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Progress in nanostructuring tends to provide us with synthetic structures for which, for example, ener-

gy or time scales can be adjusted in such a way that quantum systems with unusual physical properties
emerge. The challenge of molecular electronics is to make these properties represent computer func-
tions. We investigate a quantum network model consisting of a modular array of localized few-level sub-
systems. When driven optically, a diagonal (energy renormalizing) interaction among these subsystems
is shown to lead to a complex stochastic dynamics, which may be interpreted as a highly parallel
Monte-Carlo-type simulation "programmed" by the external light field. A first application is demon-
strated in terms of a two-dimensional kinetic Ising model with J(R„—R ) —~R„—R

~
. In another

application the nonlocal nonlinear optical properties are exploited in specific pump and probe scenarios:
Under certain conditions simple image processing tasks are performed. A possible realization of such
quantum network models by an array of charge-transfer quantum dots is discussed.

I. INTRODUCTION

The last decade has seen a large number of concepts
being proposed within the field of molecular electronics.
Although a precise definition of molecular electronics is
still lacking, many researchers agree' that it should deal
with information storage and processing on the molecular
level, i.e., it should use nm-scale systems as basic
structural elements (e.g. , atoms, molecules, quantum
dots) and excitations within these elements (e.g., electron-
ic or structural) as information carriers. Such informa-
tion processing will thus have to be described by the laws
of quantum dynamics.

Other concepts simply try to implement conventional
electronics on the molecular level: Proposals have been
made to use molecular chains as wires ' or complex mol-
ecules as switches ' or diodes. The fundamental
difficulty of this approach is to realize a specific function
within the constrained dynamical behavior of a nm-sized
system having only few degrees of freedom. The dynam-
ics of conventional electronic devices is described on the
hydrodynamical level and fluctuations are not desirable.
Simple scaling down increases noise and finally ter-
minates in a quantum dynamical description with its pro-
babilistic aspects. This quantum noise would severely
limit the function of conventional electronic devices.
Also the final step, the assemblage of molecular devices
to a "molecular computer" and the connection to a mac-
roscopic environment is still unsolved. For many
reasons, one may thus come to the conclusion that molec-
ular electronics cannot simply be conventional electronics
with other materials on other length scales: To be com-
petitive, molecular electronics should particularly over-
come disadvantages of the conventional von Neumann
computer architecture, e.g., the lack of a massive paral-
lelism. The idea of networks is promising in this connec-
tion. However, concepts such as neural nets, parallel al-
gorithms, and deterministic cellular automata only
define abstract rules: The implementation on the molecu-

lar level has to deal with difficulties similar to those dis-
cussed above. On the other hand, synthetic quantum net-
works that have been realized so far, e.g. , with quantum
point contacts' or in doped zeolite crystals, " do not
seem to support any computer function. It seems that a
central paradigm of computational science, the indepen-
dence of computer concepts from their realization, will be
violated in molecular electronics.

Our model of an optically driven quantum network
shows, indeed, this close connection between computer
conception and physical implementation. The quantum
network consists of an array of local quantum objects
(e.g. , functional molecules or quantum dots) as network
nodes. Network links are realized by a physical interac-
tion between these nodes. Network dynamics is induced
by an external light field. We exploit the inherent sto-
chastics of quantum dynamics instead of considering it as
a noise source to be suppressed. We show that the con-
nection between physical measurement (absorption) and
external control parameters (pump light field) can be
directly interpreted as a computer function. The task of
nanostructuring is to adjust the network parameters (i.e.,
energy scales, transition rates) in such a way that "pro-
gramming" this computer function (realized also by
external control fields), at least in a restricted manner, is
possible. Partial aspects of this quantum network idea
have already been demonstrated experimentally: Single
quantum objects such as ions in a Paul trap' ' or de-
fects in a solid matrix' can be controlled by the light
field. ' Interactions between individual quantum
objects —essential for a cooperative network
dynamics —have been demonstrated for the defect in the
matrix system' or, even more pertinent, between indivi-
dual trap states in small tunnel junctions. ' These phe-
nomena, so far, have never been optimized for the reali-
zation of a "useful" quantum network. Here, we propose
a charge-transfer quantum-dot array as a prototype sys-
tem.

A trivial version of a quantum network would consist
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II. NETWORK MODEL

A. Network Hamiltonian

Our quantum network is a modular system in the sense
that it is composed of identical primitive subsystems.
The subsystem ("network node") is taken to be a
quantum-mechanical few-level system. The interaction
between these nodes forms the "network links. "

The network Hamiltonian for N interacting subsystems
can thus be written as

n=1 n, m =1
num

(2.1)

of an ensemble of independent nodes. This leads to a typ-
ical absorption spectrum as observed, e.g. , for an ensem-
ble of defects in a solid matrix. A simple transfer interac-
tion between nodes with a single quantum state leads to
another trivial case, the ideal one-band crystal. Obvious-
ly, a certain complexity of the network is required to get
a functional device. In our model, this is realized by a
three-state node with a hierarchy of transition rates and a
dipole-dipole interaction between the nodes.

