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Stability of the tricritical point in a three-dimensional next-nearest-neighbor
Ising antiferromagnet: A Monte Carlo simulation
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We investigate via Monte Carlo simulations the multicritical behavior of Ising antiferromagnets in
three dimensions. Even for ratios between the intrasublattice and intersublattice couplings as small as
R =0.05, we find tricritical behavior and no evidence for a decomposition into a critical end point and a
double critical end point as predicted by mean-field theories.

INTRODUCTION

Highly anisotropic antiferromagnets with multiple
interactions—one between sublattices and another within
each sublattice—have magnetic-field-induced phase
boundaries that are second order for a range of field and
temperature and are first order at very low temperature;
the phase transition is generally believed to exhibit tri-
critical behavior at the point where the order of the
transition changes. Existing experimental work! has
confirmed this picture.

Mean-field calculations—performed as early as 1959
by Motizuki’—predict that below a given ratio R of the
intra- to intersublattice coupling the tricritical point
transforms into two end points of critical lines. This situ-
ation is sketched in Fig. 1, where the phase diagram is
given as a function of the temperature 7, the magnetic
field H, and the “staggered” magnetic field . The usual
scenario is the one shown in Fig. 1(a) where three critical
lines join at the tricritical point ¢ and the three sheets of
first-order transitions that are limited by these critical
lines intersect at one (dashed) line of first-order transition
that ends at the tricritical point 7,. The unusual situa-
tion predicted by mean-field theory to occur at small ra-
tios R of coupling constants is shown in Fig. 1(b). The
two symmetric critical lines that go into the direction of
the staggered field still join in one point, the double criti-
cal end point (DCE), at which the (dashed) line of first-
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FIG. 1. Schematic phase diagram of a metamagnet as a func-
tion of the temperature 7T, the homogeneous magnetic field H,
and the staggered field h. The thick solid lines represent
second-order transitions, the dashed line is a first-order transi-
tion, and the special points are explained in the text.
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order transitions ends and where all the three sheets
meet. The third critical line, however, ends at a different
point, the critical end point (CE), which lies on the line of
first-order transitions in the H-T plane.

Although the situation described in Fig. 1(b) has never
been observed experimentally, theoretical and simulation-
al efforts to find such behavior have continued. Mean-
field theories have been refined® and reviewed in much de-
tail in Ref. 4, in particular for the antiferromagnet Ising
model with next-nearest-neighbor (NNN) interactions.
This model has also been investigated in two dimensions
by a Monte Carlo renormalization group’> (MCRG) and
transfer matrix techniques® and while the first technique
gave no indication for the decomposition of the tricritical
point, the transfer matrix calculations failed to reproduce
tricritical behavior at very small ratios R. (This may well
have been due to the limited strip widths which could be
studied.) In three dimensions an MCRG study’ of vari-
ous metamagnetic models including the NNN antifer-
romagnet yielded results which were inconsistent with
the mean-field scenario.

Other models that within the context of mean-field
theory show the existence of multicritical points and the
subsequent decomposition of Fig. 1(b) are the Ising
random-field model® and the antiferromagnetic Blume
Capel model.” The latter was also studied via Monte
Carlo simulations and while in two dimensions only tri-
critical behavior was found,!® recent three-dimensional
results!! gave clear evidence for the decomposition into a
CE and a DCE.

The purpose of this short paper is to present high-
quality Monte Carlo data that convincingly exclude the
decomposition of the NNN antiferromagnetic Ising mod-
el for R >0.05 in three dimensions. In the next section
we describe the model and the method, we then briefly
describe our results, and in the last section we discuss our
findings.

