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Transverse Ising model with arbitrary spin
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An effective-field theory that has recently been used for studying higher-spin Ising models is herein ex-
tended to the transverse Ising model with an arbitrary spin S. The general formulation for evaluating
the transition line in the 0-T space and relevant statistical-mechanical quantities is derived. Numerical
results are performed and analyzed for the particular cases S =

2
and S =2.

I. INTRODUCTION

The Ising model with a transverse field 0, is described
by the Hamiltonian

%= —
—,
' g J;fS Sf' —0 g S;",

where the S;,S,' are the components of quantum spin-S
operators, J;- is the exchange interaction, and the first
summation is over all nearest-neighbor pairs.

The model (1) for the case S=—,
' has been extensively

investigated for many years by the use of various tech-
niques. In fact, the model is useful for the study of
cooperative phenomena and phase transitions in many
systems including order-disorder ferroelectrics, induced
moment ferromagnets, and cooperative Jahn-Teller sys-
tems (see Ref. 1 and references therein). On the other
hand, transverse Ising models for spin S higher than
S=

~
have also received some attention, especially for

S=1. As far as we know, however, only a few works
have made contact with the quantum transverse spin-S
Ising model. ' Very recently, we have introduced a
framework for treating Ising systems with higher-spin
values. The formulation can be extended to the spin-S
transverse Ising model.

In this work, we shall discuss via the formulation the
transverse Ising models with an arbitrary spin S on the
basis of generalized but approximated Callen relation, de-
rived by Sa. Barreto, Fittipaldi, and Zeks. The relation
has been successfully applied to a number of interesting
physical systems, such as (pure or disordered) spin- —,',
spin-1 (Refs. 6 and 7) or mixed spin- —,

' and spin-1 (Ref. 8)

transverse Ising models. The outline of this paper is as
follows. The formulation of the problem is given in Sec.
II. The relations for obtaining phase diagram, magneti-
zation curves, internal energy, and specific heat are
presented in Sec. III. Finally, some numerical results are
discussed in Sec. IV.

Tr(, )
A, exp( —P&; )

(f; A;)=(f;;() k, (=)
Tr(, )exp —, k~T '

&=&;+&',

where &; includes all the parts of % associated with the
site i, and &' represents the rest of the Hamiltonian and
does not depend on any spin operators of the site i. Al-
though relation (2) has been derived approximately, we
emphasize that it reproduces the exact identity for the Is-
ing limit (Q=O) and the approximation introduced re-
veals it to be very appropriate for high dimensional lat-
tice.

By the use of (2), the longitudinal and transverse site
magnetizations for the spin-S transverse Ising model are
given by, on putting f; = 1,

(s;*)=( fg(e;)), (4)

(s,*)=( f, (e; )),
with

(6)

and

where the operator A; is a spin operator function at a site
i, and TrI,

I
denotes to take a partial trace for the site i.

f, represents an arbitrary function of spin variables ex-
cept S and S; at a site i and ( . ) denotes the canoni-
cal ensemble average. Then, the total Hamiltonian (1) is
separated into two parts:

II. FORMULATION

The starting point for the statistics of our spin system
is the relation proposed by Sa, Barreto, Fittipaldi, and
Zeks

where the function fs(x) depends on the value of S. The
explicit form of fs(x ) can be found by means of the way
described in the Appendix. This is to say, it is given by
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fs(x )=—,'tanh( —,'Py ) for S=
—,',

fs(x}= for S=l,2 sinh(Py )

2cosh y +1
3 sinh( 2Py )+sinh( —,'Py)

fs(» }=
2 cosh( —,'Py )+2 cosh( —,'Py )

4 sinh(2Py )+2 sinh(Py )

2 cosh(2Py )+2 cosh(Py )+ 1

for S=—', ,

and so on, where the parameter y is defined by

y =}F0 +x

(8)

S
exp(aS ) =cosh(rIa )+ sinh(rja ),

7l

with

(18)

complicated form and hence the mathematical treatment
becomes extremely complicated when it is introduced
into (13) and (14). Furthermore, the exact Van der Waer-
den identity has a form depending on S and hence the
formulation must be given in a form depending on S, as
noted in Refs. 4 and 11. In the previous work, there-
fore, we have introduced the generalized but approximat-
ed Van der Waerden identity, namely

&s,'&= ' f,(&e, &), (10)