Our paper is organized as follows: In Sec. II we devel-
op the general network model and describe its dynamics
in the external light field and its optical properties. In
Sec. III the network model is specified and a possible
realization is presented. Preliminary applications in
molecular electronics are demonstrated in Sec. IV. Final-
ly, in Sec. V, we summarize and discuss our results.

tonian (2.1):

(2.7)

N N

E y EO+] y Vnm

n=1 n m=1
num

(2.8)

We assume the following hierarchy in the energy scales

V,
" « IEk Ei f—or all i,j,n, m, k, l (2.9)

that leads to a certain grouping of the levels in energy
space and will allow for a specific control by the optical
driving field.

B. Driven quantum systems

In this section, we consider an arbitrary M-level system
coupled to a heat bath and to external (pump and probe)
light fields. Its dynamics is described by a generalized
master equation for the reduced density matrix,

61 M

p, (t)= ice; p—;"(t)+ . E(t) g [—d;kpk (t)

—d„jp,„(t)]
M

+6j g [ Wkpkk ( t) Wk;P—;;(t)]
k=1

They are localized states, as opposed to the situation of
natural quantum networks. The corresponding eigenval-
ues are

Each isolated subsystem n is an I-level system defined by
—(1—

&,, )y,,p,,(t) . (2.10)

I&„=y E,' It. &&i. l

i„=1
(2.2)

I
v,", li &&i

I

tt' m

(2.3)

In "natural" quantum networks (e.g., crystals), typical in-
teractions are, e.g., the single-particle transfer

The interaction with the external light field E(t) is con-
sidered here in the dipole approximation, %co; =E; —E is
the transition energy between states i and j, and
d,.j = &i Id Ij ) the transition dipole moment. For simplici-
ty, E(t) and d;j are treated as scalar quantities. The
heat-bath coupling shows up in the transition rates W,&

from state k to state i and the phase relaxation rates

7lJ 3 Jl'
The external light field E (t) is composed of two parts:

or the so-called Forster-mechanism'
I I

nm X g Vi j i j tn~tm && Jnrjml
i„~J„=1s J =1

in +Jn im +Jm

E(t)=E,„,(t)+E„.„(t),
(2 4) where

IE„„,(t)l «E,„,(t)l .

(2.11)

(2.12)

leading to delocalized Bloch states. Here we consider in-
stead the following energy renormalization:

I
vp; lr. , i )&i., i

I
.

n' m

(2.5)

Without loss of generality we set V;"; = V; "; . This di-

agonal interaction is generic for a complex optically
driven network dynamics. The product states

I [i„]& —li„i2,. . . ,i' &
—li, &li2& . Ii~& (2.6)

that form a M =I -dimensional basis in the state space of
the network remain eigenstates of the network Hamil-

The strong pump field Ep p
induces the dynamics in the

M-level system, whereas the weak probe light field Ep
will be used to obtain information about this dynamics.
This may be accomplished, e.g. , by measuring the absorp-
tion of the probe beam.

We now apply a perturbation expansion to the reduced
density matrix ' up to first order in the probe field:

p,,(t) =p,',"(t)+p',,"(t)+ . . (2.13)

The zeroth-order dynamics p' ~(t) is then given by Eq.
(2.10) with E(t)=E „(t).For reasons that will be ex-
plained below, we use a stationary and incoherent pump
field (with a spectral band width ))y, , ). The generalized
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master equation (2.10) then reduces to a simple Pauli
master equation (rate equation) for the diagonal ele-
ments:

probe beam) are described by a nonlinear susceptibility
y(co). The Fourier component of the polarization is
given by

P;', '(t) = g R,kpkk'(t) R—k;P,'; '(t) (2.14)
M

P(co)= —tr p "(co)d =—g p',j~'(co)dj, .
i j =1

(2.21)

with total (effective) transition rates

R,k
= W(k+B,„Up„p(cock) . (2.15)

(2.16)

with 3;;= (i
~

3 (i ). p', ,
' is the stationary solution of Eq.

(2.14).
More detailed information will be delivered by the

response to the probe field. The first-order response is
determined by

(1) — ~

dt
M

+5;j g W,„P'„'k'(t) Wk, P', ,
"—(t)

k=1

—(1—
&;, )y;,p';,"(t)

+ E„„b,(t—)d; p' '(t) —p', , '(t) . (2.17)

We assume that the stationary probe field can be decom-
posed into Fourier components according to

E „b,(t) =g E „b,(co)exp(icot ) . (2.18)

Here, B;k =Bk; =n ~d;k~ l(3A' e0) is the respective Ein-
stein B coefficient and Up„p(co)= Up„p(—co)
=2e0~E „„(co)~

the spectral energy density of the pump
field.

In the following, we will restrict ourselves to stationary
conditions. Information about the pump-induced state
may be deduced from the expectation value of an observ-
able 2:

Vis the volume of the system. y(co) is then defined as

1 P(co)
g(co) =-

e0 E „b,(co)

Aeo V,
~d; ~

(co+co; +iy, )

( + )2+y2 Jj

C. Application to the network Hamiltonian

The formalism developed in Sec. II 8 is now applied to
the network M=I -level system with its eigenstates (2.6)
and energies (2.8). The single indices i in the correspond-
ing equations, then, just stand for the whole set {i„j,
characterizing the state of the network. The equa-
tions can be simplified if one takes into account that
the parameters 8'.J, B;, R;J., and d; are zero unless
the states i ={i„jand j={j„jdiffer in one position
at most, i.e., {i„j={i„.. . , i „i,i +„.. . , iN j and

