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Exactly soluble two-dimensional electron gas in a magnetic-field barrier
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The single-particle energy eigenstates of a two-dimensional electron gas confined to the x-y plane and
in the presence of an external-magnetic-field barrier whose functional form is B(x,y)
=Bo(1—tanh x/d)z, with Bo and d arbitrary, is solved exactly. It is found that the spectrum has
bounded and unbounded states. The former are confined to the region where the magnetic field is appre-
ciable. The lowest-lying eigenstates resemble the Landau levels of the constant-field case, but they also
drift along the y axis with a speed proportional to the magnetic-field gradient. The unbounded states are
extended either on one side of the barrier or on both sides, depending on their energy and asymptotic
momenta. It is found that the discrete and continuum spectra overlap in an energy range. It is also ar-
gued that these results apply qualitatively to a general class of magnetic-field barriers.

Ever since the remarkable discovery of the quantum
Hall effect' there has been enormous interest in the
behavior of a two-dimensional electron system in the
presence of an external homogeneous magnetic field. In
addition to this field, other kinds of interactions have
been amply studied, such as interelectron interaction, im-
purities, edge effects, etc. All these terms play an impor-
tant role in the quantum Hall effect. The important point
is that in the presence of the magnetic field these other in-
teractions produce some unusual and remarkable effects.

In the present work, we shall study a somewhat
different problem which reveals some interesting physical
phenomena and which has recently been under scru-
tiny. ' This refers to the quantum-mechanical descrip-
tion of a two-dimensional electron gas subject to a
magnetic-field barrier normal to the electron plane.

The dynamics of electrons in the presence of nonuni-
form magnetic fields has not bee studied much in the
past, and most of the existing analyses have been based
on the semiclassical approximation, which requires that
the field varies little in a region of the order of the local
electron orbit. In addition, this approximation, though
quite accurate for highly excited electron states, is not as
good for the lowest-lying energy levels.

In this paper we will consider a special field
configuration for which the electron states can be ob-
tained analytically and in closed form. This result will al-
low us to check the accuracy of the semiclassical approxi-
mation, and will also provide us some results for which
that method is clearly inadequate. Although we have
chosen the functional form of the magnetic field in such a
way that the resulting equation can be exactly solved, we
can expect that many physical results will qualitatively
apply as well to more general situations, where the ana-
lytic problem becomes intractable.

The magnetic field we consider is given by

0
B(x)= 0

Bo(1—tanh x/d)

A(x) = Bd tanhx Id
0
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FICs. 1. Sectional view of a device for producing a magnetic
wall. The top and bottom plates represent superconductors.
The middle plane contains the two-dimensional electron system.
The external magnetic field, indicated by arrows, penetrates the
superconductors through the slots, creating a magnetic-field
barrier on the electron plane.

where Bo and d are arbitrary parameters. We will as-
sume, for simplicity, that the electrons are confined to the
x-y plane. The extension to the three dimensional case is
straightforward. We note that since VXBAO, this field
configuration cannot exist in free space. Nevertheless, we
expect to extract physical consequences of the exact solu-
tion which transcend this particular case and apply to a
more realistic field of a similar type. As a possible experi-
mental array which would produce such a field, let us im-
agine that we have the electron plane being shielded by
parallel superconducting plates except along a slot in the
direction of the x axis, Fig. 1. If a constant magnetic
field is applied normal to the plates, it will penetrate
it through the slots and eventually produce a field
configuration resembling that in Eq. (1).

The vector potential corresponding to this magnetic
field is
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and the resulting Schrodinger equation is

1 [P+(e /c) A] 4 =E+,
2m

(3)

where —e is the electron charge. The Hamiltonian is in-
dependent of the y coordinate and, consequently, p is
conserved. The wave functions can be written as
%(x,y) =p(x)exp(ip y Imari), with p(x) satisfying

d 1

2m d~' 2m p + e80d
tanh(x /d ) P(x )

C

=EP(x) . (4)

It is convenient to convert this equation to dimensionless
form by dividing it by R /2md and introducing the di-
mensionless variable x /d =z. Then Eq. (4) becomes

+a [tanhz+(p~/po)] P(z)=eP(z), (5)

with po=eBod/c, a=pod/A', and e=2md F/A . This
eigenvalue equation arises in other contexts and its solu-
tion is well known. The details of this solution are dis-
cussed in Ref. 6 and, therefore, we will only reproduce
the main ideas here. Equation (5) can be converted into a
hypergeometric differential equation by introducing, in
the first place, a new dependent variable F(z) defined by

r( b —a )e (a b—)z

r[b+ —,'+(a +—')' ]r[b+ —,
' —(a +—')' ]

r(. b—)."+
r[a + —,

—(a +—') ~ jr[a+ —,+(a +—') ~ ]

(10)

For bounded solutions we must have e & [a(1+tanhzo ) ]
and, consequently, a and b are real. With no loss of gen-
erality, let us assume b )a and zo )0.

