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Delocalization, duality, and scaling in the quantum Hall system
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We construct an effective-field theory for the quantum Hall system which embodies both localization
and fractional statistics. The latter involves a Chem-Simons interaction, while the former involves a
generalization of conventional localization theory. The theory is invariant under "complexified" duality
transformations of the conductivities which appear as effective parameters of the model. By exploiting
these parameter space symmetries, as well as the conformal symmetry which appears at
renormalization-group fixed points, we are able to extract a precise prediction for the whole scaling dia-
gram. It exhibits both fractional and integer phases, the exact location of all fixed points, and universal
scaling exponents. With a plausible identification of the universality class of the theory in the replica
limit, the value of the critical exponent for the delocalization transition between plateaus in the Hall
conductivity is found to be —,, in apparent agreement with available scaling experiments.

I. INTRODUCTION

A discussion of the quantum Hali system is conven-
tionally split into three parts: the integer effect, the frac-
tional effect, and the scaling properties of the transport
coefficients in the transitions between the plateaus. Since
this corresponds rather closely to the familiar progression
of ideas from semiclassical to first-quantized and finally
to second-quantized theory, this separation is valuable for
developing physical intuition and also for obtaining some
quantitative information about the plateaus, as shown
most clearly in Laughlin's work. Nevertheless this tri-
chotomy is artificial if one believes that it is possible to
give a unified field-theoretical description of all macro-
scopic observables in the quantum Hall system. From
this point of view it should be possible, and as far as the
scaling properties go it is essential, to encode all of these
aspects of charge transport in an external magnetic field
in a more or less conventional effective-quantum-field
theory, whose validity must ultimately be verified by
making contact with the microscopic processes, especial-
ly localization, believed to be responsible for the quantum
Hall effect.

Once this idea is entertained attention immediately
shifts away from the striking quantization of the Hall
conductivity, towards the critical phenomena signaled by
the observed scaling in the transition regions between the
plateaus. This is because the only way to accommodate
scaling is in a second-quantized treatment, or its
equivalent in statistical mechanics.

A remarkable development has been the experimental
discovery that the transitions between both integer and
fractional levels are described by the same critical ex-
ponent. This "universality of exponents, " as opposed to
ordinary universality which is concerned with the
behavior near a single fixed point, must be a novel and
fundamental property of the effective-field theory, and in
a previous paper' we suggested that this phenomenon
should be taken as evidence for a discrete symmetry act-

ing on the parameter space of the theory. Such a symme-
try can map all fixed points and associated scaling equa-
tions into each other, thus accounting for the observed
"superuniversality" of the delocalization exponent. In
view of the rather complicated "nested" or "hierarchi-
cal" structure of the fractional and integer levels, and
thus the fixed points, it is fairly clear that such a symme-
try group can be neither finite nor abelian. Surprisingly,
a group of precisely the required type appears in a simple
class of two-dimensional spin models consisting of two p-
state Potts models (p=2, 3) coupled through an antisym-
metric term. It was shown in Ref. 1 how this symmetry
relates all fixed points governing the critical behavior of
all levels, both integer and fractional, and thus predicts
both the level structure of the plateaus and a "su-
peruniversal" scaling exponent for transitions between
levels. The structure of the phase diagram and the prop-
erties of the renormalization-group (RG) Aow of the sys-
tem may, to a large extent, be determined by demanding
consistency with this modular symmetry. Preliminary
studies suggest that this structure is in good agreement
with experiment.

While we initially' only offered this particular class of
models as proof of the existence of dynamical systems
with the desired symmetry properties, we shall in this pa-
per argue that the efFective-field theory describing the
macroscopic observables of the quantum Hall system can
indeed be mapped onto a coupled Potts model, suitably
generalized by analytic continuation in p to p=1. These
coupled Potts models encode the degrees of freedom
which are relevant at the largest scales, i.e., the macro-
scopic degrees of freedom. The fact that we are using a
lattice spin model to represent these may be confusing,
since the microscopic degrees of freedom (the spins) of
the spin model are not to be thought of as representing
the true microscopic degrees of freedom, but should be
regarded simply as a convenient way of encoding the
correct universality properties. The macroscopic degrees
of freedom are accompanied by effective parameters, in
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our case transport coefficients or response functions,
which can be controlled by or related directly to experi-
ment.

We must now try to show how this class of models
emerges at large scales from the microphysics believed to
be at work in these semiconductors, the two central con-
cepts being localization and fractional statistics, and in
the process demonstrate that the relevant member of the
class has p=1. Since the diagonal or dissipative conduc-
tivity o. vanishes on the plateaus found in the quantum
Hall system, it is clear that, except at transition points,
the leading term in the effective action should be associat-
ed with the transverse or Hall conductivity o . This is
rather surprising since the standard theory of dissipative
resistance, due to localization and impurity scattering, re-
veals that o. parametrizes an ordinary kinetic term,
which is usually considered to be the most important part
of the effective action. However, in 2+1 dimensions this
is not true: the leading term is the Chem-Simons (CS) ac-
tion. This is a topological invariant, i.e., it does not con-
tribute to the equations of motion, and its physical mean-
ing and significance have only recently been appreciated.
Provided that the CS-gauge field (the statistical gauge
field) is coupled to the charge carriers, the CS term
changes the effective spin and statistics of these particles,
leading to the possibility that the effective degrees of free-
dom (quasiparticles) in 2+ l dimensions can be anyonic
with fractional spin and charge. This possibility arises
because the representations of the rotation group are con-
tinuous in two dimensions. That means ' that the wave
function of a system of identical particles cannot simply
be labeled by their quantum numbers, but depends on the
braiding characteristics of their path histories.

While it is possible to give a field-theoretic description
of this directly in terms of the physical, microscopic de-
grees of freedom, the action is necessarily nonlocal and
therefore extremely unpleasant. However, the path
dependence of the quantum phase has the fIavor of an
Aharonov-Bohm effect, and it is a remarkable fact that
the action can be recast in a completely local form by in-
troducing an auxiliary (fictitious) abelian gauge field,
minimally coupled to the charged particles, with a CS self
interaction. Just as the potential of a vanishing three-
dimensional electromagnetic field carries information
about the phase of the electron, the CS-potential miracu-
lously manages to encode all the complicated phase infor-
mation of a two-dimensional system of charge carriers.

In summary, we have three reasons for considering a
CS term in our effective action: the microphysics admits
fractional excitations, which are most conveniently en-
coded in a field theory by using the CS trick; it must ap-
pear at large scales if it can, because it has the lowest
scaling dimension; and in a geometrical interpretation of
quantum-field theory it appears naturally as the dom-
inant term, because it encodes topological information.
This may not be unrelated to it having the lowest scaling
dimension, since one expects topological terms to contain
the fewest derivatives ("only long wavelength modes are
needed to explore the topology" ), but it is not clear to us
precisely what the connection is.

The field-theoretic representation of the dissipative

conductivity 0. in a CS theory has recently been dis-
cussed by Kivelson, Lee, and Zhang. Starting from an
effective Landau-Ginzburg-type action describing the
propagation properties of anyonic degrees of freedom,
they integrated out the CS bosons and statistical gauge
field to obtain expressions for the conductivity tensor
parametrized by functions encoding the linear-response
properties of the CS bosons. Assuming that these
response functions are universal for the hierarchy of
anyonic states that can be built on the original spin-
polarized electron state comprising the full Landau level,
they obtained relations between the conductivity tensors
associated with different phases of the quantum Hall sys-
tern. We shall show below that these relations follow
from a subgroup of the full modular symmetry intro-
duced in Ref. 1. Moreover, if the Chem-Simons response
functions are independent of the anyonic spin, irrespec-
tive of whether they belong to the Halperin-Haldane
hierarchy or not, the form of their conductivity tensor is
such that the full modular symmetry is obtained.

While the analysis of Ref. 5 lends strong support to the
idea' that modular symmetry, or a subgroup of it, is
relevant to the description of the quantum Hall system, it
does not provide a complete derivation of the symmetry,
and sheds no light on the nature of the system at criticali-
ty, which presumably is governed by a conformal field
theory. In addressing these questions below, because a
theory of anyon localization does not yet exist we shall
try to proceed cautiously, as close to the conventional
theory of fermion localization as we can. However, in
studying the propagation of charged anyonic states in the
presence of impurities we find that a modification of the
traditional treatment is necessary. The usual assumption
is that the effect of impurities may be modeled by a point-
like scattering from a random potential with Gaussian
distribution. This may be sufficient for sharply localized
states, like electrons in ordinary conductors, but we do
not believe that this is a good model when the charge car-
riers are nonlocal excitations, possibly with fractional
charge and spin, arising from the cooperative physics in
effectively two-dimensional semiconductors. Instead of
having just the conventional interaction in the effective-
field theory of localization, we shall argue that a more
general form is needed, constrained only by the sym-
metries of the problem. The occurrence of a nonvanish-
ing value for o. „corresponds to the appearance of delo-
calized states, which are related to states left massless by
the effects of the impurity potential. In this the symme-
try observed by Wegner, relating the advanced and re-
tarded propagators of the charge carriers, plays a vital
role, for it identifies the relevant degrees of freedom
which contain the massless states at criticality.

