.
A 5-quadrupolar ordering at 5 K needs a G =250-mK
value, i.e., 14 times larger than for the y case.

The behavior of (02), then, of the tetragonal CEF

FIG. 11. Relationships between the total quadrupolar
coefficients and the temperature for the y and 6 orthorhombic-
symmetry-lowering modes. T& =5 K is driven by GO=18 mK.
Since yz is divided by a factor of 10, G has to be multiplied by
the same 10 factor.

level scheme, has also been studied as a function of only
G (Fig. 12). For G weaker than 37.5 mK, only the
(O~) amplitude is changed and a "breathing" of the
CEF level spacing is induced by the apparent second-
order CEF term ( Vz +G ( Oz ) ). For G larger than 40
mK, the ground-state doublet I 5" is replaced by the I', '

singlet, which is characterized by a large negative (02 )
value. The eigenfunctions are also significantly modified.
For G larger than 54 mK, a completely different level
scheme results. As in the previous experiments, these
calculations confirm that quadrupolar n interactions are
not involved in the quadrupolar transition for TmAg2.

The temperature variation of the energy of the low-
lying levels is drawn in Fig. 13. Note that the splitting of
the tetragonal symmetry I'5" doublet is not strictly
symmetrical in the orthorhombic phase due to the
off-diagonal matrix elements ( I 5'&'~ J, ~

I sz ) =3.1,
(I ~",'~J ~l

' ') =4.5, and ~(I sz'~J~~I ' ') =2.7. They
lead to two excitations from I 5'&', the ground-state singlet
in the orthorhombic phase, which are observed by INS
with incident energy Eo =3.16 meV (Fig. 4). The
( I'~z'~ J

~
I I ') excitation is weak at 1.6 K due to thermal

effects, but can be distinguished at the expected transfer.
Calculations also explain the INS spectra at 3 and 4 K
(Fig. 13). These preliminary results motivate a forthcom-
ing study of excitations in a large single crystal.

B. Magnetization properties

1. /001J axis

For a magnetic field along the c axis, the magnetic
response exhibits very different features depending on the
paramagnetic phase considered (Fig. 14). Instead of a
Brillouin-type variation as at 6 K, low-temperature
curves are characterized by two different linear regimes.
Calculations with the previous Vi and 0* and GO=18
mK perfectly describe the initial variation and the high-
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FIG. 12. The temperature variation of the two (Oq) and

(Oz) quadrupolar components in the tetragonal and ortho-
rhombic phases (left part). The temperature dependence of
(02) in the presence of only a-quadrupolar contributions, as
indicated by the G values (right part).

FIG. 13. The temperature dependence of the low-lying CEF
levels in the tetragonal and orthorhombic phases of TmAg2.
The arrows correspond to CEF excitations as observed in Fig. 4,
and dots to the corresponding energy transfers.
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field regime .In the intermediary range (from about 5 up
to 35 kOe), a slight overestimation of the calculated mag-
netization is observed, which may be explained by the ex-
istence of magnetostrictive stresses. The change in slope
of the magnetization corresponds to the field breaking of
the orthorhombic phase, as indicated by the calculated
field variation of (Oz ). The corresponding critical field
is given as a function of temperature in Fig. 14.

As stated above, the initial susceptibility is well de-
scribed in the orthorhombic phase because it is not
influenced by the partition of the sample into orthorhom-
bic strain domains, which only determine the properties
within the basal plane (Fig. 15). The thermal variation of
the third-order magnetic susceptibility is also calculated
to be in close agreement with the data in the paramagnet-
ic orthorhombic phase (see Fig. 6).

25
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G =18mK

10
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0 rJ 0

gL
Tq g

Tlag~4' 2
r

o a
/

0 1 I

20

2. IIOOJ axis

At high temperature, magnetization curves are well de-
scribed by the calculations (Fig. 16). Only a small excess
of the magnetic moment (less than 0.15@ i)iis observed,
which again can originate from magnetoelastic stress. At

FIG. 15. The temperature variation of the first-order magnet-
ic susceptibility at low temperature along the three main direc-
tions of the tetragonal cell. Lines are calculated with GO=18
mK; y, is the reciprocal susceptibility along the [100] binary

axis of the orthorhombic cell.

low temperature, this shift occurs in zero field. The field
necessary to cancel the unfavored orthorhombic domain
may be estimated to be 10 kOe, calculated and experi-
mental curves being parallel above this value (Fig. 16).
The inAexion point of the magnetization curves in the
tetragonal phase is calculated as a crossover between the
tetragonal phase, orthorhombically strained, and the true
y-quadrupolar phase (Fig. 17).

The y, o and ybo susceptibilities along the a0 and bp
axes of the orthorhombic cell are calculated to be very
di8'erent, the ao axis being the easy magnetization direc-
tion. For instance, at 1.6 K,

y, o
=0.2325@ii /kOe,

ybo=0 0128@ii /.kOe .
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FIG. 14. Experimental and calculated magnetization curves
for a magnetic field along the c axis (upper part). The 6- and 3-
K curves are shifted upwards by 3 and 1p&, respectively. The
change in slope at low temperature corresponds to the field
breaking of the orthorhombic phase as indicated by the calcu-
lated vanishing of (02) at 1.5 K (lower part). Also drawn is
the (H, T) orthorhombic-tetragonal phase diagram; black
squares are experimental ~

0
0

I I

20 40
H (kOe)

I

60

FIG. 16. Experimental and calculated magnetization curves
along the [100] direction of the tetragonal and orthorhombic
phases. The 6- and 3-K curves are shifted upwards by 2.5 and
1pz, respectively. The different behaviors in low field are due to
the move of strain domains in the orthorhombic phase.
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FIG. 17. Temperature dependence of the critical field corre-
sponding to the inflection point of the [100] magnetization
curves (dots: data; the full curve is calculated with 6~=18
mK). Dots below T& correspond to the move of strain domains

(see Figs. 16 and 9).