Ij„}={i„.. . , i „j,i +„.. . , iN}: This is due to
the fact that the underlying transition operators are
single-particle operators. From Eq. (2.8) we get

A'co. ( i )=E
I J n I l l, l2, . . . , lm l, lm, l + 1, . . . , l~ I

—E .
2' ' ' ' ' m —1'Jm' +1' ' ' ' N I

(2.22)

It describes the linear response to the probe field, but
nevertheless is called nonlinear, since it depends on the
pump field via p&&'. The probe field thus measures the oc-
cupation difference p' ' —p,',

' induced by the pump field:
y'(co) =Re[y(co) ] is the dispersion and y"(co)
= —Im[y(co) ] the absorption of the probe beam.

p,',"(t)=g p,',"(co)exp(icot ), (2.19)

With the same decomposition for the nondiagonal ele-
ments

N
0 + y ( ymn ymn
'm Jm mnJmnn=1

num

(2.23)

we get from (2.17)

p; (co)= probe ~(j (Ol (0)
A'(co+co" i y")—lJ lJ

(2.20)

Optical properties (absorption and dispersion of the
I

which can be interpreted as a renormalized transition en-

ergy between the states i and j of subsystem m, de-
pending on the neighborhood {l„j, n Am. '

Ace,. =E, —E is the transition energy for the isolat-
mJm m Jm

ed subsystem. Then, the pump dynamics (2.14) of the
quantum network is described by the rate equation

N
(0)

P (ll, l2, . . . , tN,'t)=dt m=1

I
j ({ j)P ( 1~ 2~ ~lm —l~jm~ m+1~ ~ Ni

Jm=
'm Jm

R ({l j)p (ll, l2, . . . , l l,l, l +l, . . . , 1N,'t)]Jm'm
(2.24)

p' '({i„j;t)=p((((; )(t) is a diagonal element of the M=I -dimensional network density matrix. The total rate for the

transition j ~i in subsystem m is given by
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R, (Ii„I)=W, +B, U „[co,~ ([i„I),m] . (2.25)

U „(co,m ) is the local pump-energy density at site m. The fact that the transition rate R; . ( ti„I ) depends on the
'm Jm

state of the other subsystems is the origin of a complex network dynamics: If the spectral energy density U~„~(co,m )

was a constant with respect to cu or the interaction between the subsystems vanished, the transition rate would not de-
pend on the neighborhood: The coupled dynamics (2.24) would then reduce to a system of independent rate equations
for each subsystem.

The expectation value of a local observable 3 is given by

(2.26)

with A, , =&i IA"

(2.27)

is the expectation value of the total quantity A.
From Eq. (2.22) we derive that the susceptibility

Ã
y(co)= —g y(co, m )

N
(2.28)

of the network is the mean value of the local susceptibility

I I
y(co, m ) = i,j =1 Ii =1I

num

d, I
[co+co; J (Ii„I)+iy, ]

[co+co; 1 (Ii„I)]+y; ~

(0) (0)
[p ( (). . . ) Jm). . . )LN) P (l .i). . )lm). . . )IN)] (2.29)

U = V/N is the volume of a single subsystem. In contrast to a subsystem in a static environment where each transition
i ~j contributes a single Lorentzian to the absorption spectrum ("homogeneous line" ), we get here a superposition
of several lines. This inhomogeneous line arises because the environment of subsystem m that is built up here by all
other subsystems num explicitly occurs at the dynamics. Similar effects have recently been observed as spectral jumps
in the resonance frequency of a single pentacene defect in a p-terphenyl crystal. '

The assumption of an incoherent pump field has led to a dynamical description in the form of a rate equation (2.24)
instead of a generalized master equation (2.10). The great advantage now is that Monte Carlo simulation provides an
effective numerical method to determine the properties of rate-equation dynamics in a high-dimensional-state space.
No comparably effective method exists for a generalized master equation. The Monte Carlo method simulates a Mar-
koff process Ii„(t)]defined by the transition rates (2.25). The stationary solution p' '( [i„]) of the rate equations (2.24)
is then given by the time average

p' '(Ii„])= lim f dt+ fi, , (,) .
tmax ~ m tmg~ 0 n=1

(2.30)

Inserting (2.30) in (2.29) and (2.26) gives the following expressions for the susceptibility y(co, m ) and the expectation
value ( A

I
y(co, m )= lim f dt

-%AU t „0E,J —1

Id, I
(co+co, [ Ii„(t)I ]+iy; }

(co+co [[i (t)I ])2+y2 J ' m( ~ m' m(
(2.31)

and

(3 )= lim f

dt's;

(,); (,). (2.32)

The integrand in Eq. (2.31) may be interpreted as a time-
dependent spectrum where the resonance frequencies
co; [I t'„(t)]] evolve as a random telegraph signal. The

'm Jm

experimental observation of such spectral jumps' sug-
gests that the Monte Carlo simulation, here, is not only
an effective numerical method, but even constitutes the
"real dynamics. " This view of quantum dynamics of
open systems as inherently stochastic is confirmed in
various other experiments from difFerent fields: Quantum
jumps in the fluorescence of single ions [12, 13, 14] or
current fluctuations in very small electronic devices [24]
are pertinent examples.
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III. NETWORK REALIZATION

22= —d„=d, d33 0 . (3.1)

The specific localization behavior is responsible also for a
hierarchy in the transition rates W~. (Ref. 25)

~21 ~12«~13 ~23 (3.2)

The realization of the quantum network model requires
a complex structure on the atomic scale. Technologies
for structural control on this level are in the process of
development: Three-dimensional semiconductor nano-
structuring and, starting from the opposite direction, the
chemical synthesis and (self-) assembly of functional mol-
ecules are promising approaches.