MODELS AND METHODS

We consider Ising spins o; =11 on the simple cubic
lattice. The system is divided into two interpenetrating
sublattices having a ferromagnetic intrasublattice cou-
pling J' and an antiferromagnetic intersublattice coupling
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J between the spins. (According to mean-field theory it is
only the ratio R =q'J'/qJ, where g’ is the number of
NNN and g is the number of NN neighbors, between the
total strength of the two couplings which determines the
phase diagram.) The Hamiltonian of this next-nearest-
neighbor antiferromagnet (NNNAF) is then

H=J Y o0;—J ¥ og0,—HZFo,;, (1)
NN NNN i

where the first sum goes over all six nearest neighbors
and the second sum over all twelve next-nearest neigh-
bors of the simple cubic lattice, J, J'>0, and H is a
homogeneous field. Nearest neighbors belong to different
sublattices while next-nearest neighbors belong to the
same sublattice. Various studies have been carried out
for this model before'> !4 and for R =1 the tricritical
point was located at (kT, /J,H,)=(6.1,4.9).

The mean-field predictions for this model>* are the fol-
lowing: For R > one expects tricritical behavior as
shown in Fig. 1a and the tricritical point has mean field
exponents a, =4, B,=1%, v,=1, and A,=4. The order
parameter which scales with B, is the staggered magneti-
zation. Since the upper critical dimension for tricritical
points is d =3 one expects, in fact, additional logarithmic
corrections!® which may be either multiplicative or addi-
tive, depending on the quantity. For 0 <R <% mean-field
theory predicts the situation shown in Fig. 1(b) where the
CE and DCE have mean-field critical exponents. We
suspect that if Fig. 1(b) is qualitatively correct in three di-
mensions, both the CE and the DCE probably show usual
three-dimensional critical behavior, i.e., exponents
a=~0.11, 3=~0.32, and y =1.24. At R =1 mean field pre-
dicts a fourth-order critical point with exponents
a,=%,B,=¢ and y,=1.

Using the standard Metropolis Monte Carlo algorithm
we simulated lattices of linear sizes L ranging from L=10
to L=61. Small systems were studied using periodic
boundary conditions on an IBM 3090 while data for
larger systems were obtained on a Cray-YMP. In the
second case the system was stored on the computer as a
one-dimensional array and therefore helical boundary
conditions were used in two directions and periodic
boundary conditions in the third direction. The
configurations were thermalized over 500 to 5000 MC

steps per site starting either from a ferromagnetic or an
antiferromagnetic initial configuration. We averaged
over up to 500 configurations separated by 20 to 50 MC
steps per site. ~We measured the magnet-
jzation M=N"'3,0,;, the staggered magnetization
Mm=N "3 evenTi — Dioaad ;) and the two corresponding
susceptibilities X, and Y, calculated from the fluctua-
tions of M and m.

RESULTS

By varying the homogeneous field H on lines of con-
stant temperature we studied the phase transitions of the
NN AF for three values of R: 0.5, 0.1938, and 0.05. (The
value 0.1938 is special only in that one of the generaliza-
tions of the NNN AF studied in Ref. 7 had this unusual
ratio.) The resultant phase diagrams are shown in Fig. 2.
The transition points were localized by measuring the or-
der parameter m and the homogeneous magnetization M
during multiple field sweeps: on one hand increasing H
starting with an antiferromagnetic initial configuration
and on the other hand decreasing H starting with a fer-
romagnetic initial configuration. At sufficiently low tem-
peratures strong asymmetric hysteresis is observed
characterizing first-order transitions (circles in Fig. 2).
The error bars in Fig. 2 in fact show the width of the hys-
teresis. As the temperature increases the jumps of M and
m at this first-order transition decrease. For R =0.5 the
jump in M decreases linearly while for R =0.05 the
behavior is clearly nonlinear. The temperature at which
the jump seemed to vanish gave us a first guess for the lo-
cation of the tricritical point. The second-order transi-
tions are shown by crosses in Fig. 2. Note that in none of
the phase diagrams of Fig. 2 do we see indications of a
splitting into two transition lines as one would expect
from the mean-field prediction. Note that mean-field
theory predicts that the separation between the critical
end point and double critical end-point temperatures is
not small: over 5% for R =0.5 and 50% for R =0.05.
It therefore seems likely that only tricritical behavior is
present in all of the three figures.

