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Phase breaking in ballistic quantum dots: Experiment and analysis based on chaotic scattering
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We introduce two methods of extracting the rate of loss of electron phase coherence in ballistic quan-
tum dot microstructures from statistical measures of magnetic-field-induced conductance fluctuation.
The first method uses changes in the (magnetic-field) power spectrum of conductance fluctuations upon
changing the average conductance through the dot. The second, based on a Hauser-Feshbach —like for-
mula from nuclear physics, relates the phase-breaking rate to the amplitude of the conductance fluctua-
tions. The two methods are then applied to experimental data from GaAs/Al„Gal „Asquantum dots
in the shape of a stadium billiard. Preliminary results give phase-breaking rates that are consistent with
those previously found in quasiballistic GaAs/Al Ga, As microstructures.

I. INTRODUCTION

Electron transport in high-mobility semiconductor mi-
crostructures at low temperatures may simultaneously re-
veal evidence of quantum phase coherence as well as the
ballistic motion of electrons. Phase coherence gives rise
to interference phenomena similar to those observed in
disordered mesoscopic systems, while ballistic electron
motion —by definition, occurring when the elastic mean-
free path exceeds the device size —implies that essentially
all large-angle scattering occurs as reAection from the
walls of the device, so that transport becomes sensitive to
the shape of the microstructure. ' In addition, trans-
port in microstructures may exhibit quantization effects
as feature sizes approach the electron Fermi wavelength,
A,F -40 nm. Given these properties, ballistic microstruc-
tures are well suited to exploring the common ground be-
tween three related areas of physics: chaotic scattering
and its quantum manifestations, conductance Auctua-
tions in mesoscopic systems, and the statistical theory of
nuclear scattering. In this paper, we use some newly
recognized connections between these areas to derive two
simple methods of extracting the rate of loss of electron
phase coherence y ( = 1/r ) from magnetotransport
measurements in ballistic microstructures. The argu-
ments we use extend recent semiclassical treatments of
chaotic scattering in ballistic microstructures. ' '"

We then use these methods to measure y at millikel-
vin temperatures in gate-defined GaAs/Al, Gai „As
quantum dots fabricated in the shape of a stadium bil-
liard with quantum point-contact leads [Fig. 1(a)]. The
values we find for y have large uncertainties due to the
narrow range of parameters available in the devices stud-
ied, which were not optimized for these measurements.
For this reason, the measurements reported here should
be viewed as a demonstration of a novel technique rather
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FIG. 1. (a) Electron micrograph of stadium quantum dot.
The light region is gate metal on a GaAs heterostructure sur-
face. 1-pm bar shown for scale. (b) Schematic "effective lead"
representation of the phase-breaking channel with transmission
probability T

than an exhaustive experimental investigation of phase
breaking. Nonetheless, the values found for y are con-
sistent with other recently reported measurements of
low-temperature phase-breaking rates in quasiballistic
GaAs/Al„Ga, ,As microstructures at low tempera-
tures. ' ' In these previous studies, phase-breaking
rates were inferred from weak localization' ' and con-
ductance Auctuation' measurements using formulas that
assume diffusive transport in at least one spatial direc-
tion. Results obtained in Refs. 12—14 suggest that low-
temperature phase-breaking rates in quasiballistic micro-
structures exceed the theoretically predicted rate for
diffusive systems' (if one assumes that the true electron-
gas temperature is equal to the measured refrigerator
temperature), and that these rates become independent of
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temperature below about 0.5 K. It is difficult to rule out
spurious heating of the electron gas and other nonequili-
brium effects as sources of disagreement with the theory.
Unfortunately, no detailed theory of low-temperature
phase breaking (comparable, for example, to Ref. 15) ex-
ists for ballistic quantum dots, i.e., microstructures small-
er than the electron mean free path in all spatial direc-
tions.