The basic element (subsystem) of our network model is
an optically controllable charge-transfer center. Proto-
type structures that realize this network node would be,
e.g. , charge-transfer quantum dots or donor-acceptor-
modified molecular chains. ' ' Both systems can be de-
scribed by a minimal I=3-level system (Fig. 1). ' 7 The
horizontal axis symbolizes electronic or structural coordi-
nates, depending on the realization of the model. The
different spatial localization behavior of the states i re-
sults in diff'erent static dipole moments d, ,

= (i ld li ) that
characterize the charge transfer.

In the following we will restrict ourselves to a two-
dimensional square array of identical charge-transfer
quantum dots as shown in Fig. 2. Indeed, such
charge-transfer quantum dots are not yet under experi-
mental control. However, two-dimensional quantum-well
structures of that type or simpler zero-dimensional
quantum dots have already been realized.

We specify the dipole moments d;; by '

Vnm nn mm

4~«olR. —R
(3.4)

This static dipole-dipole coupling is the first term in the
multipole expansion of the intersubsystem Coulomb in-

teraction. ' Other types of interactions, such as single-
particle transfer or dynamic (nondiagonal) dipole-dipole
interaction (Forster transfer), can be neglected here for
two reasons: First, the network lattice constant (a =100
nm for the model in Ref. 31) is large compared to natural
networks (crystals). Second, the diagonal interaction
eliminates degeneracy, which is a condition for an
effective transfer process. The local picture (2.6) thus
remains valid.

Typical orders of magnitude for the transition energies
are

FIG. 2. Charge-transfer quantum-dot array: Possible realiza-
tion for a synthetic quantum network. The single three-layered
dot represents an asymmetric double-well potential in the
valence and conducting bands so that a spectrum as in Fig. 1 re-

sults (Ref. 25).

that stabilizes the charge transfer. These rates arise from
an interaction with the (e.g. , photon or phonon) heat
bath. For simplicity we assume its temperature
kg T «Ac03 1 %6732 so that

QQ73 1 QQ) 32 1 eV

Wm21= 10 meV,
(3.5)

~31 ~32 ~13 ~23 (3.3)
and for the dipole-dipole interaction A'Co (see below) be-
tween two nearest neighbors n and I (Ref. 31)

also holds. The dominant part of the intersubsystem in-
teraction is the static (diagonal) dipole-dipole interac-
tion. ' For dipole moments d, , perpendicular to the con-
necting line R —R„,we get for Eq. (2.5)

AC =V" =V" = —V"
12 21

4~@e0a

=0.01 meV . (3.6)

Thus the hierarchy (2.9) is fulfilled in this model system.

IV. RESULTS

A. The isolated subsystem

813 U(V, 3)

FIG. 1. Driven three-level system: Minimal model for a con-
trollable charge-transfer center. Transitions are induced by
heat-bath coupling (rate 8;k) and external light field [rate
Bii, U(co;k ) ]. 0

~31» ~32~ ~21& ~12 +ij pump(~ij ) 13& ~23 (4.1)

It might be helpful to first investigate the photodynam-
ics of an isolated subsystem. An external light field cou-
ples the ground state 1 and the rnetastable state 2 with
the transient state 3 and controls the charge-transfer dy-
namics (see Fig. 1). In the following we will study this

dynamic with the formalism developed in Sec. II B. We
assume that the rates of the light-induced transitions
1~3 and 2~3 lie within the range
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for ij =13, 31, 23, and 32. A direct light-field coupling
1~2 can be neglected because of the negligible overlap of
the corresponding states. Equations (4.1) and (3.3) lead
to the following hierarchy in the total transition rates R;
(2.15):

R„,R„«R„,R„«R„,R„. (4.2)

The consequence of the first inequality is that the direct
charge transfer 2~1 can be neglected in comparison with
the optically induced transition via the transient state 3.
The second inequality means that an excitation into the
transient state 3 will be followed by immediate decay.
State 3 will thus have only a negligible occupation proba-
bility.

The inequalities (4.2) allow an adiabatic elimination of
the fast variable p33 (t) in the pump-rate equation (2.14):
The resulting two-state rate equation can be expressed in
terms of the "spin" variable s:

state 1 —s = —1, state 2 —s =+1 . (4.3)

8)+8
In our new notation we have set

(4.5)

The variable s describes the dipole moment in units of d
[see Eq. (3.1)]. The effective rate equation reads

d ' '(s, t)=R',p' '( —s, t) R; p' (s—, t), s=+1 .
t

(4.4)

p' '(s, t) =p,', '(t), again, denotes the diagonal element.
The effective rate R,' for the indirect transition s ~—s is

None of the other parameters apply.
For the mean dipole moment we get from (2.16), with

the stationary solution of Eq. (4.4),

W, B i Up„p(co i) —W IB, U „(cubi)
W, B i U „„(coi)+ W iBi Up„p(cubi)

(4.7)

Equation (4.7) shows that the two light modes

Uz„~(m &) and Uz„(co&)compete with respect to the
charge transfer: The first one tries to "switch" the dipole
moment into direction +d, the second one into the re-
verse direction —d. This is reminiscent of the excitato-
ry and inhibitory forces typical for biological system con-
trol.

