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We present investigations on the in-plane effective mass of conduction electrons in pseudomorphic,
strained GaAs/In,Ga,_,As/Al,Ga;_,As quantum wells. The samples are modulation doped by silicon
leading to electron sheet densities in the range of 102 cm ™2 in the In, Ga,_, As layers. In photolumines-
cence experiments at low temperature we observe that all electrons of the two-dimensional electron gas
up to the Fermi energy contribute to the luminescence. This leads to an asymmetric broadening of the
luminescence line shape and indicates a breakdown of the k-conservation rule. This offers the possibility
of determining the Fermi energy from the low-temperature spectra. From contactless microwave
Shubnikov—de Haas measurements we determine a quantity correlated to the sheet carrier density. By
combining both methods we deduce the in-plane effective electronic mass and investigate its dependence
on confinement. We observe a slight increase of the mass due to the built-in strain of the pseudomorphic
layers and a strong increase due to confinement effects by up to 40% for 2-nm wells. Self-consistent cal-
culations of the electronic-energy levels, the wave functions, and the perpendicular effective mass show
that the observed dependence of the effective mass on the confinement is supported from a theoretical

point of view. We compare the in-plane effective mass with the perpendicular one.

I. INTRODUCTION

Pseudomorphic, strained Al,Ga;_,As/In Ga;_,As/
GaAs high electron mobility transistor structures
(HEMT) are of great interest for high speed device appli-
cations. In this material, both the alloy composition and
the built-in strain offer additional degrees of freedom for
band-structure tailoring.1 In addition, better confinement
of the two-dimensional (2D) electrons? as well as a lower
effective mass is achieved than in GaAs/Al,Ga,_,As
HEMT structures.

The effective mass of the 2D conduction electrons,
however, is expected to be strongly modified by
confinement,>* as well as by strain.’~7 The mass also is
split into two components according to motion parallel
and perpendicular to the layers, respectively. The paral-
lel mass determines the electron mobility and is therefore
of great technological importance. The perpendicular
mass determines the quantization energy of electrons and
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therefore governs the spectral position of absorption or
luminescence lines.

The strain-induced anisotropy is predicted to increase
monotonically with increasing In model fraction x.> It is
expected to be smaller than 5%, even for the sample with
the highest x value (x =0.35) used in our investigation.
There should be, however, also a strain-induced isotropic
shift of the effective mass of the order of 20% for the
above sample.

The confinement-induced enhancement of the effective
mass has been treated theoretically by Ekenberg for
GaAs/Al,Ga,_,As quantum wells (QW’s). He attribut-
ed this effect to the nonparabolicity of the conduction
band on the confinement energy and to the penetration of
the wave function into the barriers.* He predicted that
the enhancement effect on the parallel mass is about three
times larger than the one on the perpendicular mass for
GaAs/Al,Ga;_,As QW’s.

Most recently, a systematic investigation of the depen-
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dence of the in-plane effective mass of electrons in
In,Ga,_,As/InP QW’s on the QW width has been pub-
lished by Wetzel et al.® As experimental method, they
used optically detected cyclotron resonance.” Since they
investigated lattice-matched material, strain effects were
unimportant. They observed an effective-mass enhance-
ment with decreasing well width down to 8 nm. For
smaller QW widths the signal-to-noise ratio of their
method was not sufficient to allow determination of the
effective mass with the exception of one sample with a 5-
nm QW width. From this sample, however, a much
smaller mass enhancement is obtained than in the case of
the 8-nm sample. This is surprising because it is in
disagreement with Ekenberg’s work, which predicts a
monotonic characteristic.

In this paper we show that the in-plane effective mass
of modulation-doped GaAs/In,Ga,_,As/Al,Ga,_,As
QW’s increases strongly and monotonically with decreas-
ing QW width. We also observe a slight increase of the
mass with the strain of the QW’s. The in-plane mass is
determined by evaluating both photolunminescence and
Shubnikov-de Haas experiments. In addition, we calcu-
late the perpendicular effective mass self-consistently. By
comparing the experimental results with the self-
consistent calculation we obtain a ratio of the
confinement-induced enhancement factors for the masses
parallel and perpendicular to the layers which is smaller
than Ekenberg’s prediction given in Ref. 4.