II. EXPERIMENTAL DETAILS

The quantum dot stadia we have investigated are
defined on the surface of a GaAs/Alo 3Gao7As hetero-
structure using Cr/Au (20 A/80 A) electrostatic gates
patterned via electron-beam lithograph and liftoff [Fig.
1(a)]. We report measurements on two stadium struc-
tures, denoted stadium 1 and 2, fabricated on nominally
identical wafers, each with an accompanying circular
quantum dot next to it. A mobility p of 265 000 cm /V s
and a sheet density n of 3.8 X 10"cm were measured in
both samples using a van der Pauw geometry with all
gates shorted to the electron gas at a refrigerator temper-
ature of 16 mK with the samples cooled in the dark.
Also, a slightly lower sheet density of 3.6X10" cm
within the dot was inferred from modulations in the am-
plitude of Aharonov-Bohm-like oscillations observed at
magnetic fields above 1 T. These amplitude modulations
are periodic in 1/8 and presumably correspond to Lan-
dau levels in the dot passing through the Fermi surface,
and so provide a measure of the density within the dot.
These values give an elastic (transport) mean free path of
I, =2.6 pm and an elastic-scattering time of ~= 10 ps.

The size of each stadium dot is 1.2X0.5 pm, giving an
effective area of -0.5 pm, after accounting for a 50-nm
edge depletion. The stadium is connected to the bulk
two-dimensional electron gas via a pair of point-contact
leads oriented at 90'. Each lead has a lithographic width
of 0.14 pm and passes at most —3 lateral subbands. (We
use the difference between the lithographic lead width
and the actual lead width, inferred from conductance, to
estimate the 50-nm edge depletion. ) Conductances of the
leads can be controlled by small changes in gate voltage,
which only slightly affect the size and shape of the stadi-
um. Magnetotransport measurements were carried out in
a dilution refrigerator with mixing-chamber temperatures
down to 16 mK using standard ac lock-in techniques with
an 11-Hz current bias. The voltage drop across the sam-
ple was kept below 2 pV in all runs to avoid excessive
heating of the electrons.

III. PHASE-BREAKING RATE FROM POWER
SPECTRUM OF CONDUCTANCE FLUCTUATIONS

In order to extract a phase-breaking rate from conduc-
tance fIuctuation statistics, we begin by considering the
classical problem of escape from an open two-
dimensional billiard such as our two-lead stadium dot. If
the motion of particles bouncing in the billiard is chaotic,
then the escape probability per unit time will be constant,
and we may define an escape rate y„,. That is, the classi-
cal probability for an electron to remain trapped within

the device falls off exponentially in time, P„,(t)
I Q e "' . This will hold as long as the time t is not too

short, i.e., more than a few wall bounces. ' Semiclassical-
ly, the escape rate y„,can be expressed in terms of the
lead widths w, and mb, the area A of the device, and the
electron velocity vt; =2vrh/m "A,~ as follows:

y„,=(w. +w, )v~A-A. """
In the semiclassical picture, electrons follow classical

trajectories but have associated with them a phase which
allows for quantum interference. The phase along the
trajectory advances by 2~ in a Fermi wavelength A,F, and
also couples to an applied magnetic field 8 though its
vector potential, giving a phase shift proportional to B
times the area swept out by the trajectory perpendicular
to 8. The number of occupied modes A in each lead is
given by the number of half Fermi wavelengths across the
opening, A, =2w, /A, ~ (for lead a). This semiclassical
picture is appropriate when (i) the lateral dimensions of
the device are much greater than k~, (ii) there are many
modes in the leads, A„Az))1, and (iii) all modes are ful-

ly transmitting, T,' = Tb =1, where T,' is the transmission
coefficient of the ith mode in lead a. Partial transmission
may be included by defining a total transmission proba-
bility T, =g;'T,' for lead a and similarly for lead b

Note that when all T,'~b~ =1, we recover T,&b~=A, (b~. In
terms of T, and Tb, the escape rate can be written
fiy„,= ( T, + Tb )6/2' where b, is the mean spacing
of (spin-degenerate) energy levels in the dot,
b, =2vrA' /m*2. For our structures, b, —14 peV.