To summarize, the field-theoretical bulk picture, as ex-
tended below to include the localization of anyons, is ap-
parently able to account for all available data. The tradi-
tional integer theory, both the first-quantized "Laughlin
picture" of the plateaus and the "Wegner-Pruisken" field
theory of (de)localization, is included, when the anyonic
quasiparticles happen to be fermions. In general, howev-
er, the statistics of the quasiparticles in two dimensions
may be fractional, in which case they are excited from the
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ground state of a fractional phase. The conventional
hierarchy mechanism for generating fractions is also con-
tained in this picture, being nothing else than the discrete
symmetry restricted to the Hall regime. Laughlin's
quasiparticle excitations are the anyons.

In this simple picture integer and fractional phases are
treated on the same footing. Only one mechanism—
localization —is needed to account for all data. The
difference between the integer and fractional effects is
"only" in the nature of the quasiparticle object being lo-
calized, not in the physical mechanism itself. While the
degree of disorder dramatically effects the physical prop-
erties of the charge-carrying states, even the spin and
statistics of the quasiparticles that can be excited in the
system, the transport mechanism is always the same. So
while the physics is different in different samples, it is al-
ways of the same form, which is why the scaling is always
of the same form. It is this form invariance ivhich is en-
coded in the global discrete symmetry.

Finally, we close this lengthy introduction by compar-
ing and contrasting the "bulk picture" pursued in this pa-
per, with the "edge picture. " The question of the role of
edge states is also related to localization, since they are
always delocalized and therefore potentially charge car-
rying. The reason for the existence of plateaus is the
same in either the bulk or the edge picture, being due to
the quantized Landau levels and the energy gaps. There
are two possible effects giving rise to the width of the
Hall plateaus; the existence of edge states and the usual
impurity broadening. The contribution of the pure edge
states is inversely proportional to the width of the sample
and is usually small. So in real samples the dependence
of the plateau width on the impurity level will be almost
the same as in the pure bulk description discussed in this
paper. We note also that the quantum Hall effect persists
even in the absence of edges as has recently been con-
clusively demonstrated in a Corbino disk experiment.

We expect the delocalization transition between pla-
teaus to be completely given by the bulk physics sensitive
to impurities. The reason is that the edge states are non-
dissipative and thus cannot contribute to the appearance
of a nonzero longitudinal conductance as one makes the
transition between plateaus via delocalized states. The
physics of these transitions must be determined by the
bulk properties of the system which describe the dissipa-
tive states. Thus we expect the delocalization transition
to be completely determined by the bulk physics sensitive
to impurities. No purely one-dimensional "edge" mecha-
nism has been suggested to account for this phenomenon.

In summary, we have attempted to construct the rudi-
ments of a theory of localization of anyons, which we be-
lieve to be responsible for most or all of the observed
properties of the quantum Hall effect. If either of the two
central ideas encoded in this theory —localization (due to
impurities) or exotic quasiparticle statistics (due to strong
parity-violating interactions in a two-dimensional elec-
tron gas in a magnetic field) —turn out not to capture the
essential physics in real samples, then our theory is not
applicable, but so far there is no evidence to suggest this.

The outline of the paper is as follows. As an introduc-
tion to discrete parameter space symmetries

("complexified Kramers-Wannier duality" ), and in order
to fix notation and review results from conformal field
theory which will be needed below (Sec. VI), in the next
section we review the discrete modular symmetry of the
coupled Potts models, and discuss its phase and
renormalization-group structure.

Section III reviews the recent discussion of anyonic
propagation, and its relation to the discrete modular
symmetry.

Section IV reviews the field-theoretic approach to delo-
calization of ordinary fermions and the Wegner symme-
try in a way which is appropriate to the discussion of lo-
calization in the quantum Hall system. This leads to an
identification of the extended states with the coset space
of fields associated with the Wegner symmetry.

In Sec. V we discuss how this analysis is modified in
the presence of Chem-Simons interactions, which must
be included (generated) in an effective action in order to
accommodate the anyonic states that can appear in two
dimensions. These lead to the possibility of many more
delocalization fixed points, with their associated extended
states. We argue that the conventional choice of scatter-
ing potential is not good enough for discussing the locali-
zation of the collective nonlocal excitations that appear
in the quantum Hall system. We show that the effect of
allowing for a more general form of the impurity poten-
tial is to explicitly break the Wegner symmetry to a
discrete Z subgroup. The associated Landau-Ginzburg
theory with this symmetry is shown to lie in the univer-
sality class of the self-dual coupled Potts models, dis-
cussed in Sec. II. From this identification follows the
modular symmetry relating the conductivity tensor asso-
ciated with transitions between different levels, in agree-
ment with the expectation (described in Sec. III) follow-
ing from the analysis of Ref. 5. In this case, however, no
assumptions are needed about the linear-response proper-
ties of the CS bosons, these being completely determined
by the conformal field theory at the fixed point.

In Sec. VI we study the theory in the replica limit, and
argue that this corresponds to a Potts model with p —+1.
We can then compute the delocalization exponents using
standard results from conformal field theory, which show
that this limit can be interpreted as a percolation prob-
lem. This is in good agreement with a microscopic pic-
ture of the Hall effect as due to "quantum percolation" of
charge through the sample. The final step is to argue
that the classical bond-percolation exponent 4, obtained
from the conformal field theory at the delocalization fixed
points, is shifted by one due to tunneling effects between
the geometrical percolation clusters. Thus, while the lo-
cation of the RG fixed points are given by the p= 1 self-
dual theory, we expect the critical exponent to be —,', in
agreement with numerical work and recent experiments.

II. SCALING PROPERTIES
OF SELF-DUAL MODELS

The "complexified Kramers-Wannier" symmetries,
with which we will be concerned in the following, first
appeared in an investigation of abelian lattice gauge
theories which turned out to be intimately related to a
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Zp(y(r), y(r))=&p(~, r)

=Trexp —f d zL (~, r)

@&1(1)—:SL(2,Z) .
(2)

The modular group I (1) is generated by translations
&(~)=r+ 1 and inversions S (r) = —1/r. The rich struc-

particular type of coupled Z -symmetric spin model. '
In terms of two "fields" P' (a=1,2) restricted to take
values in the integers mod p (representing Z -valued spins

s, on dual lattices), the coupled spin model action is of
the simplest possible form containing no more than two
derivatives:

I.,= pS„—.S.,a~y'a y'+ice„.e.„a~y a y' (p& O)

2i (-~ay a(p ~a@jqp) .

Here a and P are two real parameters, which in the
second, complexified, form of I. have been traded for
one complex parameter r=a+iP Th. e latter equality in

(1) is obtained by introducing the complex coordinate
z =x +iy(a =alaz), the complex scalar field y=P'+ if',
and their complex conjugates (denoted by overbars).

In order to give meaning to this somewhat heuristic,
but suggestive, "field-theoretic" representation of a cou-
pled Z -symmetric spin system, care must be exercised
when interpreting the "lattice derivatives. " If (ap)
means the difference in P evaluated at neighboring points
on the lattice (s; s in conventional spin language), then
(1) is the coupled clock (also called planar or vector
Potts) model, which was investigated most lucidly by
Cardy and Rabinovici. ' To compare (1) with their ac-
tion, one must split the fields P into the conventional
"spin-wave" and "vortex" components. We have not
done so here because we wish to emphasize the complex
extension of the more familiar spin-wave-vortex duality.
Alternatively, if (ag) is nonvanishing only if neighboring
field values coincide (5, , in spin language), then (1)

7
i J

represents two p-state (standard) Potts models living on
dual lattices, which communicate through the "spin-
wave-vortex" coupling encoded in the antisymmetric
term. If p=2 or 3 the clock and Potts models coincide
exactly, but for other values of p they do not. In particu-
lar, while the clock model exhibits nontrivial critical
behavior for all integer p ~ 2, but is not defined for other
values of p, the Potts model has no second-order transi-
tion for p) 4, but can be analytically continued to any
real value 0 p 4. It is the universality class of the cou-
pled (p —+I)-state Potts model which appears to encode
the large distance behavior of the quantum Hall system
at criticality, i.e., at the delocalization transition where
charge "percolates" through the macroscopic sample.