II. SAMPLES

The heterostructures investigated were grown by
molecular-beam epitaxy and contain a high-electron mo-
bility transistor (HEMT) structure grown on semi-
insulating LEC(100) GaAs. They consist of a 300-nm un-
doped GaAs buffer layer, a GaAs/Al,Ga,_, As superlat-
tice, and a 600-nm undoped GaAs layer, followed by the
In,Ga,_,As QW (see inset in Fig. 2). Samples were stud-
ied with well widths and InAs mole fractions ranging
from 2 to 16 nm and from 0.2 to 0.39, respectively. On
top of that active region a 5-nm undoped Al ;Gag,As
spacer layer is grown, followed by a 1.7-nm-wide GaAs
QW with a Si- 8 doping of 3.5X 10'> cm 2 and a 60-nm-
wide Aly3Gag,As layer. The structure is capped by a

20-nm GaAs layer. The low-temperature mobility of the

samples investigated is of the order of 10°.

III. EXPERIMENT

For the photolunminescence experiments a BOMEM-
DA 8.22 Fourier spectrometer was employed. The sam-
ples were cooled to 5 K by using a continuous-flow cryo-
stat. The luminescence was excited with an argon-ion
laser emitting at 514 nm at an excitation intensity of typi-
cally 0.1-1 W/cm?.

The Shubnikov-de Haas (SdH) measurements were
performed with a BRUKER electron paramagnetic reso-
nance (EPR) spectrometer which allows us to record the
microwave absorption as a function of the magnetic field.
The microwave absorption is detected via the cavity qual-
ity factor which changes due to the variation of the longi-

2329

tudinal resistance with magnetic field. This method en-
ables a quick and very accurate determination of the elec-
tron concentration and an estimation of the mobility
without the necessity to put contacts on the samples.!%!!
In addition, if samples with more than one electronic sub-
system are investigated, they can be analyzed indepen-
dently of each other as described in the following section.
The sample temperature in these kind of experiments was
5 K as well.

IV. RESULTS AND DISCUSSION

The SdH effect yields oscillations of the longitudinal
resistivity that are periodic with respect to the inverse
magnetic field. From the period A(1/B), according to
Eq. (1), the product (Ep—E;)Xmy can be determined,
where E; and Ep are the energy of the first electronic
subband and the Fermi energy, respectively, and my; is
the parallel effective mass,

1
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If two-dimensional systems are investigated, my;
represents the in-plane effective mass of electrons at the
Fermi energy.'? It is helpful to count E and E, from the
maximum of the first heavy-hole subband, because these
quantities can then be taken directly from the photo-
luminescence spectra (see below). The sheet density n,p
can be evaluated from the period according to Eq. (2)
which is strictly valid only for parabolic bands,

1
1
B

2e
h

Hap = )

A

In Fig. 1, the SdH effect of a quantum-well structure
with a well width of 6 nm is shown. A Fourier analysis of
this signal is shown in Fig. 2. In the samples investigated
only one subband is filled at low temperatures. Hence,
the corresponding SdH spectra exhibit only one oscilla-
tion frequency. The peak position indicates the electron

SdH INTENSITY (arb. units)
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FIG. 1. Shubnikov-de Haas amplitude vs the inverse mag-
netic field.
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FIG. 2. Fourier transform of the signal in Fig. 1. In the inset
the structure is shown.

sheet density which is defined according to Eq. (2). In the
inset the structure of this representative sample is shown.
We investigated the SdH oscillations also under illumina-
tion of laser radiation. The period of the SdH oscillations
and, hence, the electron density did not change with this
illumination.