The susceptibility (2.22) contains comparable informa-
tion: As the direct absorption 1 —+2 can be neglected, the
absorption spectrum consists of just two Lorentzians cen-
tered at co3, and co32. The peak heights are proportional
to the corresponding occupation probabilities of the two
states 1 and 2.

B. Cooperative network dynamics

In this section we consider a two-dimensional square
array of interacting subsystems. We restrict our model in
such a way that it can be mapped onto the kinetic Ising
model. This mapping is of twofold interest. On the one
hand, the quantum network can be said to perform high-
ly parallel Monte Carlo simulations as a possible applica-
tion. On the other hand, well known results of the Ising
model can be applied in order to get a better insight into
the complex network dynamics.

If Eq. (4.1) is taken to hold for all subsystems m and all
possible neighborhoods [i„],n W m,

W3ft W32y W2], W(~ &&B, U „~(co, ( [l~ ] ), m )

8') = &~3,

—1 13 31

B ) =B~3 =B32 7

co', =e' = —co',—1 31 13 ~

CO
—

CO
—

CO1 32 23

(4.6)

(4.8)

and for i j =13, 31, 23, and 32 a hierarchy in the total
rates (2.25) results, corresponding to Eq. (4.2). An analo-
gous adiabatic elimination procedure applied to Eq. (2.24)
then gives an effective rate equation with two states per
subsystem:

(o)
N

p' '(s&, sz, . . . , s&, t)= g [R', ([s„])p'(s, , sz, . . . , s &,
—s,s +&, . . . , sx, t)

dt m =1

—R~ ([s„])p (sl~s2~ . . ~sm —l~s~~s~+l~. . . ~SN' t)]~~ (4.9)

where we have used the same nomenclature as in Sec.
IVA. The effective rate R,' ([s„])for the transition

m m N

co, ([s„])=co, —g C „ss„, (4.11)

For the renormalized transition frequency co, [(s„]) we

get from (2.23) with (3.1) and (3.4):

8'
R; ([s„] ) = B, U

„
[co, ([s„] ), m ] . (4.10)

with

n=1
num
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(4.12)

For C(R„—R )=C „weintroduce the Fourier trans-
form

U „(co,m)= g U, (m)exp
s=+1

0 2
co co 5

(4.15)

C(k) =g C(R„—R )exp[ —ik(R„—R ) ], (4.13)

C(0) being the utmost frequency shift [cf. Eq. (4.11)] that
can be induced by the neighborhood: Equation (4.11)
defines two frequency bands of width 2C(0), centered
around cu 1 and co1. Under the condition

(4.14)

they do not overlap, and both directions of the transitions
s~—s can be adjusted independently: For the spectral
pump energy density U~„(co,m ) we take the sum of two
Gaussians with bandwidth 6 and detuning 5, from the
unperturbed transition frequencies co, , each confined to
its respective band of transition energies:

X exp

N

5, ++C„ss„
n =1
num

2

(4.16)

The dynamics of the subsystems will be uncorrelated in
the limit A~ ~. We will need the ratio

As usual, the e function equals one for co, —C(0)
(co(co, +C(0), and zero otherwise. With Eqs. (4.15)
and (4.11) the neighborhood-dependent transition rates
(4.10) take the form

8'
R ([s„])= B, U, (m)

—1 1

R; ( Is„])
R', ([s„I)

W, B, U, (m)

W, B, U, (m)
X exp

N

5, —5, +2(5, +5, )QC„ss„
n =1
num

(4.17)

C(0)=g C „=Co
n k, 1=0

( kl }W(00)

9.0336C0
1

( k 2+ I 2 )3/2

for later reference. For an infinite square lattice, Eqs.
(4.12) and (3.6) imply

R; (Is„I)
=expR', ([s„])

2
s pH +g J„s„

g T
num

(4.21)

N N
A= —gpH s —

—,
' g J„ss„.

m, n =i
num

(4.19)

Here, p is the magnetic moment, H the local magnetic
field, and J „=J„is the exchange interaction between
spin m and n Coupling . to a heat bath (temperature T)
induces "spin Aips" s ~—s . The principle of detailed
balance,

R —g ( js«» I )p (si»$2»»sm —i» sm»sm+i» ' ' »SN)

=R» (Isn I )p (sl»s2» ' ', sm —i»sm»sm+1» ' «sx)

(4.20)

that holds for systems in thermal equilibrium, deter-
mines the ratio

(4.18)

With Eqs. (4.18), (3.5), and (3.6) we see that the inequality
(4.14) is fulfilled in our model system.

We now take advantage of the fact that the type of rate
equation (4.9) also governs the dynamics of the kinetic Is-
ing model, ' the Hamiltonian of which is given by

by a Boltzmann factor.
Comparing the corresponding ratios of transition rates

(4.17) with (4.21) yields the mapping

J „C„(5,+5, )

k~T

pH W,B,U, (m) 5, —5
ln +

kii T ' W, Bi Ui(m) b, 2

(4.22)

The mapping implies that the transition-rate model (4.16)
also fulfills the condition of detailed balance (4.20), al-
though it describes a driven system that is not in thermo-
dynamic equilibrium. This is due to the special choice of
the spectral energy density function (4.15).