The neat appearance of ~ in (1) suggests that the pa-
rameter space is the complex upper half plane
H = {r EC

~

1m' & 0], and it is the symmetries of this
space which will concern us in the following. As first
shown by Cardy, ' the partition function Z of (1) is in-
variant under modular transformations:

ture of this group is entirely due to the fact that S and T
do not commute. Hence, if we consider only one spin
model, so that no antisymmetric term is possible, then
the only remnant of I (1) is the real transformation
S (p) = 1/p, which is just the Kramers-Wannier transfor-
mation.

It is well known that this symmetry can be used to lo-
cate critical points of spin models. " Z (iP) reduces to a
single Z spin model in the thermodynamic limit (p=2 is
the Ising model). In the Potts case we know' that there
is a unique second-order phase transition at the self-dual
point (r=i, i.e., P= 1) when p (4, and that the transition
is first order when p) 4. This result was generalized in
Refs. 9 and 10 to the coupled clock models. A simple
comparison of energy and entropy showed that the
phase-boundary extends in a unique way away from ~=i,
provided that p (2i/3. The rest of the phase boundary is
then uniquely fixed by modular invariance, so that for
p=2, 3 (coupled Ising and 3-state Potts models) the phase
diagram is given by the tree of solid lines shown in Fig. 1.
[The fiow lines on the tree in Fig. 1 do not correspond to
any of Cardy's models, but to a coupled (p (2)-state Potts
model. ] For higher values of p a new "Coulomb" phase
injects itself along this phase boundary, and for large p it
grows to dominate the phase diagram.

From the fact that the phases of the diagram in Fig. 1

only touch the real axis at fractional values, it is immedi-
ately clear why I'(1) is a promising group: if r can be
identified with the complexioned conductiuity o =o.
+io. , then o. will be forced by the phase diagram
alone to take fractional values when o. vanishes. Fur-
thermore, as shown in Ref. 1, the location of the bifurca-
tion points where new fractional phases become possible
as o. „ is reduced agree remarkably well with available
scaling data.

The bifurcation points are obviously fixed points of the
renormalization group since RG Aows cannot cross phase
boundaries. That they are also fixed points of I (1) fol-
lows from the fact that the modular group is the free
product of Zz, generated by S, and Z3, generated by TS.
This implies that there are two types of fixed points on
the tree, of order 2 (S =1) and 3 [(TS) =1]. The bifur-
cation point at r=j—:exp(~i/3) is an "elliptic" fixed
point of order 3 (B in Fig. 1), because TS (j)
=(TS) (j)=j. Since modular transformations are con-
formal, angles are preserved under TS and the phase
boundaries meeting at j must do so at an angle of 2m/3.
For the same reason every image y( j) [y HI (1)] ofj is
also a triskelion, i.e., a fixed point of order 3. Similarly,
7 =i is an "elliptic" fixed point of order 2 (Igw in Fig. 1),
because S(i)=i, and so are all its images y(i) The latter.
are natural candidates for delocalization fixed points, and
this also fits well with scaling data on the transition be-
tween many integer levels.

In addition, there are two other types of fixed points
not located on the self-dual tree. Strictly speaking, they
do not lie in the parameter space H at all, but on its
compactification H=H V Q U {i~ ]. The rationals Q
have already been identified with the attractive RG fixed
points (iii in Fig. 1) corresponding to Hall plateaus, while
the fixed point at i ~, which is also an attractor in this
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case, seems to be some kind of superconductivity fixed
point.

There are three distinct scaling diagrams consistent
with this Axed-point structure, depending on whether
y(i) is a saddle point, a repulsive point, or part of a mar-
ginal line of fixed points along the phase boundary. This
ambiguity comes about because Kramers-%'annier-type
symmetries only pin down the critical values of pararne-
ters; some additional data are required in order to identi-
fy the universality class and thus the scaling exponents
encoding the rate at which critical points in parameter
space are approached.

If we can, as we shall argue, restrict attention to the
class of self-dual [I (1)-invariant] models which interpo-
late between the coupled Potts models, defined by analyt-
ic continuation in p to any positive real p, ' then the only
remaining ambiguity is in the value ofp.

Since all fixed points of a given type are mapped into
each other under duality, it is sufficient (for p (2&3) to
consider only the simplest "decoupling fixed point" at
~=i in order to obtain the scaling exponent of all the
fixed points, which in the quantum Hall case control the
delocalization transitions. Because Z~(i) in the thermo-
dynamic limit reduces to the critical p-state Potts model,
this allows us to read off the values of the critical ex-
ponents (v, v&) from general results: .14, 15

v~ —2 2vp~ vp—
2

3(1—y)
(3)

where y parametrizes the distance p is away from the
marginal (Ising) value p=2:

p —2=2 cos(cry) . (4)

As shown by Dotsenko and Fateev, ' this result is but
one of many which follow directly from the conforrnal
symmetry that appears at critical points of statistical
models. Many of these fall into a sequence of minimal
models, labeled by an integer m =1,2, 3, . . . , which are
completely determined by a finite number of primary

fields p„„whose exact scaling dimensions can be deter-
mined algebraically from the Kac formula:

[rm —s (m +1)] —1

4m (m +1)
Some of the minimal models, with m = 1,2,3,5, ~, can be
identified with the p=0, 1,2,3,4 Potts models. The analyt-
ical continuation to noninteger values of p should clearly
proceed from the more general result (4), which can be
derived from a Coulomb-gas formulation. It is not im-
mediately obvious that these conformal constructions can
be extended to noninteger values of m, or indeed integer
m (3, because they contain operators with negative scal-
ing dimension. However, this is not the case for the
operator subalgebra containing [Pi „I, which Dotsenko
and Fateev conjectured corresponds to the thermal
operators; e.g. , P, z is known to be the energy operator
for both p=2 (Ising) and p=3 (3-state Potts), because in
these cases there is only a finite number of primary
fields —the theory is exactly soluble —so that the
identification is unambiguous. The complete agreement
with previous calculations and conjectures of scaling ex-
ponents also for the percolation (p= 1) and polymer
(p=O) problem leaves little doubt that this identification
is correct.

The anomalous (conformal) dimension of the nth
thermal exponent of the mth minimal model is

2n +np
1, n +1

where y =2/(m+1), in agreement with (4). The total
scaling dimension is 2 —2hi „+i=v& (n), which for the
leading thermal exponent ( n = 1) reduces to v&
=2m /3(m —1), which is (3) for integer values ofp.

Using (3) we can determine the nature of the fixed
points for various values of p. The possibilities are evi-
dent from Fig. 2 where the critical exponents are plotted
as functions ofp, and we find
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0~ &2: The phase and Aow diagram is given by Fig. 1.—p

p==2: The tree in Fig. 1 is marginal (Baxter model).

2( ~2&3: The arrows on the tree in Fig. 1 are reversed.&p

2&3(p ~4: The phases in Fig. 1 are separated by a Coulomb phase.

p & 4: No second-order transition.

In short, provided that we are forced into this class of
effective-field theories by the microphysics of the quan-
tum Hall system, the critical properties of the model are
completely encoded in the value of p, and we are able to
determine the scaling exponents of the theory.

It is the purpose of this paper to argue that a realistic
treatment of the localization problem in the quantum
Hall system leads to a self-dual effective-field theory
which can be mapped onto Z„,(r, r). From (3) we see
that in this model the delocalization fixed points y(i are
saddle points, as shown in Fig. 1, with critical exponents

III. CONDUCTIVITIES
IN CHERN-SIMONS THEORIES

In this section we will review the description of anyon-
ic states in terms of Chem-Simons (CS) theories and dis-
cuss the recent work of Kivelson, Lee, and Zhang, who
cons rucstruct an effective-field-theory action describing the
propaga iontion of anyonic states and use it to motivate e

Hallstructure of a global phase diagram for the quantum a
system. We will demonstrate that what they call "The

I

Law of Corresponding States" corresponds to a subgroup
of the full modular group discussed above. Anticipating
the results of Secs. V and VI, we will argue that it is the
full modular group which is relevant and show how it can
emerge from the efFective theory.

If we are to describe conductances in terms of the
propagation of charge carriers in a random potential, ig-
noring Coulomb effects, then it must be the nonlocal
(anyonic) superpositions of electrons that are the ap-
proprropriate degrees of freedom. As argued by Laughlin, '

in this case the effect of the Coulomb forces between elec-
trons is largely taken care of by the construction of the
anyonic state, and the choice of the appropriate state
needed to cancel the background positive charge distribu-
tion. In this case the Green functions of interest describe
the propagation of anyons, and the field-theoretic repre-
sentation of the Green function should involve a path in-
tegral over anyonic fields.