The photoluminescence experiments of the HEMT
structures reveal a typical line shape.'? The origin of this
photoluminescence line is a transition from the first elec-
tronic subband to the first subband of the heavy holes
(el1h1 transition). Light-hole correlated transitions can-
not be observed, since the light-hole states are shifted to-
wards higher energy due to confinement and strain and
are, therefore, not occupied at low temperature. Figure 3
shows two spectra originating from two identical samples
differing only in the QW widths. The shape of the
luminescence lines is strongly asymmetric. It can be well
described by a Gaussian shape on the low-energy side and
a modified Lorentzian shape on the high-energy side of
the peak (see below). The line exhibits a peak at a photon
energy E,, which is given by the sum of the renormalized

PL INTENSITY (arb.units)
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FIG. 3. Typical photoluminescence line shape of the single
quantum-well structures investigated. The steplike structures
on the high-energy side of the spectra indicated by arrows mark
the Fermi energy.

G. HENDORFER et al. 48

energy gap and the electron and hole quantization ener-
gy, respectively. On the tail of the high-energy side of
the peak, the luminescence intensity exhibits a rounded
steplike structure indicated by arrows in Fig. 3.

The luminescence is attributed to electron-hole recom-
bination within the In,Ga,_,As QW. Because of their
rapid energy relaxation the photogenerated holes are lo-
cated in k space close to the valence-band maximum of
the first quantized heavy-hole state. The majority of the
electrons are already present before excitation and are
spread energetically between the first quantized electronic
state and the quasi-Fermi energy. The quasi-Fermi ener-
gy is close to the Fermi level which, strictly speaking, is
defined only in thermal equilibrium.

If the conservation of the k vector held strictly, only
electrons with k=0 would contribute to the lumines-
cence. The linewidth of the luminescence would then be
expected to be very small and the line shape should be
symmetric and Gaussian.

The fact that the linewidth is broadened so strongly on
the high-energy side also indicates that electrons above
the minimum of the first subband recombine with the
photogenerated holes, thus breaking the k-conservation
rule. Such forbidden transitions are usually encountered
in degenerate QW’s,'>!* and they can be attributed to (i)
a breaking of the in-plane translation symmetry due to a
localization of minority carriers,'>1% or (ii) ionized impur-
ity scattering which introduces higher-order impurity-
assisted processes.!” Minority carrier localization (i) may
result from lateral fluctuations of the QW width, the In
composition,'® and the Coulomb potential.!® In addition,
there exists another line broadening mechanism in degen-
erate QW’s which is explained by many-body effects.
This is the so-called Fermi-edge singularity or Fermi
enhancement,'>?° resulting in a very strong peak at the
quasi-Fermi energy. In none of our samples, however, do
we observe a Fermi enhancement in photoluminescence
experiments. Therefore, the most probable origin for the
line broadening observed in our investigation is a relaxa-
tion of the k conservation rule due to hole localization, as
described, for example in Ref. 20.

The Gaussian shape on the low-energy (left-hand) side
of the photoluminescence (PL) maximum can be attribut-
ed to the usual inhomogeneous broadening mechanisms
such as interface roughness or alloy inhomogeneity.?!
The same mechanisms, of course, also broaden the right-
hand side of the spectra. This side, however, is
broadened due to the indirect transitions. The line shape
of this side is Lorentzian. The sharp decrease of the PL
intensity on the high-energy tail reflects the Fermi-Dirac
distribution of electrons at low temperature. We have
simulated our spectra by convoluting the overall line
shape with a Fermi-Dirac distribution function. This
procedure yields the Fermi energy. The left-hand Gauss-
ian side halfwidth of our spectra varies between 3 and 16
meV and the right-hand Lorentzian side halfwidth is pro-
portional to the former; it is, however, increased by 30%
to 100%.

In our samples, Ep—E, is typically 50 meV which
makes nonparabolic corrections necessary. Therefore,
Eq. (2) is valid approximately only. Nevertheless,
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(Ep—E )*my can be determined with help of Eq. (1)
from SdH measurements. Equation (1) is strictly correct,
if my; is taken as the nonparabolic energy-dependent in-
plane effective mass. Dividing this quantity by
(Egp—E,), which is taken from PL measurements, yields
the in-plane effective mass of electrons at the Fermi ener-
gy. We observe a strong increase of my(Ey) with de-
creasing QW width which exceeds the corresponding
bulk mass by about 40% at 2 nm.