Due to the mapping our quantum network can be con-
sidered as a "programmable" simulator of the kinetic Is-
ing model. It is programmable in the sense that its pa-
rameters (J

„
/k& T and pH /k& T ) can. be adjusted by

the external driving field: The intensity ratio
U, (m)/U, (m) corresponds to the local magnetic field,
the sign of the detuning parameter 61+6 1 determines
ferromagnetic (5i+5 i )0) or antiferromagnetic cou-
pling (5i+5 i (0). The application as an effective
Monte Carlo simulator should have several advantages
compared to conventional computers: First, the network
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dynamics is highly parallel, i.e., the "computing time"
does not depend on the size of the network. Second,
quantum dynamics is intrinsically stochastic, whereas a
conventional computer is deterministic and can only be
made "quasistochastic" by special tricks. However, a
lack of structural control leading to parameter Auctua-
tions is connected with lacking control of the stochastic
behavior and may induce systematic errors in the "ran-
dom number generation. " As another disadvantage, the
distance dependence of the exchange interaction
J „=J(R„—R ) is determined by the R distance
dependence of the dipole-dipole interaction (4. 12) and
cannot be programmed at will as in a conventional com-
puter. This, again, shows how physical limitations re-
strain the function of such a quantum device.

The two-dimensional Ising model (4.19) with J „)0
has a second-order phase transition from paramagnetism
to ferromagnetism at a critical temperature T, . Below
T„aspontaneous magnetization occurs in zero magnetic
field 0 =0. In the mean-field theory, the critical tem-
perature is given by

TMF f (0) (4.23)

where J(0) is the Fourier transform of J
„

for k=O [cf.
Eq. (4.13)].

The mapping (4.22) implies that the optically driven
quantum network has a nonequilibrium phase transition
at the critical pump parameter

C(0)(5,+5, )
(4.24)

Q2
C

Spontaneous polarization occurs for C(0)(5,
+5 &)/b, ) 1. Figure 3 shows the total dipole moment
[3 =d in Eqs. (2.26), (2.27), and (2.32)] as a function
of the bandwidth 6 for fixed parameter C(0), detuning

c(0)/a, =o c(o)/ a, = o.6

5, =5,=C(0) and zero magnetic field
U &(m)/U&(m)=W &B&/W&B &. From Eq. (424) we
obtain for this choice (C(0)/b, ), "=1/&2. As expected
from the exact solution of the two-dimensional Ising
model with only nearest-neighbor interaction, the
mean-field value is lower than the exact value. This ex-
pectation is confirmed by our Monte Carlo simulation.
However, the difference is not so large here as in be-
cause the mean-field approximation tends to improve
with the interaction range (it even becomes exact for
infinite interaction range where each subsystem is cou-
pled to any other with the same strength ).

Figure 4 shows typical dipole configurations, i.e.,
"snapshots" of the Monte Carlo simulation, for difterent
parameters b, . Qualitatively, these pictures resemble
those of the nearest-neighbor Ising model. C(0)/b, =O
corresponds to T= ~: Each subsystem Aips randomly
without any correlation between the neighbors. For
C(0)/b, )0 we get short-range order with clusters of
aligned dipoles. The net dipole moment, however,
remains zero until C(0) /6 = [ C(0) /6], . Then, the
symmetry-breaking long-range order with spontaneous
polarization appears until, for C(0)/b, ~~, the complete
ordered state is reached.

The relevant level of description of the network dy-
namics requires the specification of the states s„ofall

1.0-
0,9-
0.8-
0.7-
0.6-
0.5-

E 04
E 0.3-
O

0.2-
0.1-
0 0[1

0.0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0 1.1 1.2 1.3 1,4 1,5

c(0) / a

C(0) / 6 = 0.85

C(0) / h = 0.77

Is.,::, '~!;,.g:

FICx. 3. Mean dipole moment vs inverse band width of the
pump light field. Network of 40 X 40 subsystems, periodic
boundary conditions. Fixed parameters 5, =6

&

=C(0) and
U ~(m)/U&(m) = & &B& /&&B &

(zero magnetic field).
Squares, Monte Carlo simulation; continuous line, mean-field
approximation. For clarity, only the positive-branch D) 0 is
shown. The complete picture is symmetric with respect to
D =0.

FIG. 4. Typical dipole configurations of the network
(snapshots of Monte Carlo simulation). Black squares, s = + 1;
white squares, s = —1. Fixed parameters as in Fig. 3.
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subsystems n. This detailed information shown in Fig. 4
will not be directly accessible to an actual physical exper-
iment: Typical observational levels are not identical with
the relevant level of the underlying network dynamics.
This "reconstruction problem" appears to be typical for
molecular electronics.

As an example, we illustrate a kind of "network
analysis" through an absorption measurement. From Eq.
(2.29) we get for the local susceptibility

6= 0.7

C(0) / 6 = 0.77

Id, I (co, (js„]) co iy—, )—
y(co, m ) =

~~oU, (, )
(~, (Is I ) ni) +1', c(0)/a=o. a5

C(0)/ 6= 1.5

Xp (s), . . . , $~) (4.25)
I I

(2,—C(0)
0

and a corresponding expression for the total susceptibili-
ty (2.28). As in Eq. (4.6) we have introduced the abbrevi-
ations FIG. 5. Network absorption spectrum. Parameters as in Fig.