The macroscopic properties of these states may be de-
scribed by an effective Landau-Ginzburg (LG) field
theory and we will use this description when determining
the conductances. The anyonic state may be bosonized
and represented by a complex scalar field P with the
Chem-Simons term:

3

2--
3

2

3

1' order
I.,„y =p i(BO+iao ie Ao)p—

+ Pt(B +ia, ieA; ) P+— e„,i 8aa . (8)
4e ~

This Lagrangian describes anyons obeying 0 statistics,
i.e., the wave-function changes by a phase 0 under the in-
terchange of particles. Under certain plausible assump-
tions it was shown in Ref. 18 that when 0/m is an odd in-
teger this Lagrangian describes spin-polarized electrons
confined to two dimensions in an external transverse
magnetic field, neglecting the Coulomb interaction. The
Hall conductances may be calculated by applying an
external scalar potential Ao with 8,- Ao = —E, . Using the

18equation of motion this gives

2
o."EJ= e"EJ .

2g

FICx. 2. The critical exponents v and v& as functions of p or
m.

Thus the longitudinal conductance vanishes and the
transverse conductance is given by e /20. The Lagrang-2

ian L, therefore describes the behavior to be expectedany
in the region of the plateaus;

When 8/vr is an odd integer the vacuum state corre-
sponds to the partially filled Laughlin states, and the ex-

1citations about these vacua are anyonic with fractiona
charge and statistics. The presence of such states leads
naturally to the generation of the Halperin-Hald ane
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+—'foi~ifoi+ 'f i2~2f i2-

i~3e—„g(rIA„—a„)f g I, (10)

where o.*~ (called s in Ref. 5) is the plateau value of the
Hall conductivity in natural units (e /h), f„
=B&(rIA, —a )

—8 (gA& —a&) and rrj, m2, and vr3 are
space-time functions describing the linear-response prop-
erties of the CS bosons.

Since the notation used in Ref. 5 obscures the simple
geometrical content of their results, we shall transcribe
their formulas into the language introduced above in Sec.
II, which is also more appropriate for examining the RG
structure of the theory.

In a given phase, which is uniquely labeled by a stable
fixed point or plateau value o.*=o. =o' +i o.*
=o.„* =p/q of the conductivity, the total conductivity
o.=o.„~+io. away from criticality is changed from the
fixed-point value o. by the excitation of anyonic quasi-
particles, which contribute to the transport of charge
through the system. This anyonic contribution
cr'=o' +io' to the transport tensor (o =o "+o') can
be calculated from the effective action (10) by integrating
out the statistical Chem-Simons-gauge field a„, and then
taking the static limit. In this limit the linear-response
functions reduce to the bosonic conductivities:

a.„=lim co~,(q=O, co), o~ = lim m3(q=O, co),
co—+0 co~0

where co and q are the energy and three momentum, re-
spectively. The result of this calculation is therefore
parametrized by o. =o. +io. „:

(12)

where the total resistivity p =p*+p' is determined by the
strikingly simple relation

2
I9

p — o (13)
7l

This is equivalent to the results reported in Ref. 5 (up to a
sign error in Ref. 5), since the resistivity tensor p; by
definition is the inverse of the conductivity tensor o.

,z
[p —=S ( cr ) = —1 /o. ], and o *= cr „*y =g /8. '

The so-called "Law of Corresponding States" is now
easily extracted from the above results. Note first that
under the transformation 1/v —+1/v+2, where v=m/0 is
the filling factor, 0 changes by 2m. . The statistics of the

hierarchy of fractional plateaus. Thus, the Chem-Simons
theory gives a plausible explanation for the existence of
the plateaus in cr, with odd denominator values.

Recent work ' has attempted to extend this descrip-
tion of the quantum Hall system into the region of transi-
tion between levels, by including the effects of Auctua-
tions of the CS fields about their classical values. The re-
sult of this analysis is to generate an effective action for
the statistical gauge fie1d a„and the electromagnetic field
A„of the form

S,z= 1 d z dr[ —
—,'cr„* e„za„c},az

states described by the CS theory will therefore be un-
changed under this transformation, and it is reasonable to
expect that the anyonic transport properties, and in par-
ticular the bosonic conductivities to which they are relat-
ed, are unchanged. The propagating anyonic states ap-
pear as finite-energy vortex solutions about the vacuum
labeled by 9 and carry charge g, =+m.e/0. The connec-
tion between the statistics and charge of the anyonic
states is given by 0, =q, 4/2, where 4&=2~/e is the fiux
quantum of the vortex. In short, we see from (13) that p'
should not change under this transformation, so that
p' —p =p'* —p*. Since p* =p'„= —8/rI we see that

p —+p+2 under the transformation I/v~ 1/v+2, provid-
ed that o. does not change. The rest of "The Law" is ob-
tained in a similar manner: time-reversal symmetry
o (1—v) =1—o(v) follows if o (1—v) =J[0. (v) j

cr (v) (J—is not a modular transformation; see below),
and since we expect the physics of higher Landau levels
to be the same, we should find cr(v+ 1)=o.(v)+ 1, which
indeed is true if o (v+ 1)=o (v)+1.

The authors of Ref. 5 use this to constrain the global
phase diagram. As we demonstrate below these transfor-
mations just generate a subgroup of the modular group
discussed above in Sec. II. Note that it has been derived
making (reasonable) assumptions about the transforma-
tions of the bosonic conductivities describing the trans-
port properties of the anyonic states. Ideally these prop-
erties should be derived from the properties of the system
itself, and we will attempt to do so in the following sec-
tions.

Given this appealing physical picture for the origin of
the subgroup of the modular group, it is reasonable to ask
what would be the physics corresponding to the full
modular group. The difference in going to the full modu-
lar group is simply that the first transformation should be
extended to include the transformation I/v~1/v+ 1.
This generates phases with diferent statistics; for exam-
ple, starting with states obeying fermionic statistics this
transformation will give states obeying bosonic statistics.
The difference between the phase diagrams shown in
Figs. 1 and 3 is just the addition of these phases. In the
derivation of the modular transformations in the follow-
ing sections we will argue that the full phase diagram is
relevant and, anticipating this result, we consider its im-
plications in the context of the effective CS theory dis-
cussed here.

The important difference in the derivation presented in
the following sections is that the parameter for the
effective Lagrangian, which becomes the order parameter
of the phase transformation when the advanced and re-
tarded sectors are related to each other, is bilinear in the
CS fields. As a result, changing 0 by m in the underlying
CS theory leaves the statistics of the "order parameter"
invariant. Since the phase structure of the theory is
determined by the effective Lagrangian describing this or-
der parameter, the invariance naturally appears in the
phase structure of the theory, and therefore gives rise to
the full modular group. It is, of course, entirely con-
sistent with (13), given the appropriate invariance of the
bosonic conductivities. In particular, the full modular
group emerges if we have, in addition to the transforma-
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tion properties given above, u(v') =o (v) for 1/v'
= 1/v+ 1, which is true if o (v') =o. (v).

The physical interpretation of these new phases is more
problematic. Such phases, which are related to a state
with bosonic statistics, may be expected to arise in a sys-
tem of fermions confined to a plane provided the spin-
wave function is antisymmetric, i.e., in states which are
not spin polarized. However, this may not be the correct
interpretation here. Rather, it is possible that pairing of
the fundamental fermion states occurs, giving effective bi-
linear fields with bosonic properties, and these in turn
give rise to the new phases in the effective Lagrangian for
the "order parameter.

" The question whether these
phases can be excited depends on the pairing energy and
the associated energy of the phase. This is not determined
simply from the modular symmetry and requires detailed
dynamical information about the anyonic excitation ener-
gies which lies beyond the scope of the present work.

The topology, but not the detailed geometry, of the
phase diagram (no flow or fixed-point structure was sug-
gested) in Ref. 5 is in fact completely "contained" in the
modular-invariant phase and fIow diagram proposed in
Ref. 1, in the sense that it is determined by one of the
simplest subgroups of the modular group I (1).

The key to identifying this subgroup is to note that
whatever else it does, it must map fixed points of a given
type into each other. The full modular group maps any
rational number into any other, hence it cannot possibly
distinguish odd-denominator fractions from even-
denominator ones.

If only attractive fixed points (Hall plateaus) o =p/q
with odd q's are desired, then the subgroup must preserve
the parity of q. The group I z.(2) generated by T and
ST S, which is obviously contained in I (1) because any
string of these generators is a string of I (1) generators (S
and T), does precisely this: it maps odd (even) denomina-
tors to odd (even) denominators, with no restriction on
the numerators.