At this place, one should notice that the standard mean-
field theory is given by replacing the operator 8; in (4)
and (5) with the averaged value & 8,. &;

q' =—& (s.')'&,

which is valid for any spin value S. In particular, for
S=

—,
' (18) reduces to the exact one (17), since the parame-

ter g is given by g= —,'. In fact the framework based on
(18) has given reasonable results for various physical
quantities in comparison with those based on the exact
Van der Waerden identities. ' Thus, (13) and (14) can be
transformed, by the use of (18), into the forms

with

E, =Qn'+(& 8,. &)' . (12} (S,*)=(ii cosh(J;;s)V)
J

As discussed for spin- —,
' and spin-1 (Refs. 6 and 7)

transverse Ising models, Eqs. (4) and (5) can be rewritten,
by introducing the differential operator technique, as

S'
+ sich(pcs)V) lFs(x)l, =c

'9
(20)

&S,'& = &exp(e, V) &F,(x)i„=. (13)
(SP)=(Q cosh(J;, s)V)

J

& S;"&
=

& exp(8; V) &H (x) i, =, , (14)

where V=8/Bx is a differential operator and the func-
tions Fs(x ) and Hs(x) are defined by

S'
+ s(nh(Jcs)V) )Hs(x)l, =c .

7l
(21)

Fs(» ) = fs(x )
Q +x

Hs(» ) fs(x )
0

0 +x

(15)
On the other hand, for a spin S higher than S=—,

' one
has to evaluate the parameter g. It can be derived in the
same way as & S,' & and & S;"& by the use of (2);

~' =—& (s,')'&
Now, for spin- —,

' and spin-1 transverse Ising models the
expectation value &exp(8;V) & has been transformed into
a convenient form for the mathematical treatments by in-
troducing the exact Van der Waerden identity, such as

=
& exp(8;V) &Gs(x ) i„

cosh J; 9V

exp( aS') =cosh —+2S'sinh
2 l for S=—,', (17)

+(Sils))sinh(JOs)V) ])Gs(x )l (22)

where a is a parameter. However, for a general spin S
higher than S=1 the Van der Waerden identity has a

I

Here, the function Gs(x ) also depends on the spin value
S and for S=1, —,', and 2 it is, respectively, given by

Gs(x )

0 +(x +y )cosh(Py)
[1+2cosh(Py ) ]y

3(y +2x )cosh( —', Py)+(y +6Q )cosh( —,'Py)

[4 cosh( —,'Py )+4 cosh( —,'Py ) jy

Gs(
3Q +(3Q +2y }cosh(Py)+2(y +3x )cosh(2Py)

[2 cosh(2Py ) +2 cosh(Py )+ 1]y

(23)



252 T. KANEYOSHI, M. JASCUR, AND I. P. FITTIPALDI

where y is defined by (9). For the derivation of these
functions, see also the Appendix.

When the right-hand side of (20), (21), and (22) is ex-
panded, the multispin correlation functions may be ob-
tained. The simplest approximation, and one of the most
frequently adopted, for their treating is based on intro-
ducing the foBowing decoupling approximation:

&s's' s') =&s'&&s'& &s;&j k I j (24)

m, =—&s,'&

for jAkA . Wl. In fact, for Q=O. O the decoupling
approximation corresponds to the Zernike approximation
of spin- —,

' model. ' Using the approximation (24) and tak-
ing into account the fact that J; is given by J for nearest
neighbors, the longitudinal and transverse magnetizations
as well as the parameter g are given by

1=zAi, (33)

(34)

Now, let us examine the statistical accuracy of the
present formulation by taking the special case of S=—,

'

and Q=O. O. For S=—,', as noted above, the parameter
Furthermore, when Q=O. O, the function Fs(x)

reduces to

F, (x ) = —,'tanh( —,'Px ) .

Thus, (33) is given by

(35)

exp(aV)r(x)=r(x+a) .

The second-order phase-transition line is then determined
by solving the coupled equations

Z 1 =z sinh( —'JV)cosh' '( —'JV)tanh(p, x)l„ (36)
cosh(JiIV)+ sinh(JgV) Fs(x ) l„

7l

m„—= &s,")

(25)
with p, =(kii T,),which is nothing but the equation for
spin- —,

' Ising model in the Zernike approximation. ' The
solution of (36) is given by

cosh(JqV)+ sinh(JiIV) Hs(x)l
'r!

(26) 4k~ T,
J =5.073 for z =6, (37)

and which is superior to the standard mean-field result
( 4kii T, /J =6).

Z

cosh( JiIV)+ sinh( JiIV) Gs(x ) l„
7l

where z is the coordination number.