4. Homogeneous linewidths y &

=y ~
=0.01CE,'0), transition di-

pole moments Id, I'= Id, I'. For convenience, the spectra are
normalized to equivalent peak height.

d13 d 31

d23
(4.26)

~ —1 ~13 731 in our model: As in Eq. (4.15) we consider a spatially and
frequency-dependent pump energy density. The spatially
dependent part f3(m) as the "input pattern" is defined by

W B iU 1(m)
P(m) = 3 'ln

W, B,U, m

'V1= F23 =732 .

Figure 5 shows the total absorption spectrum for the
same parameters as in Fig. 4. We obtain two lines cen-
tered around the resonance frequencies co, of the isolated
subsystems, broadened and shifted due to the dipole-
dipole interaction. The integral absorption over each line
is proportional to the occupation probability of the corre-
sponding state s [see Eq. (4.32) below]; their difference is
thus proportional to the dipole moment as shown in Fig.
3. However, the specific line structure contains addition-
al information: The broad-band absorption ("inhomo-
geneous line" ) for C(0)/6=0 results from the uncorre-
lated neighborhood and the corresponding dynamical
shift of the resonance frequency (see Sec. IIC). The spe-
cial line form is a consequence of the R interaction.
An infinite interaction range would lead to the usual
Gaussian line. The cluster formation for increasing
C(0)/5 shows up as a shift of the absorption lines to
lower frequencies [see Eq. (4.11)]. For C(0)/b,
& (C(0)/b. ), one line starts to disappear due to the
symmetry-breaking spontaneous polarization. For large
enough C(0)/b„one single "homogeneous" line remains
as a consequence of the complete order state, where no
fiuctuations occur (on the observed time scale).

(4.27)

where

W,B,U, (m)
ln W, B, U, (m)

N
(4.28)

is a normalizing factor, so that
N

g f3(m) =1. (4.29)

The mapping (4.22) shows that P(m) is proportional to
the local magnetic field H in the Ising model (for the
case 51=5

&
as assumed in the following). We consider a

spatially homogeneous probe light field with a
frequency-dependent energy density U,», (ro) which we

parametrize by a cutoff Gaussian [cf. Eq. (4.15)]
0 2

~1 ~probe
U „b,(co)= U~,», exp

probe

XO[C(0)—
In~

—co, I] . (4.30)

C. Programmable image processing The 0 function, here, assures that the probe field mea-
sures only absorption out of state s =1. The total (spa-
tially dependent) absorption

a(m)= —f dna U, b, (co)lmy(co, m) (4.31)

In the preceding section we focused on the dynamics of
the quantum network itself. For the present application
we consider the network as a "black box, " while it is the
connection between the absorption of the probe field and
the controlling pump field that will be interpreted as a
computer function. We will show that our network mod-
el is complex enough that this function can even be pro-
grammed although in a restricted manner. For this pur-
pose we have to define "input", "output, " and "program"

is defined as the "output pattern. " Finally, the connec-
tion between input pattern f3(m ) and output pattern a( m )

is controlled by the program encoded in the parameters
A (absolute intensity of the pump field), 5=5,=5 „b,
(frequency dependence of the pump field), and 5~„b„

OPTICALLY DRIVEN QUANTUM NETWORKS: APPLICATIONS. . .
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b, „b,(frequency dependence of the probe field).
Our prototype input pattern is depicted in Fig. 6(a).

For six program parameter sets we show computer simu-
lations for the corresponding output patterns Figs.
6(b) —6(g). Figures 6(b) —6(e) examine the inliuence of the
pump parameters: For C(0)/b, ~„„,=O the probe energy
density is frequency independent in the relevant range
around ni, and a(m) measures the occupation probability

(e)
PP. ::;:.,'::::.'.0~/s3's3

s..Qs 's
3' &:ss$s

",' -'&ps, 'sI'

j; s3'g, . , S3

„„&&'s';,'3s',:j,ij' s4 s'js's". i/:,."sA s3

p %~V

'?

, \!
S &PS~3.,~

I ""ej::;.,„.
(g~»"

FIG. 6. Optical information processing by a network of
40X40 subsystems with periodic boundary conditions: Spatial
pump intensity pattern P(m) as input (a) and spatial absorption
pattern a(m) as output (b) —(g) for different program parame-
ters. Each computer simulation needed 5 h on a VAX station
4000/60. Light, a(ml, ll(m) large; dark, a(m), P(m) small. (b)
A =0.1, 5/C(0) = 1, C(0)/6=0, 5p„b,/C(0) =0,
C(0)/Ap b 0 (c) A 0 1 5/C(0): 1 C(0)/6 0 5

5, ,/C(0) =0, C(0)/6 „,=0. (d) A =0.1, 5/C(0) = 1,
C(0) /5 =0.7, 5probe/C(0) =0~ C(0) /reprobe = 0. (e) A =2.0,
5/C(0)1C(0)/6 0 75pb /C(0)OC(0)/LaLpb:0
(f) A 1 0 5/C(0) 1 C(0)/6 0 7 5p b /C(0) 0
C(0) /laLp b 25 (g) A 1 0 5/C(0) 1 C(O)/5 0 7
5p b /C(0) 1 C(0) /5p b 25

of state s =1, which depends linearly on the local dipole
moment: From Eqs. (4.31), (4.30), (4.25), and (2.26) we
get

7rd U
a(m)= (d+(d )) .