For a quantitative description of this confinement
effect on my; we introduce the mass enhancement relative
to its bulk value. This quantity allows us to also compare
samples with different In concentrations. For the latter
both alloy and strain effects have to be taken into ac-
count. Alloying causes a decrease of the effective mass
with increasing In concentration.??> This effect, however,
is attenuated by strain which, according to theoretical
predictions, causes an increase of the effective mass.> 7
These expectations have been supported also by cyclotron
resonance experiments?> on In,Ga,;_, As/GaAs QW’s,
where an electronic subband mass of approximately 0.075
was measured for In mole fractions up to 0.2. Brugger
et al.'> have measured an effective mass of 0.071 for
GaAs/In,Ga,_,As/Al,Ga,_,As QW’s. They pub-
lished, however, only this single experimental value al-
though they investigated samples with different In mole
fractions and different quantum-well widths. The
effective-mass enhancement factors in Refs. 23 and 12
are 1.23 and 1.16, respectively.

In Fig. 4, the effective-mass enhancement factors are
plotted as a function of the QW width. For QW widths
of 9 and 13 nm, respectively, the enhancement factors are
close to unity, reflecting a bulklike situation. In both
cases, the present measurements yield a mass of 0.063
corresponding to the enhancement factor of 1.° These
points have been obtained for In, ,Ga, gAs. The effective
mass attributed to strain-free Ing,GaggAs is 0.055.%
This demonstrates that the effect of strain on the effective
mass is evident even at relatively low In concentrations,
and has to be taken into account if pseudomorphic layers
are designed for fast devices. For QW widths smaller
than 7 nm the effective mass starts to increase. Nonpara-
bolicity and the admixture of the barrier mass due to bar-
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FIG. 4. Experimentally obtained enhancement of the in-
plane effective masses vs quantum-well widths. A monotonic
confinement induced increase of the masses is observed.

rier penetration of the wave function are the mechanisms
responsible for this effect, as will be shown in the next
section. The measured mass enhancement factor within
the experimental error of approximately 15% increases
monotonically with decreasing well width. The largest
enhancement factor measured for a QW width of 2 nm
equals, approximately, 1.4. Ekenberg has calculated the
confinement effects due to the above mechanisms for
GaAs/Al,Ga,_,As QW’s.* He also predicted that the
ratio of the enhancement of the effective masses parallel
and normal to the layer is 3.2. We have calculated the
energy and the wave function of electrons for our struc-
ture self-consistently, as shown in the next section. From
these results we calculated the perpendicular mass and,
subsequently, by assuming Ekenberg’s relation* between
the two mass components also the in-plane mass for com-
parison with our experimental results. In contrast to
Ekenberg’s theoretical work on GaAs/Al ,Ga;_ As
QW’s we deduce a ratio of 1.7 for the confinement effect
of the two mass components in GaAs/In, Ga;_, As/
Al,Ga;_,As QW’s.

V. SELF-CONSISTENT CALCULATIONS

The energy level and the eigenfunction of the
quantum-well ground state is calculated self-consistently
by solving Schrodinger’s and Poisson’s equations simul-
taneously. For this procedure we take surface effects ex-
plicitly into account. By applying a two-band k-p model
we derive an energy- and position-dependent effective
mass for the conduction electrons. This mass is then
averaged over the HEMT structure, weighted with the
probability density to yield a phenomenological perpen-
dicular effective mass for electrons in the In,Ga,_,As
wells.

For semiconductor heterostructures, Schrodinger’s and
Poisson’s equations can be written as one-dimensional,
second-order differential equations,

2
%Z—%—!-kzl,b:o, 3)
2 —
¢ =Nz @
dz £
where
2 « 172
k= :2 (E—V)| (5)
and
V=V,—ed+V e - (6)

Here, 9 is the eigenfunction, E the eigenenergy, V the to-
tal potential, z the position along the crystal-growth
direction, and m * the effective mass. ¢ is the electric po-
tential, € the material dielectric constant, and N (z) the
three-dimensional spatial concentration. V consists of
the following three parts: V), is the bare heterostructure
confining potential, arising from band-gap discontinui-
ties, —e¢ is the electrostatic energy, and V.., in our
case, consists only of the exchange-correlation energy
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correction.

