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Elastic lattice deformation of semiconductor heterostructures
grown on arbitrarily oriented substrate surfaces
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We present a theoretical study of the lattice deformation of semiconductor epitaxial layers grown on
arbitrarily oriented substrates, both with cubic symmetry. We assume a coherent (pseudomorphic) inter-
face between the epitaxial layer and the substrate, i.e., without defects and dislocations. The elastic
strain tensor components are calculated by minimization of the strain-energy density. A detailed study
of the tetragonal deformation and of the shear strain is presented. We obtained no shear strain for the
high-symmetry surfaces [001], [110],and [111],while for all the other surface orientations, which do not
even have twofold symmetry, a shear strain was obtained with the highest value for the [113]surface.
The shear strain has the opposite sign for [kk 1 ] surfaces with respect to [1lk] surfaces. In addition, the
shear displacement occurs in all cases normal to the direction of highest symmetry of the interface plane.

I. INTRODUCTION

Most studies of semiconductor heterostructures are re-
ported on materials grown on (001)-oriented substrates
and other high-symmetry surfaces, i.e., [110] and [111]
surfaces. However, recently there has been an increasing
interest in the physical properties of semiconductor het-
erostructures grown pseudomorphically on low-
symmetry surfaces. The growth, the optical and elec-
tronic properties of semiconductor heterostructures were
investigated theoretically and experimentally and are re-
ported for (211),' (311), (511),' '" (221), (331),'

(210), ' and (3 10) (Ref. 14) substrate surfaces. These
studies show that the surface reconstruction during the
growth, the surface morphology, the lattice deformation,
the incorporation of impurity atoms (dopants), the bond
configuration, and the sticking coefficient of atoms
change drastically with the surface orientation. The
growth on corrugated or patterned surfaces occurs on
submicrometer facets, which are high-index surfaces with
low crystallographic symmetry. ' '

The lattice deformation and the strain fields generate
electric fields in epitaxial layers and affect the microscop-
ic properties, i.e., the degeneracy of the valence band and
change of the band gap, ' ' as well as macroscopic prop-
erties, i.e., piezoelectric and photoelastic effects of crys-
tals. This is of great importance for the design and de-
velopment of new optoelectronic and electronic devices.
Therefore, in order to optimize the growth and to under-
stand the physical properties of epitaxial layers, it is of
fundamental importance to specify and characterize the
lattice deformation and strain fields of the crystal unit
cell. Usually, the strain fields in epitaxial layers can be
measured with high accuracy by high-resolution x-ray-
diffraction experiments. ' However, a correct interpreta-
tion of the x-ray-diffraction data requires an accurate
knowledge of the geometrical deformation of the unit
cells of the material system under consideration.

The state of strain in epitaxial layers can be determined

by solving the equations of the elasticity theory using
Hooke's law and appropriate boundary conditions.
Very recently, Caridi and Stark calculated the strain ten-
sor elements of strained [hhk]-oriented cubic crystals by
minimizing the strain-energy density via the commen-
surability constraint. However, imposing this con-
straint, only the symmetrical part of the strain tensor was
considered. In this case, even for low-symmetry surfaces,
no shear strain was obtained.

In this paper, we investigate the lattice deformation
due to elastic strain caused by the lattice mismatch be-
tween epitaxial film and substrate, i.e., only pseu-
domorphic semiconductor hetero structures with a
coherent interface are studied. We assume that the
growth mode of the epitaxial films is the layer-by-layer
growth (Frank —van der Merwe) and no islanding and lat-
tice relaxation (generation of misfit dislocations)
occur. We obtain the general expressions for the
unit-cell deformation, tetragonal distortion, and shear
strain of epitaxial layers with cubic symmetry by minim-
izing the strain energy starting from the commensurabili-
ty constraint (coherent interface) and using all the asym-
metric elastic strain tensor. We show that the shear
strain is different from zero for all surface directions, ex-
cept for the high-symmetry [001], [110], and [111] sur-
faces.