Quantum interference of electrons traversing the dot
will be destroyed by scattering events that randomize the
phase of the electrons. Phase-breaking scattering like
chaotic escape may be characterized by a rate y
(=1/r ) which we assume to be independent of y„,.
Then, because only electrons which have not suffered
phase breaking will contribute to the fluctuating part of
the conductance, one can define a total effective loss rate
of the phase-coherent electrons as the sum of these rates,

jef ~y+~esc '

It is this effective rate, y,z, that we will use to character-
ize the statistics of magnetoconductance fluctuations.
This simple approach strongly resembles the method in-
troduced by Buttiker' ' of adding an imaginary extra
lead to a device which draws no current but provides a
channel for phase breaking. The correspondence to
Buttiker's "effective lead" model can be made explicit by
assigning a transmission coelficient T =2m(6'y /6) to
the phase-breaking channel. In this formulation, the
effective total number of channels through which a
phase-coherent electron may "exit" the device—
including by undergoing phase breaking —is

&X.a-

T,tt= (T, +Tb+T )=2v-r

Formulas similar to Eq. (2) may be found in the nuclear
physics literature, dating back to the work of Bohr. ' An
effective channel approach has also recently been applied
to the problem of chaotic scattering in microwave sys-
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tems to account for absorption by the walls of the cavi-
ty. We emphasize that the effective channel model is
applicable to ballistic transport only insofar as escape
through the leads is an exponential process. In certain
nonchaotic billiards, for instance, the escape probability
obeys a power law. ' For ballistic microstructures with
such nonchaotic shapes, phase breaking and exiting
through the leads are not on equal footing, and a simple
effective channel model is not appropriate.

Because our control parameter is magnetic field, we
must relate the effective escape rate in Eq. (1) to the dis-
tribution of areas cut by electrons traversing the struc-
ture. Arguments presented by Jensen' and others, ' '" as
well as numerical evidence, ' ' " indicate that clas-
sically, the distribution of areas cut by trajectories
within a chaotic billiard is exponential, P ( A )
=P (0)exp( 2vra A—

~
), with a characteristic inverse area

a that is related to the escape rate according to
a-k Qy„„wherek is a geometry-dependent factor.
We will introduce phase breaking into this classical ex-
pression in a simple, physically reasonable way: by re-
placing the (classical) escape rate y„,with the eff'ective

escape rate y, ff of the un-phase-broken electrons, with the
corresponding change to the distribution of areas cut by
these electrons.

Based on the above form for P ( A ), semiclassical
analysis, ' ' " yields a Lorentzian-squared form for
the autocorrelation of the conductance fIuctuations:
C(bB)= (5g(B)5g(B +bB) ) = C(0)/[ I+(bB/ago) ] .
In this expression 5g(B)= [g (8)—(g ) ] is the fiuctuation
in conductance away from the average conductance (g ),
in units of e /h —= (25. 8 kQ) '. Angular brackets denote
magnetic-field averages, taken over a field range much
greater than the characteristic field of the fluctuations.
Po=h/e=4. 14&&10 Tpm is the quantum offfux. The
Fourier transform F of C(AB) gives the magnetic power
spectrum Ss(f) of the conductance fiuctuations,

(g )„+T,/2
(g )L+T /2

2

(4)

and finally find the phase-breaking rate from the relation

y =(b, /2M)T
Fits to the spectra for stadium 1, shown in Fig. 2, yield

a~ =0.95+0.02 pm and a& =0.77+0.02 pm with
average low-field conductances of (g )H

=2.7 and
(g)L=1.1. From these values and Eq. (4), we find an
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different gate voltages, such that in one case the average
conductivity through the device is high, (g )H-2. 7, and
in the other case it is low, (g)1 —1.1. For each run,
conductance fiuctuations 5g(8) are extracted from a
slowly varying average conductance by subtracting a
low-order polynomial fit. Then, averaged power spectra
of 5g(B) are computed for the high- and low-
conductivity data, and characteristic inverse areas, 0.~
and aI, are found by fitting Eq. (3) to each spectrum.
Assuming T, =Tb, and using the scaling y,ff~a, we
may extract T using the equality (independent of the
geometrical factor k),

Ss(f ) =F.T. [C(bB)] =S (0)[1+(2nag&)f]e

(3)

where f is the magnetic frequency in units of cycles/T.
The semiclassical derivation leading to Eq. (3) only ap-
plies in the regime of overlapping resonance,

ff & 4.' ' " Note that in the present formulation, this
resonance width includes the contribution of phase break-
ing.