The susceptibility measured along the [100] tetragonal
axis, g~' ~, is then determined by the strain domain parti-
tion y(' )=ay, o+(1—a)ybo, with a smaller than unit.
Its values (for instance, 0.086p~/kOe at 1.6 K) indicates
an exact equipartition (Fig. 15).

3. IllOJ axis

Figure 18 gives characteristic magnetization curves for
the magnetic field pointing along a [110] axis of the
tetragonal cell. The magnetization processes are well de-
scribed by the calculations; below T&, they do not exhibit
clear features, which could indicate the field-induced
breaking of the orthorhombic symmetry. This crossover
to the 6-strained tetragonal structure has been calculated
through the vanishing of the (Oz ) quadrupolar moment:
the inset of Fig. 18 indicates that large field values are
needed.

For a field along a (110) tetragonal axis, i.e., at 45'
from the ao axis in both orthorhombic domains, the sus-
ceptibility is not determined by the partition into
domains, and reads as the mean of g, o and ybo. Calculat-
ed values are in close agreement with experiment (Fig.
15). Note that the identity between y(' and y " is the
signature of an equipartition for strain domains.

VII. CONCLUSION

This study of the magnetic and magnetoelastic proper-
ties in TmAg2 reveals the existence of a quadrupolar or-
dering in a rare-earth intermetallic with the tetragonal
symmetry. The high quality of all the fits clearly demon-
strates that the y-symmetry quadrupolar ordering, which
occurs at 5 K, is of ferroquadrupolar type, the spin sys-
tem remaining under-critical at any temperature. Among
the rare-earth intermetallics, TmAg2 then allows one a
perfect comparison with the tetragonal rare-earth insula-
tors RXO4, which constitute archetypes of the Jahn-
Teller couplings.

The properties resulting from the complex balance be-

0
0 20 40

H (kOe)
FIG. 18. Magnetization curves measured and calculated

along the [110] axis of the tetragonal cell. The 6- and 3-K
curves are shifted upwards by 2 and 1pz, respectively. The in-
set gives the orthorhombic-tetragonal phase diagram calculated
for a [110]field direction.

8060

tween spin and quadrupolar interactions are analyzed
within the tetragonal symmetry using a complete suscep-
tibility formalism. The latter allows us to separately
determine the different couplings, step by step, symmetry
by symmetry. The starting step is a thorough knowledge
of the five CEF parameters deduced from inelastic
neutron-scattering spectra and the characteristic
behaviors of the magnetic susceptibility in TmAg2 itself,
but also in isomorphous compounds. It is then possible
to take into account in the analysis the specific features of
all the CEF levels, in particular the effects driven by off-
diagonal matrix elements between CEF levels.

The three a-, y-, and 5-symmetry-lowering modes have
been studied with regard to both the magnetoelasticity
and the quadrupolar pair interactions. The a mode,
which keeps the tetragonal symmetry, and the ortho-
rhombic 6 mode play minor roles, and are overwhelmed
by the y-symmetry mode. Thus the determinations of
the B and K coefficients for these two modes are delicate
and will be presented in a forthcoming paper, based on
magnetostriction and ultrasonic velocity measurements.

Concerning the y symmetry, the determination of the
quadrupolar coefficients is monolithic. The parastriction,
the C»-C&2 ultrasonic mode and the third-order magnet-
ic susceptibility, are described with a unique value
6 ~ = 18+1 mK for the total quadrupolar coefficient.
This value closely describes the ( 02 ) quadrupolar order-
ing, which occurs at T& =5 K, through a second-order
transition. The parastriction and the softening of
Ci i -C]2 allow us to determine the respective contribu-
tions of the magnetoelastic coupling and of the pair in-
teractions: Br= —31+2 K [(Br)2/C( =7.0+0.2 mK]
and K ~ = 10+1 mK.

The quadrupolar ordering is then driven by the pair in-
teractions. E~ by itself would give an ordering tempera-
ture T& =2.5 K. The spontaneous strain,
cy = —3.5 X 10 at 1.6 K, is the best evidence of this
ordering through the magnetoelastic coupling, which ob-



268 P. MORIN AND J. ROUCHY

viously reinforces the K~ effect and moves the T& tem-
perature up to 5 K. The ratio Krl[(Br) /C(]=1.4 is
reminiscent of values observed in TmZn (Ref. 4) and
TmCd (Ref. 9) cubic intermetallics. In these latter sys-
tems, the pair interactions have been shown to be mediat-
ed by the conduction electrons rather than by phonons. '

The same analysis seems to be valid in TmAg2. This sit-
uation is then opposite to that for insulators, for which a
ratio Kr/(Br) /Cg= —

—,
' is observed. In insulators, the

magnetoelastic coupling drives a Jahn-Teller transition at
a temperature, which would be slightly higher in the ab-
sence of the negative K~ term.

The remarkable relevancy of the mean-field approxi-
mation to the determination of the quadrupolar ordering
is surprising. It has also been observed in cubic interme-
tallics. In these systems, the first-order character of the

transition may be expected to hide fluctuations in the
high-temperature range. This explanation is no longer
valid for the second-order transition in TmAg2. We plan
to try to determine critical exponents in order to check
more deeply the validity of this MFA hypothesis. The
study of the dispersion curves in the orthorhombic and
tetragonal phases will be possible as soon as a large
enough single crystal has been grown.
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