II. COMMENSURABILITY CONSTRAINT
AND STRAIN-ENERGY DENSITY

Let us consider a crystalline epitaxial layer deposited
onto a substrate crystal, both with cubic symmetry. For
cubic materials the lattice translation vectors f; and f,
of the layer and the substrate are in the strain-free state,
given by

f; =dI

f, =d~x;,
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where i =
I 1,2, 3 I and dL and ds are the lattice constants

of the layer (L) and substrate (S), respectively.
If the crystal is deformed, the distorted lattice transla-

tion vectors can be written in terms of the crystalline unit
vectors. By definition of the strain tensor, we have

X,

LAYER

~~ x
3

F, =d (5; +A;, )x (2)
INTERFACE X,

where i,j =
I 1,2, 3I, a= IL,S I, 5," is the Kronecker 6

tensor and A, , is the elastic strain tensor. If we consider
a crystalline elastic medium with cubic symmetry, which
obeys Hooke's law and is defect free, the total strain ten-
sorS; is given by

S,, =A,, +B =A +

PLAN

X SUBSTRATE

+C 12 ( s22E33 +e33s 11 +E 1 1 s22 )

+ 2C44 ( E,2+ 823+ E,3 ), (4)

where C», C1z, and C«are the three elastic stifI'ness ten-
sor elements, which for a cubic lattice are independent,
and c,; is the symmetrical part of the elastic strain tensor:

E;~
=

—,
'

( A, + A, ) .

The antisymmetrical part gives the rotation of the
strained crystal and therefore does not make any contri-
bution to the work done.

The elastic strain tensor components of the layer and
substrate, after the deformation, can be calculated by im-
posing the equilibrium condition via the minimization of
the strain-energy density. First we consider two lattice-
mismatched epitaxial layers with the lattice constants dz
and dl, respectively. If no plastic deformation occurs
(generation of misfit dislocations) at the heterointerface
even after the deformation (coherent or pseudomorphic
growth), the lattice translation vectors of each strained
material must have a common projection onto the growth
plane. These boundary conditions are known as the lat-
tice commensurability constraint:

where B, . is the misfit of the lattice-parameter tensor and
e" =(ds —dI )/dL. Here we are using the continuum elas-
ticity theory and the bulk elastic stifFness constants. This
assumption is valid since a breakdown of the continuum
elasticity theory was observed only for monoatomic
films

The work per unit volume which is necessary to pro-
duce an elastic strain E;- is called the strain-energy densi-

ty, and for a cubic crystal is given by

U =C 1 1 ( E 1 1 +E22+ E33 )
2 2 2

FIG. 1. The schematic diagram of a unit cell with cubic sym-
metry deposited onto a substrate crystal of arbitrary surface
orientation. The crystallographic reference system Ix; I and the
"epitaxial-film" one Ix,

'
I are shown. The axis x3 is normal to

the interface.

S; f x', =0,
S; f x2=0.

(8a)

(8b)

Due to the strain, along the arbitrary direction P, the dis-
placement is given by D;=S, P, where the P 's are the
components of the vector P with respect to the crystallo-
graphic axes x . It is easy to verify from Eqs. (8) that the
commensurability constraint is equivalent to the condi-
tion of making the in-plane displacements equal to 0 for
all directions in the interface plane (Fig. 2), i.e., the so-
called pseudomorphic growth of the strained layer which
does not lead to the formation of misfit dislocations [Fig.
2(c)]. Moreover, in order to determine the symmetry of
the deformation, it is useful to calculate the strain tensor
elements with reference to the coordinate system x1, x2,
and x3 of the epitaxial film, where x3 is the axis normal to
the interface. Using this new reference system, the com-
mensurability constraint implies

S P'=0,
where

(9)

we assume that the epitaxial layer is much thinner than
the substrate and, therefore, all the strain occurs in the
overlayer:

FS fS
i i

with i =
I 1,2, 3 I .