Notice that (the real part of) I T(2) is the group impli-
citly assumed in the so-called "hierarchy generating
mechanism, "' ' ' ' which was invented in order to ac-

count for the observed fractions (see also Ref. 22). To see
this recall that if a ground state with "filling factor" v ap-
pears, then the particle-hole conjugate state with filling
factor 1 —v, as well as the quasiparticle condensate with
filling factor v/(2v+1), should also be ground states of
the quantum Hall system. Since v is essentially the Hall
conductivity on the plateaus, we see that these are frac-
tional linear transforrnations on o. restricted to act only
on the real axis. The first transformation is TJ=JT,
where J:o.—+ —o. is a so-called "outer automorphism" of
I (1). J is in fact the only automorphism of I (1) not in
I (1), and since J is rather trivial we will continue to
suppress it here. The other transformation is the inverse
of ST S, which together with T generates I T(2).

Since the hierarchy generating transforrnations dis-
cussed above played a central role in the work of Ref. 5,
it is perhaps not surprising that their diagram appears to
have a similar topology to the exact I r(2)-invariant dia-
gram derived in Ref. 23, but the comparison is not im-
mediate because they chose to work with resistivities
rather than conductivities. Since p—:p,~+ip„=S(o ),
and S is in I (1), there is no distinction between the phase
diagrams for p and o. in the fully modular-invariant case.
However, since S is not in I T(2), the phase diagram in
resistivity space is in this case different from the phase di-
agram in conductivity space. The result of S transform-
ing the conductivity phase and Aow diagram constructed
in Ref. 23 is shown in Fig. 3.

The most economical way of deriving this diagram is
to find the group I ii, (2) which acts on the image of tr un-
der S in the same way that S acts on the image of a under
I T(2), i.e., to find the S conjugate of I T(2), I ii(2)
=Sl r(2)S '. It is sufficient to conjugate the genera-
tors, and using the fundamental identities S =(ST) =1
we find that I ~(2) is generated by T and W'=TST.
This is sufficient to figure out the fixed-point structure,
from which the phase diagram follows. As was the case
with I T(2), all IE3 fixed points have disappeared, and
only some of the jE2 fixed points remain, including the
ones at (2n+1)+i Furtherm. ore, I ii, (2) preserves the
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parity of the numerator of the parabolic fixed points, as it
should because S(p/q) = —q/p (i.e., an odd-denominator
cr~ fixed point is an odd-numerator p~ fixed point), so
that we can consistently choose all odd-numerator frac-
tions to be attractive fixed points and even-numerator
fractions to be repulsive fixed points. This completely
fixes the phase and Aow diagram as shown in Fig. 3.

Figure 3 is to be compared with the resistivity phase
diagram presented in Ref. 5. Clearly, the few phases in-
cluded in Ref. 5 agree with the topology of the exact
infinite hierarchy of phases exhibited in Fig. 3. The
geometry is however somewhat different. This is presum-
ably due to an arbitrary "normalization" of the phases in
Ref. 5. No such freedom is left in our construction—
once the group has been fixed the full nonperturbative
structure of the phase diagram is rigidly fixed. In partic-
ular, the predictions for the location of delocalization
fixed points which follow from this are completely
falsifiable —they cannot be changed without changing the
entire global structure of the diagram, i.e., the discrete
symmetry group. Thus these simple symmetry Ansatze
lead to a surprisingly strong and apparently successful
phenomenology of the quantum Hall system. However,
current scaling experiments do not appear to be good
enough to distinguish between the groups discussed
above.

IV. LOCALIZATION OF FERMIONS

In this section we review the field-theoretic approach
to localization of ordinary fermions in a way that is ap-
propriate to a discussion of localization in the quantum
Hall system.

We are interested in the conductance properties of a
two-dimensional system of electrons in a strong trans-
verse magnetic field in the presence of impurities. The
effect of the impurities is to provide a reservoir of local-
ized states with energies different from the Landau level,
which allow the plateaus to develop. Increasing the mag-
netic field leads to a reduction in the cyclotron radius
causing the Fermi level to fall as localized states drop
into the Landau level. While the Fermi level is above the
Landau level this change does not alter the transverse
conductivity, since the localized states do not conduct,
and for the same reason the diagonal (dissipative) con-
ductivity remains zero. As the Fermi energy crosses the
Landau level the extended state gives a nonzero diagonal
conductivity while the transverse conductivity changes
continuously to the value at the plateau corresponding to
the next Landau level below the Fermi surface.

In order to describe this system we start with the stan-
dard microscopic field-theoretic treatment of electro-
dynamics in the presence of impurities in two dimensions.
We wish to describe the response functions (conductivi-
ties) in a field-theoretic treatment of charge transport. In
the case of electrons, the diagonal (dissipative) conduc-
tivity is determined by the electron Green function com-
puted in a random potential, with some prescribed statist-
ical properties to describe the spreading of the energy lev-
el due to impurities in the system. In addition to showing
how 0. emerges as an effective parameter in the macro-

scopic theory from the underlying microphysics of the
semiconductor, the purpose of the following formalism is
also to discover how to express the effective action
parametrized by cr„„ in terms of composite operators Q
chosen so that the dissipative conductivity is determined
by the propagator of Q. These are given by a "Hubbard-
Stratonovich" transformation, which in this case turns
out to be a bilinear Q+ =.f+g: in the advanced and
retarded electron fields P+. Levine, Libby, and Pruis-
ken have given a heuristic interpretation of this in
terms of the phase coherence of the charge carrier as it
propagates through a noisy environment and strong mag-
netic field. They argue that localization is related to the
destruction of phase coherence between the advanced and
retarded propagators, and that the extended states corre-
spond to topologically nontrivial field configurations that
restore this phase coherence at the center of the Landau
band.

The "advanced" (+) and "retarded" ( —
) propagators

Gv =G(z, z', V;E+ig) [from z =(x,y) to z'=(x', y')] at
fixed energy E and impurity potential V are solutions of
the time-independent Schrodinger equation:

(V +E+ig V)Gi—+, (z—,z') = —5(z —z') . (14)

cr, = lim r) f d z d z'(x —x') Gi+, (z,z')Gi, (z', z),
v) ~0

o„=i lim q f d z d z'(xy' —x'y) Gv (z,z')Gi, (z', z) .
q~0

Note that our discussion deals with time-independent
solutions so that henceforth only the two-dimensional
spatial variables are displayed.

The field-theoretical treatment of these conductivities
starts with the functional integral representation of the
time-independent (fixed energy) Green functions:

G~ describes the propagation of electrons in an impurity
potential, ignoring the interelectron Coulomb interaction.
This should be a reasonable approximation for a Plied
Landau level in the quantum Hall system, since in this
case the cyclotron energy is much greater than the
Coulomb energy between electrons neutralized by a uni-
form background electric charge distribution. In the case
of partially filled levels, appropriate to the fractional
quantum Hall effect, it has been argued that the system
may be described by (nonlocal) anyonic states which arise
as "the least interacting" collective modes in the electron
basis. In this case the conductivities will be determined
by the propagation of anyonic states in a random poten-
tial, this time ignoring the Coulomb interaction between
the anyonic charge carriers. In the next section we will
discuss the fractional case; here we discuss only integer
levels in which case G~ are propagators of fermionic
fields.

The conductivities o. and o. being physical observ-
ables, they are related to the square of the Green func-
tions. They are most simply expressed in terms of the
"diffusion probability" Gi+, Gv—:f2) V P [ VjGi, Gi,
(through a sample of unit area) as follows:
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6,—+(z,z')—: + fnq+nq+e " ' -'-'q+(z}y+(z'),Z+

(16)

P[V]—=exp ~
—

2 f d z V (z) -,1

2y'
(18)

but the results should not depend on the precise form of
P[V]

Here we have chosen to write the functional integral in
terms of fermion fields g since, as we will discuss, these
are the most appropriate for describing the symmetries
associated with the propagation of electrons.

The standard techniques to compute the normalization
in (16) involve the replica trick or the supersymmetry
trick. In this paper we only use the former, but in view of
the difhculties that may be encountered in the analytic
continuation of the replica index, it would be worthwhile
at some stage to check the results using the supersym-
metry technique. Note that not all of our results rely on
the validity of the replica trick; to determine the sym-
metries we do not need the overall normalization of the
Green functions.