The condition for finiteness of the solution at zo ~—~
requires

b+' —[a +'] = —n

where n =0, 1,2, . . . , so that the divergent term in Eq.
(10) is absent. This condition implies that for each n, the
parameters a and b are discretized:

b =b„=[a+ —,']' —(n +—,'),
a =a„=( a tanhzo )/b„.

The permitted energy eigenvalues are then

e„=a ( 1+tanhzo ) —(a„+b„)
for all integers n such that b„)a„.This last condition
imposes a constraint on a, zo, and n. Using Eq. (12) one
readily derives that

P(z)=e "sech zF(z), (6) [a +I/4]'~ —
—,
' —atanh' zo) n &0 . (14)

and then changing the independent variable z as follows:

u =(1—tanhz)/2 .

The resulting function F(u) =F(z) satisfies

d F dF
u ( 1 —u ) +[a +b +1 —2( b + 1 )u ]

dQ dQ

+[a —b(b+1)]F=O,

The solution for the case zo & 0 yields the same results
as above, indicating that the energy eigenstates are even
functions of tanhz0. We will be interested in the
e ))1 limit. In fact, we can rewrite n as follows:
a=eBod /hc=~(e/hc)(2Bod )=a&/4&0, where
=bc/e is the quantum of Aux and N is the total Aux on a
length d of the magnetic barrier along the y axis. (If we
chose d =0. 1 cm and Bo =10 G, then a =10 ). Under
this condition we can derive asymptotic expressions for
the energy levels. In the first place, the condition for the
maximal eigenvalue, consistent with Eq. (14), becomes

a(1—tanh' zo) ) n (15)

(b+a )'=a'(I+py/po )' —e .

It is evident from Eq. (5) that a necessary condition for
bound states is that ~p /po~ &1. We will first consider
bound states and denote p /po =tanhzo & 1. The parame-
ter —zo corresponds to the minimum of the "potential"
term in Eq. (5). The requirement that the solution of Eq.
(5) be finite in the limit z ~+ ~ implies that the solution
of Eq. (8) is the hypergeometric function

F[b+—' —[a2+ —'] ~ b+ —'+[a +—'] ~

~a +b + 1 ~e '/(e'+e ')], (9)

Thus we conclude that for z0=0 the maximum number
of states is =a. For large zo only one state will be per-
mitted with n =0, and provided

1 —tanhzo ) 1/cx —1/2e (16)

The expression for energy eigenvalues is

e„=[2a(n+1/2)+2(n + —,') ](1 tanh zo—)

4(n +1/2—) +
where, in addition, we assumed n «a, and deleted terms
are of order a '. In terms of the original variables this is

E„=%co,(zo )(n + —,
'

) —(A' /md )(n + —,
' )

where a and b are given by Eq. (8) with a +b )0. In the
limit z~ —~, the corresponding solution of Eq. (5) has
the following asymptotic behavior:

X(1+tanh zo) .

(18)
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The first term in Eq. (18) is just the Landau formula
adapted to the local value of the magnetic field B(zp),
where the orbit is centered. This result was derived using
the adiabatic approximation in Ref. 4. We note that
corrections are of order a '. For large values of n =n
the correction terms become important. For example, in
the case zo =0, n »1, we find

Eh—- irico, (0)(n+ —,') —(A' /2md )(n+ —,') (19)

A classical charged particle moving in a inhomogene-
ous magnetic field is known to drift in a direction per-
pendicular to the local values of the magnetic field and its
gradient, according to the following expression:

u„,„=cE~VB~leB', (20)

BE„ BE„
(1/po)

a( h, )Bpy

where E is the particle energy. Let us derive a similar
quantum-mechanical expression. According to the classi-
cal result we expect to find a drift velocity along the y
axis. The corresponding expression is

Using Eq. (18) we obtain

BB(zp )
u =[cE„(zp)/eB (zp)]

Bx

+[2A' c(n+ —,') /2med B (zp)]

M(zp)
(1—tanh zp)+ . (22)

Bx
where deleted terms are of order a '. Thus we find that
the leading term coincides with the classical expression
and the second one is a quantum correction.