If we now assume that electrons in the stadium dot un-
dergo several wall bounces before exiting and move er-
godically within the dot, the average conductance will be
related to the lead transmissions T, and TI, by the simple
resistors-in-series form (g)=2(1/T, +1/Tb) ', where
the factor of 2 accounts for spin degeneracy. ' ' Note
that (g ) in the above expression is independent of T~.
For equivalent leads, T, =Tb ——T, the average conduc-
tance across the device is simply (g ) = T.

With the above discussion as background, we are now
ready to describe the first set of measurements to extract
y . The idea is to compare magnetic power spectra Ss(f)
measured in a given device during the same cooldown at
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FIG. 2. Averaged power spectra Sg(f) of magnetoconduc-
tance Auctuations of stadium 1 at 16 mK for low (diamond) and
high (dot) average conductance. The two runs were measured
during the same cooldown, at gate voltages of —0.57 V ( —0.44
V) for low (high) conductance. The spectra have different slopes
at low magnetic frequency f, indicating higher total escape rate
at large average conductance. Solid curves are two-parameter
fits to the semiclassical prediction, Eq. (3), over the range

f—64—400 cycles/T, where the spectra appear to be well de-
scribed by the form of Eq. (3). Each averaged spectrum is com-
puted by summing individual fast-Fourier-transform power
spectra of 6g(B) from half-overlapping 128-point blocks cover-
ing —15 mT each, over the range ~B

~

&0.25 T. The inset shows
a segment of conductance fluctuation data for low and high
average conductance.
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effective number of phase-breaking channels T =4+1,
giving a phase-breaking rate y -(1.3+0.4) X10' s
We emphasize that these data represent preliminary mea-
surements, and serve primarily to illustrate a new tech-
nique for measuring y in the ballistic regime. In order
to obtain better quantitative results, one should measure
fluctuation spectra over a broader range of average con-
ductances. Nonetheless, the value for y that we do find
provides a reliable order-of-magnitude estimate in a re-
gime where no theoretical predictions are available, and
already allows some useful quantitative conclusions to be
drawn. For instance, a validity condition for Fermi-
liquid theory requires that the effective temperature T*
of ballistic quasiparticles in the dot must exceed the
phase-breaking rate, i.e., kT*)Ay .' From this condi-
tion we may infer a rough lower bound for the effective
temperature of ballistic electrons in the dot, which is
T* ~ 100 mK. This suggests that the electrons in the dot
were not in equilibrium with the measured refrigerator
temperature, which was 16 mK.

As the temperature is raised, the phase-breaking rate
will increase. From Eq. (1) and the relation a~Qy, s.

discussed above, one therefore expects at higher tempera-
tures to find larger values of a (i.e., steeper slopes) in the
magnetic frequency spectra of fluctuations. This effect is
demonstrated in Fig. 3 for stadium 2 at 20 and 600 mK.

The observed change in the spectral slope in Fig. 3 is
rather small: a(20 mK) =0.81 versus a(600 mK) =0.89,
corresponding to an increased rate of phase breaking of
roughly 20~o at the higher temperature.

IV. PHASE-BREAKING RATE
FROM CONDUCTANCE FLUCTUATION AMPLITUDE

We next introduce a second method for finding y, this
time using the amplitude of the conductance fIuctuations
rather than their spectral properties. By pinching off the
point-contact leads su%ciently by making the gate volt-
age more negative, one can operate these devices in the
regime of partially transmitting single-channel (spin-
degenerate) leads, i.e., T, = T,', Tb = Tb, and
0~ T„Tb~ 1. This regime is outside of the semiclassical
picture. In the absence of any phase breaking, single-
mode leads would imply isolated resonances; however,
given a sufficient phase-breaking rate, y ~ 5/fi
( ~ 2X 10' s ' in our devices), one may have overlapping
resonances together with single-mode leads. Under these
conditions, conductance fluctuations —from the single in-
put channel to the single output channel —are essentially
equivalent to Ericson Auctuations observed in nuclear
scattering experiments. ' We may exploit this similarity
by applying the famous Hauser-Feshbach formula from
nuclear physics, slightly modified for our present needs.