In the replica trick the normalization factor is elim-
inated at the price of replicating each field (g+) n+ times,
and taking the limits n+ —+0 at the end of the calculation.
If the original action was Gaussian in V, then so is the re-
plicated one, and we are able to perform the average over
impurities. With the replicas labeled by a =1,2, . . . , n+,
the normalized Green functions are given by

—sly+, 4+., v
g —(z,z') = lim f Q &&+&0+e

n+-0

X P +(z)ij'j+(z') . (19)

In the following sums and products over repeated replica
indices (early latinos) will usually be suppressed. The
diffusion propagator is now determined using (18) and
(19):

GY (z,z')GY (z, z')

a a b b e
—Stag]

n+ ~0

XP+(z)g+(z')P (z)g (z'),

with

S[g,P]= —,' f d z[P'+—(V' +E)g'++/' (V +E)P'

+» n(4'+ 0'+ 0' 0' )—— —

where Zi, is the generating functional and S is the
Schrodinger action:

S [g+,P+; V]= —
—,
' f d z Q+(V +E+iri V)g+ .

The functional average over the impurity potential V
involves the distribution P [ V], which for convenience we
take to be Gaussian,

When g~0, (20) is invariant under a U(n++n ) sym-
metry which rotates the full multiplet of fields (g'+, f' ).
The (small) regulator ri explicitly breaks this group to
U(n+ ) X U(n ), meaning that (21) is only invariant un-
der independent rotations on the advanced and retarded
replicas separately. The importance of these symmetries
for the theory of electronic transport was first pointed
out by Wegner. In more than two dimensions the quar-
tic term in (21) causes a spontaneous breakdown of
the U(n++n ) symmetry to U(n+)XU(n ). The
Goldstone modes of the associated coset space
U(n++n )/U(n+ ) X U(n ) are the massless states re-
sponsible for delocalization and a nonvanishing o. . In
two dimensions we know from the Coleman-Mermin-
Wagner (CMW) theorem that there are no Goldstone
phases, so that generically there are no delocalized states
in low dimensions. In other words, o. will typically
vanish. However, the effect of the last term of (20) is still
to give a mass to the fields which are not in
U(n++n )/U(n+ ) X U(n ). The remaining modes
may occasionally become massless, thus giving rise to ex-
tended states, but in order not to violate the CMW
theorem this can happen only at isolated points in param-
eter space.

In order to quantify this effect it is useful to change
variables to the composite fields:f+P+ . This i. s done by
introducing a bosonic Hermitian matrix of Lagrange
multiplier fields Q++ and multiplying (20) by the Gauss-
ian factor

exp l ah ah ~ aabb (22)

where the dot denotes matrix multiplication in the two-
dimensional "Wegner space" labeled by the advanced
(+) and retarded ( —) index. The advantages of changing
variables to the Q's is that the Green function of Q deter-
mines the diffusion propagator, and hence the conduc-
tances (15). Thus, if in the long distance limit there are
massless states in the field theory describing the Q's, there
will be extended states in the system of interest corre-
sponding to a nonzero value for the linear conductance.
The Green functions of the Q's may be found from the
expression for the partition function given entirely in
terms of the Q's, which can be obtained by integrating
over the fermion fields f+ in (20) extended by the factor
(22), giving

Z[J]= lim fl)g exp —,
' .Trinal (g)

n+ ~0

+ f d2Z(Qah gab jab gab)

Here the J's are sources for the Q fields, and the matrix

V +E+ir)+yg++ —yg+
V +E i r)+yg—(24)

2
y (qa ya +pa ya )2I (21)

determines the effective action in the Q basis.
The Q Lagrangian contains terms linear in Q and these



2510 C. A. LUTKEN AND G. G. ROSS 48

6
6

~ Tr ln A (Q)+ Id zQ'" Q'
g=(g)

=0,

induce a vacuum expectation value (vev) for Q, which can
be determined from the condition

= ——g „„TrB QB"Q+ —o Tre„QB"QB"Q . (34)

which contains only the light coset fields T(z).
In terms of the Q fields defined in (33) the leading part

of the efFective action (i.e., second order in derivatives) is

+ Q + (z)C+ (z,z')Q+ (z') I,
where

C+ (z,z')=25(z —z') —y Go (z,z')Go (z', z)

(27)

(28)

Go (z, z')= —(V' +E+ig+y(Q+~)) ' (29)

are the advanced and retarded Green functions at tree
level. The density of states at tree level is given by [see
(26)]

2vripo(E) = lim [Go+ (0,0)—Go (0,0)]
g~o

=—[(g„)—(g )].2

After shifting to the fields Q, those fields not in the coset
space U(n++n )IU(n+ )X U(n ) acquire a mass. In
order to project onto the remaining massless fields it is
convenient to change variables by writing Q (z)
=T '(z)P(z)T(z), where T(z)H U(n++n ) and P(z)
is block diagonal in the advanced and retarded subspaces.
The advantage of this is that the fluctuations of the P
fields about their vev's are massive and hence do not con-
tribute to the critical behavior. They cannot, therefore,
appear in the effective action governing the properties of
the system at large length scales.

The fields in the coset space U(n++n )/U(n+ )

X U(n ) all belong to the T fields, which can be written

T (z) =exp [iP, (z)J'],
where J' are generators of U(n++n ) not in

U(n+ ) X U(n ) and not commuting with (Q). From
(30) we see that

Q = p(E)(T 'r, „T—r,„),

where ~3„ is the diagonal generator of the Wegner sym-
metry [r3 in the unreplicated case of SU(2)], which is un-
broken by (Q). To make contact with Pruisken's
analysis it is convenient to define a new matrix field

glv1ng

(g, )=(g
(26)

(g++) = ~ (~'+E+i~+) (Q++));, '= Go+(...) .
2 2

Next we expand (23) in fiuctuations Q = Q
—( Q ) about

this minimum. This gives the quadratic terms in Q+

dzdz' + zC+ zz' + z'

The first term just follows from (27), while the second
term is the one identified by Pruisken and co-
workers ' ' as necessary to give a nonvanishing oxy.
The form of (34) follows from (15), with the superscript
"0" denoting that the vev's have been determined using
the zeroth-order theory.

The second term in (34) is a nontrivial topological in-
variant because it is the Jacobian of the mapping Q from
the (compactified) worldsheet S to the coset space
U(n++n )/U( n+) X U(n ), whose second homotopy
group is Z. This implies that the coeKcient o. must be
periodic with period 2m, since otherwise the partition
function would not be single valued. The implications of
(34) for the transition between levels has been discussed
by Aleck. He argues that it governs transitions be-
tween integer levels with critical points at cr =I + —,',
m E.Z. The critical theory is identified with the n~~
limit of the SU(n) XSU(n) Wess-Zumino-Witten model,
leading to a scaling exponent of —,, which, however, is in
disagreement with the recently measured values. As we
will argue in the following sections, the inclusion of a
more general form for the impurity potential changes this
expectation.

V. LOCALIZATION OF ANYONS

We consider now how the discussion of Sec. IV
changes when discussing the fractional levels. The obvi-
ous difference in describing the fractional levels is that
they correspond to partially filled Landau levels, and as
discussed in Sec. III, these may be described in a field-
theoretic sense by the Chem-Simons theory L,„given by
(8). Although the form of I.,„„is adequate for describing
the transport properties of anyonic states for vanishing
o. , it is necessary to include the effects of impurity
scattering if we are to understand transitions between lev-
els. Thus we modify (8) by adding a LG potential
W(P, V) with form yet to be determined, but depending
on both the LG field P and the impurity potential V.

As we discussed in the preceding section, the analysis
of the transport properties of the system proceeds via the
identification of the relevant degrees of freedom which
are massless at the critical points. In this the Wegner
symmetry played a crucial role and so we first discuss the
symmetries of (8), allowing for a replica index a and an
advanced or retarded index (+) on the LG field, i.e.,
P=P+. The action needed to determine the difFusion
propagator is now [cf. (8)]

I.,„,=y;(v' ia, )y;+y. (q' —;a, )y. —

+&& &(4 '+ 0'+ 0' 4' )—--
e2

( & p.a gv& A,a +& pa gv& i,a
)

4g pvA. + +

Q(z) = T '(z)r3„T(z), (33) + 8'((5+, V)+ IV(P', V),
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where a,=a/a„and r is a "time" variable introduced in
order to cast the CS Lagrangian into a local form.