We can easily check that for each state centered at—zo, there will be another state of the same energy, cen-
tered at zo, having a drift velocity of the same strength
but opposite direction. Therefore, the total electric
current along the y direction of a full Landau level will
vanish. It is interesting, though, to evaluate the net
current fIowing in the range x (0. If we assume that the
system is a strip of width I. in the y direction, and that
the wave functions satisfy periodic boundary conditions,
then p L, =2', with N =0,+1,+2, . . . . The number of
states in the range dp is then

(2iriri) 'dP =(2irh') 'Ppd(tanhzp) . (23)
=(A' c/2meBpd )

8 tanhzp
(21)

Thus the current becomes

n
BEI„=—e f u "(tanhzp )pp(2iriii) 'd(tanhzo ) = —epp(2irh )

' f po
'

d(tanhzo )
0 o

' a tanhz,

= —e(2irh) 'E„(tanhzp)~p

=(e Bo/4irmc)[2(n + —,') —(1/a)][(n +—,') + —,']+0(1/a ) . (24)

Therefore if we ignore terms of order a ', and sum the
contribution of a set of Landau levels up to some n

we obtain the following expression:

max

I„=I/Bp=(e /4irmc)(n, „+I )
n=0

(25)

This relationship is similar to the integer quantum Hall
resistance. It relates the ratio of the total current to the
difference of the asymptotic values of the magnetic field
to universal constants times a function of the filling fac-
tors. Presumably, in a real system such as a heterostruc-
ture like GaAs-Al Ga, As, a plateau type of behavior
could be displayed as a function of the electron density. "

Let us next consider unbounded states. For ~z )) 1 the
particles will be asymptotically free and the eigenstates
can be properly characterized by the asymptotic values
of the kinetic momenta m and ~ =p
+potanhz~, +„=p+pp. Let us denote by +/ —the
momenta at the far left/right of the magnetic barrier.
Clearly ir„+ir =ir+ +ir~+ =2mE =(mu) If we.
start with a particle at the far left approaching the bar-
rier, classically two things could happen. Either the par-
ticle crosses the barrier or bounces back. We easily es-
tablish the conditions for these events. At the far left, we

have ir (in), sr~ (in). For z ~~ we must have

ir+(out) =cry (in)+2pp,

ir„(out)= [(mu) —ir+(out)]'
(26)

(out) =ir+(in) —2pp,

(out)=[(mu) —ir~ (out) ]'
(28)

It is interesting to note that if d =0. 1 cm then po=Bp (G) 10 . On the other hand the typical Fermi
momentum is 10 ' gr cm/sec. Thus if Bp

——10 (G),
pp »pf, but for Bp —10 (G) pp((pf. So changing the
field within this range produces a current switch.

The kinematics is best seen graphically, see Fig. 2. Thus
we immediately conclude that the condition for a bounce
is (mu) & [ir +2pp] . Moreover, a simple relationship
between the angle of incidence 0;„andscattering 0,„,can
be established. The resulting expression is

sinO,+„,—sinO, „=2po /mv. (27)

It is important to note that because of the lack of time-
reversal invariance, these relationships do not apply for a
particle incident from the far right. Nevertheless the cor-
responding equations are easily derived observing that in
this case
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(out)

FIG. 2. Geometrical construction of the kinematics of a par-
ticle crossing the magnetic barrier. The radius of the circle is m
times the speed of the particle, which is assumed to be incident
from the far left. The axes are the x and components of the ki-
netic momenta and 0;, Oo represent the asymptotic incoming
and outgoing angles. The transformation laws for m.—

~ are given

by Eq. (26).

0&E&po/2m, there is a collection of bounded states
with a discrete energy spectrum given by Eq. (13), which
overlaps with the continuum. Hence, the density of
states as a function of E will have an overlapping contri-
bution from bounded and extended states. See Fig. 3.
Although this phenomena is known to exist for
Schrodinger equations with rather pathological poten-
tials, an exact analytic expression of this effect has, to
our knowledge, not been reported in the literature before.

Another unusual aspect of this spectrum is the fact
that there will be a continuum of bouncing states on ei-
ther side of the magnetic wall in the range E &po/2m,
which do not mix due to tunneling, in spite of the fact
that the barrier has Gnite 'width and height. " This prop-
erty is a consequence of the asymptotic behavior of the
vector potential that cannot be gauged away in the limits
x ~+~ simultaneously.