Consider the fluctuating part S,b of the scattering ma-
trix element connecting leads a and b, defined such that
5g=2IS,"bI and (S,"b) =0. Heuristically, IS,"bI can be
thought of as the joint probability for an electron to pass
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FIG. 3. Averaged magnetoconductance Auctuation power
spectra for stadium 2 at mixing-chamber temperatures of 20
mK (filled circles) and 600 mK (open diamonds), measured dur-

ing the same cooldown without changing gate voltages. Spectra
computed as described in the Fig. 2 caption. Solid curves are
two-parameter fits to Eq. (3) over the range f-64 400—
cycles/T, giving n(20 mK)=0. 81 and a(600 mK)=0. 89. The
inset shows part of the fluctuation data used to compute spectra,
with 600 mK (dashed line) offset upwards for clarity.

FIG. 4. Fluctuation amplitude o =(5g )' vs average con-
ductance (g ), both in dimensionless units, for stadium 1 and
stadium 2 (both filled diamonds) as well as similar circular dots
(Ref. 4) (open circles), computed from conductance Auctuation
data over a magnetic-field range ~B

~
(0.15 T. The solid curve is

a one-parameter fit of Eq. (5) to all data, giving T~-9. The
dashed line is speckle behavior o —(g ), predicted for diffusive
systems with single-mode leads in the absence of phase breaking
(Ref. 28).



2464 MARCUS, WESTERVELT, HOPKINS, AND GOSSARD 48

into the dot via lead a, with probability T„andthen pass
out of the dot via lead b without undergoing phase break-
ing. This will occur with probability Tbl(T, +Tb+T )

assuming the escape time is sufficiently long to allow ade-
quate mixing of electron trajectories. ' Fluctuations in
~S,"b are then taken to be exponentially distributed with
a standard deviation o.z equal to the product of these
probabilities, giving an amplitude of conductance Auc-
tuations tT —= (5g )' =2T, Tt, l(T, +Tb+T ). If we
further assume equivalent leads, T, = Tb —=T, this reduces
to the simple form

(5)

We can use Eq. (5) to find the phase-breaking rate given
the Auctuation amplitude o. and average conductance
(g ) through the dot. Figure 4 shows tr versus (g ) at
16 mK for the two stadium structures, along with data
for two similarly fabricated circular structures with the
same areas (i.e., same b, , approximately) as the two sta-
dia. " The fit to Eq. (5) (solid curve) gives T -9, and
hence y -3X 10' s ', however, the present data are not
sufficiently detailed to argue strongly for the form pre-
dicted in Eq. (5). Note that this value is larger by a factor
of 2—3 than the value found by the power-spectrum
method described above. This difFerence may be attribut-
able to multimode conduction through the leads even for
total lead conductances T, and Tb less than unity. In the
multimode case, Eq. (5) overestimates o. since fiuctua-
tions in the various channels will not add in phase (and

not necessarily in quadrature, either; correlations be-
tween fIuctuating channels may act to strongly suppress
o. , as occurs for universal conductance fluctuations in
diffusive systems). The value inferred for T from Eq. (5)
will, therefore, also be an overestimate due to the as-
sumption of single-mode conduction in each lead.

The two methods introduced for measuring the phase-
breaking rates —the semiclassical power-spectrum ap-
proach leading to Eqs. (3) and (4) and the Hauser-
Feshbach approach leading to Eq. (5)—both lead to ex-
perimentally testable predictions. For instance, the quad-
ratic dependence of the fluctuation amplitude at small
conductance [from Eq. (5)] ought to be observable and
differs from the "speckle"-type behavior cr —(g) pre-
dicted for a single-mode two-probe measurement in a
diffusive system in the absence of phase breaking (dashed
line in Fig. 3). These predictions, as well as detailed
measurements of the temperature dependence of ballistic
conductance fIuctuations, will be investigated in future
work.
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