It is clear from this equation that the Wegner
U(n+ +n ) symmetry does not act linearly on the fields

P+, because of the auxiliary fields a ~+'. Indeed, once these
fields are integrated out to give a (nonlocal) Lagrangian
expressed entirely in terms of the LG fields P+, one finds
that it contains quartic terms in P+ which are not invari-
ant under the U(n++n ) symmetry acting linearly on
the P+ basis. To exhibit the linear U(n++n ) symme-
try it is necessary to reformulate (35) directly in terms of
the anyonic fields P;„„satisfying "anyonic boundary con-
ditions. " For the general case of anyons in the absence of
the potential 8' the equivalent formulation has been
given by Semenoff. Of course, the simplest example of
this is the case 0=a corresponding to fermionic fields. In
this case the action written in terms of the fermionic
fields g+ is just the one in (21) which rnanifests the
U(n++n ) symmetry acting linearly on the f+ basis.
For the general anyonic case the anyonic fields P+,„„are
nonlinearly related to the LG fields P+ appearing in (35).
Since the Wegner symmetry acts linearly on the P+ it is
clear that it acts nonlinearly on the LG fields.

So far we have not discussed the description of impuri-
ties which follows from the form of 8'. In the case of fer-
mions the analysis leading to (34) relied on the assump-
tion that W(g+, V)+ W(g', V) was U(n++n ) invari-
ant. Indeed the choice of W'[g+(z), V]=V/+(z)g+(z)
clearly leads to such a symmetric form. This choice cor-
responds to the (reasonable) assumption that electrons
scatter in a pointlike manner from the impurities. How-
ever, the assumption seems less viable for extended
anyonic states of fractional spin, since they describe non-
local superpositions of electrons. Only if the impurities
scatter via long-range potentials with range larger than
the size of the anyons is it a reasonable approximation to
take the equivalent pointlike coupling IV[/+, „~(z), V]
= VP +,„„(z)P+,„„(z)of the anyon to the impurity poten-
tial V. In the experimental configurations it is often the
case that the impurities are long range, so we will contin-
ue to take such a U(n++n )-invariant form for the
coupling as the dominant effect of noise, but we will allow
for the presence of additional terms to take account of
the possibility of noncoherent scattering of the anyonic
states from the impurities. With the assumption that the
U(n++n )-invariant noise term is dominant, the
identification of the light degrees of freedom appropriate
near criticality is the same as discussed in the fermionic
case, namely the coset fields in U(n++n )/U(n+)
X U(n ). We first construct the effective Lagrangian in
this approximation before considering the important
effects of the symmetry-breaking terms.

Following from the identification of symmetries the
analysis proceeds in an entirely equivalent way to that
presented in Sec. IV. The first step is to change variables
to the composite fields Q++ —=.P+,„„P+,„„.. The effect of
the U(n+ +n )-invariant component of 8'(P+,„„,V)
+ 8'(P', „V) is to generate a vev for Q++, and only the
fields in the coset space U(n++n )/U(n+ )X U(n )
remain massless at tree level. To lowest (second) order in

+i'~0 Tr~„a"Q a g (36)

In writing (36) we have absorbed a constant in the
definition of the normalization of the field Q+ . The rel-
ative normalization of the terms proportional to o. and
0 zy is unaffected by this choice . The abso 1ute normal iza-
tion of the Q fields will be determined by the condition
that the correct value for cr is obtained on the plateaus
from the underlying CS theory.

The result (36) is of the same form as (34) which de-
scribed the fermionic case. As such it presents a major
problem in understanding the fractional effect, for, fol-
lowing AfBeck's analysis, we would expect critical
points at half integer values only. The reason the
effective Lagrangians are the same fo11ows from the fact
the symmetries of the initial Lagrangians are the same,
leading to the identification of the same massless modes.
However, as we emphasized above, the anyonic case may
be expected to differ from the fermionic case because the
Wegner symmetry is likely to be explicitly broken by
noise terms.

The effect of the explicit U(n++n ) breaking terms
may now be included as the most general perturbation
L;„„of(36):

r. ,„,=m'lg; l'+m'(g; )'+wig

+~'lg: I'lg'. I'+n(g: )'

+q'(Q+ ) (Q~+ ) +h. c.+ (37)

where a,P=1,2, . . . , n+no are (composite) replica in-
dices, and the dots denote higher dimension terms which
are irrelevant operators in the scaling limit. Since
m, m ' ~O at criticality, the terms determining the
universality class of this action are quartic in the massless
fields. In short, the effect on the LG action in the Q basis
of including anyonic excitation is to allow a more general
LG potential which may lead to a different universality
class from that expected for fermions.

The effective Lagrangian I,z
—=L,„;„+L„~+L,„„given

by (36) and (37), has been derived largely from symmetry
arguments, and applies when there is an approximate
U(n++n ) symmetry broken to U(n+ ) X U(n ) by
the Q++ and Q vev's induced by the U(n++n )-

derivatives, the effective action governing the Q fields is
again given by (34). However, as we have just discussed,
we expect that at some level terms noninvariant under
U(n++n ) will appear in W'. These we will allow for
by including the most general perturbation of J con-
sistent with the unbroken symmetries of the problem.

As we discussed in Sec. IV, the massless fluctuations
are contained in Q=T 'r3T. Near the critical point
only the most relevant operators are significant and these
correspond to keeping the leading terms (linear in P) in
the expansion of (31). From (32) we see that Q may, up to
an additive constant, be identified with the fields

Q+ y Ihip(E) He.nce, near a critical point we may re-
place (34) by

Lk;„+L„„=—o „Tra„g+ a"Q+



2512 C. A. LUTKEN AND G. G. ROSS 48

invariant noise term. Note that the approximation of
keeping only the Q+ fields in the effective Lagrangian
appropriate for discussing the physics at critical points is
reasonable only if the noise terms in (37), which explicitly
break the U(n++n ) symmetry, are small relative to
the U ( n+ + n )-invariant noise terms.

We must now determine the properties of the LG La-
grangian L,„,whose low-energy degrees of freedom have
been encoded in L,ff. Even though the terms of L;„, are
initially small, as we approach the critical point they play
an important role in determining the universality class to
which the effective Lagrangian belongs. In this we are
guided by the symmetries of the effective Lagrangian.

We consider first the case in which we do not take the
replica limit. As mentioned above the replica limit is not
necessary if we merely wish to discuss the symmetries of
the effective Lagrangian. In this case the symmetry of
L,s. is just a Z4 factor of the third [U(1)] component of
the U(2) Wegner symmetry acting on the (unreplicated)
advanced and retarded subspaces. This is left unbroken
by (37) simply because the most relevant operator at criti-
cality is quartic in the Q fields. Because of this term the
LG theory is in the same universality class as two cou-
pled Ising (p=2 Potts) models with a permutation sym-
metry between the two factors. This is just one of the
models discussed in Sec. III, and it has the self-dual sym-
metry leading to the SL(2,Z) discrete symmetry acting on
the conductivities which was used in Ref. 1 to relate the
integer and fractional effects.

We conclude that, due to the additional explicit
symmetry-breaking terms of (37), at criticality the
effective theory L,ff will be driven in the long-distance
limit to one of the coupled spin models L, and not to the
o -model L in (34). Unlike the latter model, L,fr does al-
low for the fractional levels associated with the CS theory
of (8).

We are thus able to make a connection between two
types of effective "Landau-Ginzburg" descriptions of the
quantum Hall system. One of these is a "mesoscopic"
LG description of the plateaus in terms of anyonic states
and the associated CS form of the effective Lagrangian.
Here we have related the static properties of such a
Chem-Simons theory to a "macroscopic" two-
dimensional effective "o.-model with potential" type of
LG field theory, which is directly pararnetrized in terms
of the conductances and which can be interpreted as be-
ing in the universality class of a self-dual spin model.
The discrete symmetry of this spin model allows us to
determine the phase structure and positions of (some or
all) the RG fixed points. This was discussed in Sec. II
and in more detail in Ref. 1, where it was shown that
these aspects of the model are in good agreement with ex-
periment.