Zd AGOU
(4.32)

sk=gs exp( ik —R ), (4.33)

and analogously for the magnetic field, we get for the
linear response

p
k~ T—J(k)

(4.34)

With J(R„—R ) =Joa /~R„—R
~

(nearest-neighbor
interaction Jo) one obtains in the limit

~

k
~
a && 1

J(k)=J(0)—2~Joe lkl . (4.35)

For C(0)/b, =O [Fig. 6(b)] the dynamics of the subsys-
tems is not coupled at all so that the response a(m) is lo-
cal and, because the absolute input intensity is low, linear
with P(m). Increasing C(0)/b [Figs. 6(c) and 6(d)] leads
to ferromagnetic coupling between the subsystems and
smoothing of the output pattern. High input intensity
[Fig. 6(e)] results in saturation effects: The output can be
characterized as making a threshold decision P(m)~&0.
Finally, in Figs. 6(f) and 6(g) the effect of the probe pa-
rameters is investigated: The small probe band width
[C(0)/b.z„b,=25] means that the absorption is sensitive
to the local environment: In Fig. 6(f) (detuning 5&„b,=0)
subsystems only absorb where the mean neighborhood di-
pole moment vanishes: This leads to the detection of the
"edges" of our prototype pattern. In Fig. 6(g) [detuning

5~„b,= —C(0)] the probe beam is in resonance only with
subsystems that are in the same state s = 1 as their neigh-
bors: In this way, the maximum of our input pattern is
located. Local correlations (neighborhoods) are thus
mapped into the response in frequency space. Further-
more, the network function is not determined by the
internal dynamics alone (here, controlled by the pump
field), as is the case in conventional computers; it is
selected as well by the type of measurement (probe field).

Because of computer time limitations we could simu-
late only a small network (40X40 subsystems). There-
fore, we have made the (unphysical) assumption that the
light field (s(,=10 m) can vary on the scale of the net-
work lattice constant (a =10 m). For a more realistic
model we would have to take at least a 100-times-larger
system. The following arguments will show that the
qualitative network properties should be independent of
this scaling. However, there is no universal scaling law in
the sense of renormalization theory. ' The translation
of the "program parameters" that connect a scaled input
with a scaled output has to be check for each "function"
separately.

For the smoothing function [Figs. 6(b) —6(d)], we again
use mapping onto the Ising model. The mean-field theory
predicts the following connection between the Fourier
components of spin and magnetic field: For
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Inserting this expression into (4.34) gives

(s(k) ) p 1

a(k) 2~Joa g' '+ Ikl

with

2m.joa
k (T T™)

(4.36)

(4.37)

Wavelengths smaller than the spin-spin correlation
length g are damped. As a(k)-sz for C(0)/A~„b,=0
[following from Eq. (4.32)] and P(k)-H&, this means for
our pump and probe experiment that the output pattern
will average out the input pattern on a length scale g that
increases by approaching the critical parameter
[C(0)/b, ]„asobserved in Figs. 6(b) —6(d). Inserting the
mapping (4.22) into (4.37) establishes a "scaling law" for
the program parameters 6+& and b, in this application.

For the other applications [Figs. 6(e)—6(g)j, not the
long-range correlation g but local saturation and neigh-
borhood are decisive. These features should be indepen-
dent of a scaling of the system and thus the correspond-
ing functions are expected to survive without parameter
scaling.

V. SUMMARY AND CONCLUSIONS

The challenge of molecular electronics is the realiza-
tion of synthetic nanostructures capable of performing a
computer function. We have pointed out that computa-
tional aspects and physical implementation should be
combined in this field rather than treated independently.
Driven by an external light field, our quantum network
model performs complex stochastic dynamics. This has
been explicitly demonstrated for the kinetic Ising model
with J(R„—R ) —~R„—R ~, where the quantum net-

work carries out a highly parallel Monte Carlo calcula-
tion and results are obtained directly as physical mea-
surements. With a conventional computer this could
only be achieved with time-consuming simulations (which
we actually did to obtain our results). In a second appli-
cation we have demonstrated how simple image-
processing tasks can be programmed and directly per-
formed by pump and probe experiments.

There are two difficulties in these applications for
molecular electronics: First, on the quantum level primi-
tive functions are constrained, e.g. , the coupling con-
stants J „ofthe Ising model cannot be chosen at will,
since their distance dependence is restricted by the R
law of the dipole-dipole interaction. In our second appli-
cation, a set of "program parameters" can be assigned to
a certain function, but the reverse problem of algorithmi-
cally finding the parameters for a given function, remains
unsolved. This appears to be a typical problem of many
new computer concepts. For the cellular automaton, e.g. ,
which was originally introduced to model physical, chem-
ical, and biological systems, "' general statements about
its computational universality exist, which, however,
are rarely of practical use. In typical applications (e.g. ,
for lattice gas models ), the automaton rules are estab-
lished in a rather intuitive manner. In this same spirit
one may investigate to what extent quantum networks
could be used to model emergent behavior of other (phys-
ical) systems. It seems likely that such a quantum com-
puter will be applied as a special- rather than a general-
purpose machine, but then, as shown, with very high
efficiency.
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