From Eqs. (1), (2), (3), and (7), it follows that the com-
mensurability constraint can be written as

where x1 and x2 are two orthogonal unit vectors in the in-
terface plane (Fig. 1), with i =

I 1,2, 3I. It should be not-
ed that the constraint given by Eq. (6) is valid for the epi-
taxial layer with the same azimuthal orientation of the
substrate crystal. Therefore, mixed orientations which
may occur in highly mismatched material system are not
considered by these constraint conditions. Moreover,

Sij ~ik Tj1Sk1

P,'=TjkPk .
(10)

T,k is the matrix of the transformation from the crystallo-
graphic reference system to the epitaxial layer reference
system, and is given by
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ik
3

= X
1

aU
( e13& E23, e33 ) =0

BE,33

By definition we have

aU
oc.,',

(15)

X,

A
13

where o.,
' are the stress tensor elements, with respect to

the epitaxial-film reference system. Thus, from Eqs.
(14) and (15), it follows that

(b}

o.
,'3

=0, (16)

{c}

X
3

A„= 0

X,

with i = [1,2, 3I. But the forces which act on the surface
are expressed by

f,' = OI J( x3}1=0,'3

which are zero due to Eq. (16). Therefore, the solution
which minimizes the strain-energy density leads in the
final state to a stress-free surface. ' The explicit ex-
pressions of Eqs. (14) are given by

(CR 33+C„—C)(e"—
e3g)

—2CR34e~3 —2CR 35ei3

FICx. 2. The schematic diagram of the unit cells of the epitax-
ial layer (E) and the substrate crystal (S) in the (x&, x3) plane.
(a) Without lattice deformation of the unit cell of the epitaxial
layer (E). (b) Lattice deformation of the unit cell E considering
shear strain as well as lattice rotation, with respect to the sub-
strate unit cell showing the incoherence between epitaxial layer
and substrate. (c) Lattice deformation and shear strain of the
epitaxial layer (E) with respect to the substrate unit cell in the
case of a coherent interface (pseudomorphic growth).

(C„+2C,~)e

CR 3q(e" —
e33)

—2( CR 23 + Cq4 )e23 —2CR 36e i3
=0,

CR 35 (E E33) 2CR 36E23 (CR ]3+C44 ) Ie3 0,
where C =C» —C» —2C44 and

R &P
= TI'] T'& Tk ]TI j + T&'2TJ2Tk&T&2 + T&'3 T'3 Tk3 T/3

(17)

For P=xI and xz [see Fig. 2(c)], Eq. (9) gives

Si=0,
S;2 =0, (12)

Here, a and P= I 1, . . . , 6I indicate the symmetric pairs
of the indices ij and kl= [1,2, 3I, respectively. The
coeKcients R

&
describe the transformation of the

stiffness tensor elements from the crystallographic refer-
ence system to the epitaxial layer reference system. The
solution of Eqs. (17) is the minimum point for the strain-
energy density. The results are given by

] ] E y 822 C y F33 S33 +6 II

ci2 —0, ci3 S$3/2, c,23
—Sq3/2 .

(13)

Thus, from the commensurability constraint, we obtain
that the elastic strain in the plane of the interface is iso-
tropic.

III. MINIMIZATION OF THE STRAIN-ENERGY
DENSITY

respectively. Substituting Eqs. (12) and (3) into Eq. (5),
we obtain (C»+2Ci2) 2Ac. = e~i [C44+ CC4~(1 —R 33 )

+3C (T3]T32T33) ],
(C„+2C,2)

e~3 — Ce" [C44R ~~2A

+C(R3]R3$ R35R36)],

(C„+2C,2)
ei3= Cs" [C44R3s

(19)

The strain-energy density U can be expressed as a func-
tion of c.,'-, and its minimization an be obtained by solving
the following system of equations:

BU
(ei3iez~~e33)=0 ~

Bci3

+C(R32R35 R34R36)],

where hz = z —p =z —p' is the tetragonal distortion,
E $ 3 and cz3 are the shear strain elements, and 6 is given
by

8 U I p p

( e i3, E23, e33 ) =0,
~&Z3

(14)
b, =C„C~~+(CC44/2)(C„+ C, ~ )(1—R 33 )

+C (Cii+2Ci2+C44)(T3, T32 33 (20)
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IV. CALCULATION OF THE PRINCIPAL STRAINS

/ e,', —X5,') /

=0 .