it is also interesting to note that the slope of the transi-
tion line in the tricritical region varies substantially for
the different values of R considered. While for R =0.5
the transition line has negative slope the tricritical region
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FIG. 3. Log-log plot of the order parameter

Xam m and the two susceptibilities x,, and x, as a
AMm function of |H—H,| for kT,/J=0.31,
H,/J=5.9919, and R =0.05 for two different
lattice sizes L =61 (triangles) and L =41
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(crosses). The full lines are guides to the eye of
slope 1 for m, of slope —1 for x,,, and of slope

— 1 for .
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just lies within a dip of the line for 7=0.1938 and for
R =0.05 the line has a very weak positive slope. (Note
that the resolution of the H axis in the third figure is
higher than for the other two.)

To further test the conclusion that only tricritical
behavior is present, we focused on the smallest ratio of
couplings, namely R =0.05, since according to mean
field it is the most likely candidate for a decomposition
into a CE and a DCE. By monitoring the maximum of
the ordering susceptibility Y,, for sizes L =31, 41, and 61
we located the tricritical point more precisely and found
(KT, /J,H,/J)=(0.31, 5.9919) (see arrows and error bars
in Fig. 2) and studied the critical behavior associated
with this point. In the log-log plot of Fig. 3 we examine
the data for the staggered magnetization m, the ordering
(staggered) susceptibility x,, and the nonordering (uni-
form) susceptibility x,,. All three quantities show
power-law behavior only quite near 7,. Below H, the or-
der parameter m in Fig. 3 lies on a straight line over 1.5
orders of magnitude with an exponent close to B, =1, i.e.
the tricritical value and is definitely smaller than the Is-
ing critical value of =~0.32. The data for the ordering
susceptibility Y,, are slightly curved and seem asymptoti-
cally to have a slope y,=1 which is the tricritical ex-
ponent. Clearly the absolute value of the slope is less
than the Ising critical value of 1.24. The curvature in the
data away from H, is likely to be a consequence of loga-
rithmic corrections predicted to occur for tricritical
points in three dimensions.!*> The uniform susceptibility
has an exponent close to A, =1 again consistent with tri-
critical behavior. The analysis of the critical exponents
therefore clearly characterizes a tricritical point thus sup-
porting our previous conclusions.

SUMMARY AND DISCUSSION

We have found that in three dimensions the Ising anti-
ferromagnet with next-nearest-neighbor ferromagnetic in-

teractions has tricritical behavior for quite small in-
trasublattice coupling, i.e., R 20.05. Our Monte Carlo
simulations were able to resolve the tricritical region with
a precision of 3% in temperature and 0.01% in the
homogeneous field. Even if our estimates for the loca-
tions of the tricritical points were very slightly in error,
data obtained along a path which eventually intersects ei-
ther the first-order line or the critical line should still
show tricritical behavior outside a narrow crossover re-
gion. We think that it is, therefore, rather unlikely that
the tricritical point decomposes into a critical end point
and a double critical end point as predicted by mean-field
theory for any value of R. We can, of course, not exclude
the possibility that a decomposition of the transition line
occurs for even smaller R, but we think that this is very
unlikely. In particular, although we might expect that
the fluctuations in our model might modify the special R
value with respect to the mean field value, it is difficult to
see how the reduction could be over an order of magni-
tude, particularly when the mean-field predictions for the
tricritical behavior are relatively intact. Our result is
particularly perplexing in light of the recent Monte Carlo
study of Ref. 11 which gave convincing evidence for a
decomposition of the tricritical point in the antiferromag-
netic Blume Capel model in three dimensions. It would
certainly be interesting to use Monte Carlo methods to
investigate other models which have this same predicted
behavior according to mean-field theory, like the layered
metamagnet* or the random-field Ising model.?
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