(27)
B. Internal energy and specific heat

The internal energy U is given by

—= ——&8 s'& —n(s" &,
U 1

l g
(3g)

III. THERMODYNAMICAL PROPERTIES

A. Phase diagram

In this section, let us investigate the phase diagram (or
transition temperature) of a spin-S transverse Ising mod-
el. In a finite transverse field the SZ component of the
system is disordered at high temperatures, but below a
transition temperature T, it orders, so that m, XO and
the direction of the moment changes continuously, al-
though there is an order with m„AO at all temperatures.

In order to study the phase diagram, we must expand
the right-hand side of (25) and (27). Retaining only term
linear in m„we find

(8;S ) = (exp(y8;))
a Fs(x)l. =o .

.y=V
(39)

The expression ( exp(y 8; ) ) can be evaluated by the same
way as that of m, and m, namely by introducing the
decoupling approximation (24). After this procedure, one
obtains

(8,S,') =zJg sinh(JiIV)+
7l

cosh(Ji)V)

where N is the number of magnetic atoms. Here, by sub-
stituting f, =8; into (2), the first term of (38) can be writ-
ten as

m, =zA, m, +O(m, )

and
m

x cosh( JgV)+ sinh( JqV)

z —1

q =B,+O(m, ), (29) XF,(x)l.=, . (40)

with

A, =—sinh( JiIV)cosh' '(JgV)Fs(x ) l„=o,
7l

Bi =cosh (JgV)Gg(x)l =o

(30)

(31)

It is clear that for the evaluation of internal energy U we
must know m„m, and g. Then, these quantities can be
easily obtained by solving (25) —(27) numerically.

Finally, the magnetic contribution to the specific heat
can be determined from the relation

where the coefficients A i and Bi can be easily calculated
by applying a mathematical relation

aU
BT

(41)
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critical transverse field Q, for different lattices.TABLE I. Numerical values of the cntica ran

Present PA Ref. 3
0, /J

Present PA Ref. 3 SE Ref. 2

3
4
6
8

12

S=—3
2

3.737
5.253
8.261

11.261
17.260

S=—3
2

3.0
4.5
7.5

10.5
16.5

S=2

5.211
7.233

11.245
15.250
23.252

S=2

4.0
6.0

10.0
14.0
22.0

S=2

11.598
15.600
23.325

IV. NUMERICCAL RESULTS AND DISCUSSION

I th ection we shall show some yp'me t ical results for
~e.s. At first, in

' -—' and s in-2 transverse Ising mo e s.the spin- —, an spin-
hase diagramsand 1(b) there are presented the phase

'
gFigs. 1(a) an

mb s uare, and simpleint eh Q-T space for the honeycom, squa
see that t ecububic lattices. romF these figures we can see

field on the critical temperature ineffect of a transverse fie on e
Isin s stems is very sim'ilar tothe higher-spin transverse Is g y

that of the spin- —, transverse g
1 Isin model. Name y, e

erature radually decreases from its Ising
h th tA=O and rapidly vanishes w en evalue at A=

lue fL . Our estimationsfield approaches some critical va ue
in Table I. For comparison, there are

also listed the "pair-approximation" (PA resu ts an
results (SE). As we can see, our resultsseries-expansions resu ts

h better agreement with series-expans'
ion. We can alsotimations than those of pair approximation.

qz
2 b

kBT /J

6
mz

Z=3
3S=—
2

1.2

4 ————

a
qz

kBT/J

(b)

l2-
kBTc /J

mz-

S
z

12

he s in- —' transverse IsingFIG. 1. (a) The phase diagram of the sp'

b s uare, and simple cubic lattices. (b)model for the honeycom, q
The phase diagram of the spin-in-2 transverse Ising mo e o
honeycomb, square, and simp le cubic lattices.

4 6
kBT/J

ndences of the longitudinalFIG. 2. (a) The temperature dependences
holid line) and q, (dashed line) for the spin-2magnetization m, so i ine an

en thetransverse gIsin mode on el th honeycomb lattice, when e
0/J =0.001 for curve a,Q is selected as

ture d pe endences o ef th longitudinal magnetization m, (so i
h -2 transverse Ising modelline) an q,and (dashed line) for t e spin-

'
e when the transverse field Q is selected

as Q/J=0. 001 for curve a, 0/J=3. 0 for curve
for curve c.
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40
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S =—3
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1.2 2.4

I

36kTgB

FIG. 3. The temperature dependences of the transverse mag-
netization m for the spin-2 (solid line) and spin-2 (dashed line)

transverse Ising model on the honeycomb lattice. The number
accompanying each line means the value of the transverse field

(0/J).

see that the value of Q, increases with the increasing spin
value S. This finding is also in agreement with other
works.