We solved Schrodinger’s equation using Kane’s
transfer-matrix method, whereby the potential V is bro-
ken up into small piecewise constant potential steps.’*2*
The potential in Schrodinger’s equation is V), —e¢
+ Voiher- As has already been defined, V), is the bare het-
erostructure potential and can serve as the first trial po-
tential within Eq. (1). ¢ is obtained from the solution to
Poisson’s equation in one dimension, which can be taken
simply as

__ﬁ z ! R — ’
$2)== [ dz'z—zN(z") )
with
N(z2)=Np(2)— 3 n;l¢;l, (8)
J

where N, is the 3D donor doping profile and n; is the
areal electron concentration in the jth subband.

The V.. considered by us consists of exchange-
correlation energy correction due to many-body interac-
tions of an electron gas. We employ the parametrized
formulation of the exchange-correlation energy according
to Ref. 26.

The occupation of each subband, found in Eq. (8), is
determined by the Fermi-Dirac distribution function.
The 2D concentration on the jth subband is?’

E;—E,

_{1/m*)7!

; 1+exp , 9)

where k is Boltzmann’s constant. Naturally, n; should
also be properly normalized by

ny=Npd=3n; (10)
J

to ensure change conservation. n is the total areal elec-
tron concentration, and d is the thickness of the doping
layer. Note that {(1/m*) ! is used for the “average”
effective mass over a subband level.> (We will discuss this
more carefully below.)

References to the mass so far refer exclusively to the
perpendicular effective mass. Within the two-band k-p
model it is given by

E—-V

E,

1+a

mf=mg , an

where m§ is the electron effective mass of the bulk ma-
terial, and E, is the material band gap. « is a factor
equal to 2. In more complex models considering more
than two bands, it has been shown that the effective mass
can still be expressed in the form of Eq. (11), however
with a factor « slightly less than 2.%28

Calculations have also been done to determine the
effect of quantum confinement upon the in-plane effective
mass.* The relation is given as
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E—-V
g

E-V

E,

mi=mg [1—(2a+[3)

-
|
—_

1+(2a+p) , (12)

where 8 is another material constant related to conduc-
tion band and mass anisotropies. As a and [ are nonpar-
abolic corrections, they are small for In,Ga,;_,As, and so
the approximation in (12) should hold. Taking the ratio
of the difference of the in-plane mass to the difference of
the perpendicular mass from the bulk material mass, one
arrives at a very simple constant relation, as the energy
dependence conveniently cancels

mi—mi_ 2a+p (13)
mt—m§ a

Expression (13) is approximately equal to 3.2 for GaAs

quantum wells.*

With a wave function that has a certain probability
over a varying potential structure ¥V (z), it is not so clear
cut as to what the effective mass is over a subband. In
other words, m* is also a function of z. Therefore, m*
has to be averaged over the entire subband.> The “aver-
age” effective mass can be calculated by>

<ml*>=f_:dz¢* Ly, (14)

m*(z)

This is the effective mass that is used in (11) and is what
is used as a comparison with the experimental results.

The real quantum-well samples were sufficiently close
to the surface that they afforded a serendipitous oppor-
tunity to verify its influence. So, incorporated into our
calculations is that of surface states acquiring a number
of electrons originating from the dopant. It is well estab-
lished,?%3° that there exist a large charge reservoir associ-
ated with dangling bonds at the surface, such that the
Fermi energy is effectively pinned approximately mid
band gap, at the surface. This has been experimentally
determined by most to be about 650 meV below the con-
duction band. We included this Fermi-level pinning in
our model. A good starting approximation for the
amount of charge taken out of the wells and put onto the
surface can be found by considering the surface and the
doping-QW layers as simply two capacitor plates. Using
this simplified model, the energy-charge relation is

€2 £
U=Snd (15)

where n*" is the resulting 2D charge density at the sur-
face and d is the distance from the doping-QW region to
the surface. These surface charges n*" enter into
Poisson’s equation (7), and the charge conservation rela-
tion (10), i.e., Npd =n,+n*""f, Charges acquired by the
surface must be compensated by a loss of charges n;
within the wells.