The macroscopic theory derived here complements and
extends the analysis of Ref. 5, for we have seen that the
RG Bow drives the theory at macroscopic scales to a
theory in which the transport properties of the anyonic
states are determined and the symmetries relating levels
are manifest. As we discussed in Sec. III, these sym-
metries may be understood as a combination of time-
reversal or particle-hole transformations, Landau-level

translations, and transformations which do not change
the statistics of the anyonic state which is playing the role
of order parameter. Since the order parameter is bilinear
in the original anyonic field, the latter symmetry is larger
than would have been encountered in the original Chern-
Simons theory and leads to the appearance of new even-
denominator phases. The phase structure is determined
entirely from the modular symmetry, but symmetry argu-
ments alone do not determine the energetics of the vari-
ous phases. If the new "bosonic hierarchy" of phases lies
higher in energy, e.g., due to a large pairing energy, then
they will not be populated and only the odd-denominator
phases will appear. However, their existence still plays
an important role in determining the position of the fixed
points and hence the behavior of the system in the odd
phases near these fixed points. '

Notice also that not every energetically allowed phase
will appear in every experiment. Which plateau is actual-
ly observed is an initial value problem: different phases
can be "dialed" by setting external "control" parameters.
The magnetic field (B) is just one of these. The degree of
disorder is another, which is related, by standard semi-
classical scattering/diffusion theory, to the value of the
dissipative conductivity o. . For a given value of disor-
der (i.e., a given sample), not any value of o, can be ob-
tained ("dialed" ) by varying B, say. Fixing all external
parameters gives an "initial value" to the RG Row, which
is then generated by changing only the scale parameter.
Starting with a dirty sample we only have large initial
values available for the Aow, i.e., we are always in an in-
teger phase and only such plateaus ( e =integer) are ob-
served. With a cleaner sample we can get down into a
fractional phase, and we will see also some fractional pla-
teaus (&=fraction) when B is varied. The cleaner the
sample the more phases (plateaus) can be accessed, but
each plateau becomes narrower. Eventually they disap-
pear completely, as they should because no impurities
means no localized states means no plateaus, and the
classical result is recovered.

We are also able to use the macroscopic LG descrip-
tion to investigate the critical behavior corresponding to
transitions between plateaus and to determine the critical
indices. In order to do this it is necessary to determine
which is the self-dual theory that is relevant in this case,
and to do this we must take the replica limit, which we
now discuss.

VI. REPLICA LIMIT, CRITICAL EXPONENTS,
AND EXPERIMENTS

As we discussed in Sec. II, if the delocalization ex-
ponent is greater than 1, the crossover exponent at the
"decoupling" fixed point at o.=i is negative, and the
RG Aow diagram is the one shown in Fig. 1. For this
particular fixed point the analysis simplifies considerably,
because L„ is absent from L,s, or equivalently, P=o.
is absent from L .

We must take the replica limit n+~0 to find the
theory appropriate for determining the scaling behavior
of the conductances. In order to determine the universal-
ity class of the LG theory L,ff we rely on identifying the
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symmetry. Adding the replica index the symmetry of
Lk;„ is U(n++n ). This is respected by the first term of
L;„, but broken to Z~„„~,XZ2 + by the additional

terms, where the first factor is the permutation symmetry
acting on the replicas Q+ . The second factor consists
of a Z2 permutation between the real and imaginary com-

n+n
ponents of Q+, and a Z2 -invariance under sign
changes of Q+ . The potential corresponding to (37) has
(for a suitable range of the parameters)

n+n
p —=2 (n+n )! minima for the real components of
Q+ and similarly for the imaginary components.

Since the field variables will only take values at these
minima in the long-distance limit, it is reasonable to con-
jecture that the model lies in the universality class of the
p-state Potts model. While we are not able at present to
justify this conjecture directly, we will show that it does
offer an explanation of the measured value of the delocal-
ization exponent. The first point to note is that this
theory has a well-defined replica limit, p —+ 1 when
n+ ~0, which corresponds to the "classical'* or "geome-
trical" percolation theory with critical exponent v&= 3.
It is encouraging that this analysis has identified the
universality class to which percolation belongs as the one
relevant for the quantum Hall system, since this con-
clusion can also be reached from the semiclassical "per-
colation picture" in which the extended state corre-
sponds to delocalization of previously localized states as
the Fermi surface crosses the percolation threshold where
the localized trajectories coalesce. Although —, is not the
measured value of the delocalization exponent v&, it has
been argued that "quantum percolation" will dominate
away from criticality, leading to a critical exponent of

3

which is in good agreement with the experimental results
quoted below.

The obvious question is whether such an explanation
applies also to the field-theoretic analysis presented here.
The idea behind the quantum-percolation calculation is
that, away from the percolation threshold, propagation of
charge proceeds via percolation through the domains
where the localized trajectories coalesce, whose charac-
teristic size is given by the percolation length, together
with tunneling between the different domains. Close to a
critical magnetic-field strength 8 *=B the percolation
length scales as (B B*),while the tunn—eling probabili-
ty scales as (B B*), so that th—e two together scale as
(B B*) +'.—Note that the tunneling amplitude is pro-
portional to expI —J ', dr&V(r) E I, where 2a i—s the
distance between domains.

To see whether tunneling processes are included in the
LG theory discussed in the preceding section, we consid-
er the approximations used in deriving the effective La-
grangian L,tt. In the derivation of (36) and (37) the con-
tributions from the fields Q++ and Q were dropped,
for L,ff was constructed under the assumption that their
masses, proportional to y, are large. The propagation of
these fields leads to correlation functions proportional to
exp( —m~z —z'~), where the mass m of the field is of or-
der y. Since y is the width of the Gaussian determini~n
the range of the potential we see that m is of order &V,

which is just the order of the terms determining the tun-
neling amplitude. Thus the approximation used in the
derivation of the effective Lagrangian amounts to ignor-
ing tunneling effects. This is consistent with the deriva-
tion of the percolation exponent just discussed. At criti-
cality this is the correct theory to describe the conduc-
tances, and in particular the value of o . However,
away from criticality the effects of tunneling must be add-
ed, changing the scaling exponent from —', to —'„as dis-
cussed above.

This result can now be compared with experiments.
Until very recently the only exponent that could be mea-
sured was the temperature exponent ~, which describes
how fast the peaks in o.„„(or,equivalently, the slope at
the infiection point between plateaus in o.„)change as
the temperature vanishes. In these experiments ' it was
found that sc takes on a universal value v=0.42+0.04, ir-
respective of which transition was considered. This ex-
ponent is related to the delocalization exponent v&

through a standard scaling argument that gives
v&=p/2~, where p is the temperature exponent of the
inelastic-scattering rate. The value of the exponent p was
not known in strong magnetic fields, but assuming that
the value p = 1.1 for metals in zero field is still valid in the
Hall experiment, it was suggested that v&-—1.3= ~3, in ap-
parent agreement with the classical percolation exponent.
More recent experiments, however, have found that the
value of a may vary by up to a factor of 2 between some
semiconductor heterostructures, thus effectively killing
off the universality hypothesis for ~.

Fortunately, in a remarkable experiment all three ex-
ponents appear to have been obtained independently by
studying a sequence of different Hall bars, which do not
differ in shape or composition, but only by an overall
scaling factor. The basic idea is that the temperature and

sample widths are so small that the inelastic-scattering
length is frozen out of the problem (since it exceeds the
sample size), so that the sample ioidth can be interpreted
as the RG scale of the problem They find. that while both
K and p are nonuniversal, the delocalization exponent
takes the universal value v&=2. 3+0.1, in agreement with
the result of numerical simulations for the lowest Lan-
dau level, v&=2. 34+0.04. Both results are clearly con-
sistent with the (quantum percolation) exponent v&= —',
obtained above from the self-dual effective-field theory of
anyon localization.

Finally we remark that the authors of Ref. 34 also
found that the value of o.„'"appears to depend on the
random potential present in the sample, apparently in
contradiction with the alleged "superuniversality" of the
critical behavior. However, this may be just a reAection
of the variety of critical points, related by the modular
symmetry, which are predicted in the system. Irideed, in
Ref. 36 we showed that the observed values of o '" are
consistent with the predictions for the positions of the
critical points which follow from the modular symmetry.
While this identification is still tentative and requires fur-
ther experimental investigation, the agreement lends fur-
ther support to the suggestion that the quantum Hall sys-
tem displays the full modular symmetry discussed above.



2514 C. A. LUTKEN AND G. G. ROSS

VII. SUMMARY AND CONCLUSIONS

In summary, we have constructed an effective-field
theory for the quantum Hall system which embodies both
conventional localization and the possibility of fractional
statistics. The latter involves a Chem-Simons interac-
tion, while the former is a generalization of localization
theory which sti11 exhibits scaling. Because our treat-
ment of noise is somewhat different, and we claim more
realistic, than the standard one, we do not recover
Wegner's or Pruisken's o.-models, but rather an effective
theory which is invariant under "complexified" duality
transformations of the conductivities which appear as
effective parameters in the model. Without resorting to
an explicit computation of instanton-driven RG Aows,
but instead exploiting the symmetries of the parameter
space as well as the conformal symmetry which appears
at RG fixed points, we are able to extract a precise pre-

diction for the whole scaling diagram, which contains
both fractional and integer phases. Other predictions are
the exact location of all fixed points, and "superuniversal-
ity" of the scaling exponents. A plausible identification
of the theory in the replica limit leads to the value —', for
the critical exponent of the delocalization transition be-
tween plateaus in the Hall conductivity. The agreement
with available scaling experiments is excellent.
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