In Figs. 2(a), 2(b), and 3, the temperature dependences
of the longitudinal and transverse magnetizations as well
as the parameter q, (q, =g ) for the honeycomb lattice
are depicted, when the transverse field is fixed at some
typical values. Again, these quantities display qualita-
tively the same behavior as the case of spin- —,

' (or spin-1)
transverse Ising model. ' Finally, in Figs. 4(a) and 4(b)
there are plotted the temperature dependences of the
internal energy ( U) and magnetic specific heat (C) for the
same systems as in Figs. 2. As far as we know, these
quantities (for S) 1) have not been reported in the litera-
ture. We can see that, if the transverse field increases,
then the absolute value of internal energy in the systems
increases holding the same qualitative features as in the
pure higher-spin Ising model. On the other hand, the
magnetic specific heat is gradually depressed by increas-
ing of the transverse field strength Q. It can also be seen
that the jump at the critical temperature gradually disap-
pears with the increasing value of Q.

V. CONCLUSION

C
kBN S=—3

2

Z=3

I

kBT~J

U
NJ

(b)

kBN
Za
)b
I

4
I

I

kBT/J

FIG. 4. (a) The temperature dependences of the internal en-

ergy U and magnetic specific heat C for the spin- —transverse Is-

ing model on the honeycomb lattice. The transverse field 0 is
fixed at the same values as in Fig. 2(a). (b) The temperature
dependences of the internal energy U and magnetic specific heat
C for the spin-2 transverse Ising model on the honeycomb lat-
tice. The transverse field Q is fixed at the same values as in Fig.
2(b).

In this work we have developed a simple approximate
theory for studying the transverse Ising models with an
arbitrary spin. The statistical accuracy of the present
method is nearly the same as that of the Zernike approxi-
mation for the spin- —, Ising model. Within the simplest
(or Zernike) approximation, we have shown how the
spin- —,

' or spin-1 transverse Ising model based on the iden-

tity of Sa Barreto, Fittipaldi, and Zeks can be extended to
the spin-S transverse Ising model. The approximation
can be of course improved to the better (or Bethe-Peierls)
approximation, if one uses the correlated effective-field
approximation. ' Moreover, on the basis of present for-
mulation the effective-field renormalization-group
method, such as Ref. 13, may be developed and applied
to study the critical phenomena of the spin-S transverse
Ising model. Because of its mathematical simplicity, the
present framework based on (24) will probably have a
wider applicability than others methods, especially when
one wants to get whole temperature-dependences of mag-
netic properties in the spin-S transverse Ising model.

In the previous sections we have shown and discussed
some typical results for spin- —', and spin-2 systems on the
honeycomb lattice. On the basis of our analysis, we can
conclude that effects of the transverse field in the higher-
spin Ising systems are very similar to those of the spin- —,

'

case. Owing to the mathematical simplicity and versatili-
ty of our formulation, we hope that this method will be
potentially very useful for studying and understanding
more complicated physical systems in the presence of a
transverse field.

APPENDIX

In this appendix, let us show how Eqs. (4), (5), and (22)
can be derived for an arbitrary spin S.

From (1), we may write &; as
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S =S;"cos(()I);) —S;"'sin((I(); ),
S,"=S;"sin(P; )+S;"'cos(P;),

(A2)

(A3)

&;= —8;S —QS;,
where 8, is defined by (6). In order to diagonalize the
form of (Al), we shall use a rotational transformation as
follows:

Tr(, )S,*'exp(EE;S,*'
)

)&S; &= sin((t);)
Tr (, )

exp(PE, S,")

Tr(,.)(S,*') exp(EE, S,*')
).&(S,') &= cos (P;)

Tr(, )
exp(PE, .S;")

~

~

Tr(;)(S;"') exp(PE;S )+ sin (P, )

Tr(, )
exp(PE, S,' )

(A7)

(AS)

with

(A4)

These equations can be easily calculated by the use of the
following matrices:

where E; is defined by (7). By the use of the transforma-
tions (A2) and (A3), %; can be rewritten as

& cr is,"i
o'

&
=o.5

&o is,"'io'&=&o.'is, 'io &

(A9)

E;S;"—. (A5) =
—,'6 ~,[(S+o )(S—o.+1)]' (A 10)

From (2) one can obtain, for f, = 1,

Tr(;)S,*'exp(EE;S;*')

)&S = cos(((), )
Tr(;)exp(PE;S;" )

(A6)

where 5 is the Kronecker 5 function and o. can take
2S+ 1 values allowed for a spin S, namely cr = —S,—S+1, . . . , S —1, S.
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