A typical result of the self-consistent calculation is
shown in Fig. 5 where the first ground state, the corre-
sponding wave function, and the Fermi energy level are
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FIG. 5. Conduction-band potential at equilibrium. Only the
first eigenvalue and the first eigenfunction is shown. E denotes
the Fermi energy.

given. Note the extreme band bending of the
In,Ga,_,As well on the side next to the 8-doped layer.
This is due to an extremely large electric field between
the positively charged doped region and the electrons in
the well.

Using Eq. (15), one arrives at about n =7.4X 10"
cm ™2 moved to the surface. This agrees well with the
final self-consistent result. This means approximately
57% of all the charges originally used for doping are
bound by the surface states. This large percentage natu-
rally affects the final results significantly. Note also the
large electric field near the surface resulting from the
charge transfer. The calculated concentration of the
sheet density of the first subband agrees well with that
measured by Subnikov-de Haas. This is a very good in-
dication that the surface states were properly considered,
as the concentration would naturally be very different
should there have been no charge transfer.

As predicted, the calculated average effective mass of
electrons occupying the first subband does increase with
smaller well width. This can be easily explained by the
fact that with smaller well width, the energy level gets
pushed upwards towards the continuum. So as E—V
[Eq. (12)] increases, the nonparabolic term of the effective
mass increases. As expected, the measured masses which
are in-plane masses are larger than that of the perpendic-
ular mass, shown in Fig. 6. The solid curve is for the cal-
culated perpendicular mass for different well widths. The
dashed curve represents the in-plane mass, using simply
Eq. (13) and the GaAs parameters for the quantities a
and B. While the perpendicular masses are the results of
the self-consistent procedure, the in-plane mass is in-
ferred from the former using Ekenberg’s relation in Eq.
(13). A ratio of 1.7 for the confinement-induced increase
of the masses parallel and perpendicular to the layers
needs to be used to obtain better agreement between the
measured and the calculated in-plane masses. This value
is nearly half of that suggested by Ekenberg in Ref. 4 for
GaAs QW’s.
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FIG. 6. Calculated and measured effective mass plotted vs
the quantum-well width. The solid line represents the theoreti-
cal perpendicular mass. Above that curve the experimentally
determined in-plane masses are shown as crosses. The dashed
curve is obtained from the solid one by multiplying the
confinement-induced increase of the perpendicular mass by a
factor of 3.2. This ratio has been suggested for GaAs. In our
case, a ratio of 1.7 is obtained for In, Ga,_, As.

The photoluminescence data are shifted by 10 meV rel-
ative to what is theoretically calculated. Because of the
complexity of doing similar calculations for holes, we ap-
proximated the hole state as being at the very uppermost
part of the valence band (recall that the valence band will
be bent in a similar fashion as that shown in Fig. 5.) This
would be a good approximation if the effective hole mass
is very large. The energy difference between the first
eigenenergy and this part of the valence band was used to
estimate the PL data. The calculated energies are con-
sistently lower than those measured, most probably be-
cause the hole state is, in fact, not exactly at the very
valence-band edge. Nonetheless, the drastic increase in
absorption energy is reflected theoretically for very small
well widths.

VI. SUMMARY

In summary, we have investigated pseudomorphic
strained modulation-doped In,Ga,_, As QW’s by means
of PL and SdH experiments. By modeling the PL line
shape and by combining the results of both methods we
determined the in-plane effective mass of conduction elec-
trons within the QW’s. We have observed a strong in-
crease of these masses with decreasing QW width. We
also calculated the electron energy levels and wave func-
tions of our structures self-consistently. From these re-
sults we calculated the perpendicular masses, too.

We found that both mass components under
confinement conditions follow the same tendency. How-
ever, the confinement-induced increase of the mass is by a
factor of 1.7 larger for in-plane masses than for perpen-
dicular masses. This experimentally obtained factor of
1.7 for In,Ga,_,As is about half of the value Ekenberg
expected for GaAs.
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