We will next consider extended states of particles
crossing the magnetic barrier. Let us consider a state
which is incident from the far left, having asymptotic mo-
menta ~ (in), vr (in). The condition for crossing the
barrier is m„(in) )4po[m~ (in)+pa]. We shall see below
that the incident wave is partially transmitted and par-
tially rejected. In this case Eq. (29) yields a and b purely
imaginary:

Let us next obtain the wave function of a bouncing
solution incident from the left with asymptotic momenta
vr and rr . Using Eq. (8) we derive

a+b =[2md /fi ]' (m
—/2m E)'—

(29)
ab =(m. +po)pod /fi

2 +2
Thus we see that if rr /2m &E & m+ /2m, a +b is real
and b —a is imaginary. Let us write b —a =i' d/fi and
b+a =~d/A'. Let y=[a + —,']', then the wave func-

tion becomes

energy

tanh z

xF[b+,' y, b+-,'+y ld—/b + ll
—x/d/( e x/d+ e

—x/d) ] (30) density of states

For large x/d, this function decays as exp( —1~x/d). For
x~ —~ one obtains

I (i~„d/A)e +c.c.
I (b + —,

' —y)I (b + —,'+y) (31)

So we conclude that these states represents a plane wave
traveling towards the magnetic wall plus a reflected wave
with the same squared amplitude. Since ~ is unchanged,
we see that the particles are reflected specularly by the
Geld.

There is one aspect of the spectrum of our solutions
which is worth noting. We saw that the energy of the
bouncing states forms a continuum starting at E =0. On
the other hand, we found that in the energy range

energy

FIG. 3. Energy spectrum of the bounded states as a function
of the parameter zo is shown schematically on the top graph.
We have assumed that a maximum of five levels is permitted; see
Eq. (15). The bottom graph represents the total density of states
as a function of the energy. For the continuum spectrum it in-
creases as E', as is usual for a free particle. The hatched
columns represent the overlapping with the bounded states.



48 EXACTLY SOLUBLE TWO-DIMENSIONAL ELECTRON GAS IN. . . 2369

a =i [tr„+(out)—tr„(in)]d /2',
b =i [sr„+(out)+rr, (in)]d/2' .

Then the resulting wave function becomes
—i [~ (out) —~ (in) ]x/2AX X

(32) cosh [sr (out) —sr (in)]+cos2try

cosh [tr (out)+7r (in)]+cos2sry7Td +
(36)

~/d ~(vr„(out)+m. (in)]d/2rr
e +e

The transmission coefficient is obtained from the relation-
ship T=1—R and yields

XF[b + —,
' y, b—+ —,

' +y ~

1+i tr„+( out )d /R
~

e
—x/d/(ex/d+ —x/d) ]

(33)

2 sinh rr (out)sinh rr„(in)7'

cosh [tr (out)+ tr (in) ]+cos2try
TIG +

(37)

The asymptotic form of this function as x —++~ is
exp[ixtr„+(out)/R]. For x ~—~ we obtain

I [idrr (in)/R]e

r(b+-,' —y)r(b+-,'+y)

I [ —idler, (in)/A']e
+

I (a +—,
' —y)l (a +—,'+y) (34)

It is easy then to derive the expressions for the reAection
and transmission coefficients. From Eq. (34) we obtain

R =
~
I (b+ —,'+y)I (b + —,

' —y)/I (a+ —,'+y)
XI (a+ —,

' —y)~ (35)

Using the identity I (z)I (1—z) = sr/sinsrz, we obtain after
some straightforward algebra the following expression:

Let us consider the special case m =0, m.
„

fixed, and
ct ))1. If tr (in)d/A')) 1 and sr+(out)d/A)) 1, the
transmission coefficient can be approximated by

T = 1 —(exp t
—[sr+(out)+ vr„(in)]srd /A] )cos2rra .

(38)

Thus we see that the transmission coefficient has a small
oscillatory behavior as a function of 0..

Let us finally note that the results we obtained above
can be expected to hold qualitatively in more general
cases where the energy spectrum cannot be solved in
closed form. We expect that for any one-dimensional
magnetic-field barrier converging rapidly to 0 in the per-
pendicular direction, and having a characteristic width d
and field strength Bo will exhibit properties similar to
our solution. In addition, it is easy to see that the elec-
tron spin can be included in the exact solution.
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