The eigenvalues are given by the roots

(21)

X~~, = —,
' [e"+ 8 +[(be) +4(e, ) ]'

with

e, = [(e'„)'+(E',)']' '

The symmetrical strain tensor, with respect to the princi-
pal axes, is thus

E J Al 6 J 7 (23)

The principal strains can be easily obtained solving the
characteristic equation

2.2

2.0

1.8 —[110]

1.6

[KK1]~

[221]

I

I

I

I

I

I

I

I

I

I

[11

I

I

I

[001]

[11K] i1

and the principal axes, which represent three mutually
perpendicular directions in the crystal, remaining mutu-
ally perpendicular during the deformation, are given by

0.0 0.2 0.4 0.6

T33

0.8 1.0

x", = ( —ez3/e„c, '»/e» 0),
z'= I/[(E, ) +(E"—Xz) ]' [

' ' —( "—&q)],
(24)

x3 =I/[E, [(e ) +(c," —Xp) ]'

X [ —E(3(e"—Xz), —E~3(E"—g~), —(E, ) ] .

It is obvious that one of the principal axes (x&') always be-
longs to the interface plane, and it can be chosen as a
reference axis in the Ix', ] reference system. Moreover, in
the case of a high-symmetry substrate where no shear
strain occurs, i.e., c&3=v.&3=0, the principal strains be-
come k, =A, =c and A.3 E

V. TETRAGONAL DEFORMATION
AND SHEAR STRAIN ANALYSIS

It can be easily demonstrated that the shear strain ele-
ments in Eq. (23) are zero for epitaxial layers grown onto
(100), (110), and (111)surfaces, i.e., surfaces with at least
twofold symmetry. Thus for these high-symmetry sur-
faces the only parameter that characterizes the deforma-
tion is AE, and the unit cells are tetragonally distorted.
This is true for all material systems with cubic symmetry,
and is independent of the magnitude of the lattice
mismatch between the epitaxial layer and the substrate
crystal. However, for surfaces with lower symmetry, the
shear strain elements are in general different from zero.
In this case the crystal is rhombohedrically distorted and
the magnitude of the deformation is given by c., /c . The
sign of the shear strain gives the opposite of the shear dis-
placement and depends on the sign of c . The unit cell of
the epitaxial layer, indicated by the dotted lines parallel
to the crystallographic axes x; and xj, with i', is shown
schematically in Fig. 2. After the deformation, the edges
of the unit cell form an angle of m/2 —2c.,', and the defor-
mation occurs in a plane orthogonal to xk, with kWi, j.
In particular, from Eqs. (19) it follows that a sufficient

FIG. 3. The normalized tetragonal strain as a function of the
direction cosine of the substrate surface.
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33

FICz. 4. The normalized shear strain as a function of the
direction cosine of the substrate surface.

condition for having no shear strains is R35 R34 0.
However, as shown in Sec. IV, axes x& and xz can always
be chosen so that only one of the shear strain components
obtained is different from zero. In this way, one of the
two axes of the symmetric tensor E,

' is a principal one
(x", ).

In Fig. 3, we show the tetragonal deformation, normal-
ized to E ~, as a function of the direction cosine T33 for
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TABLE I. Tetragonal deformation, shear strain, and shear displacement direction of A1As and InAs
epitaxial layers grown on GaAs substrates of diA'erent surface orientations.

Substrate
orientation

( X10-')
A1As InAs

I

(X10 ')
A1As InAs

I
&Z3

(X10 )

A1As InAs

100
110
111
120
130
112
113
114
115
221
331

001
001
111
332
221
552
114
116

210
310
110
110
110
110
110
110

—13.7
—13.7
—13.7
—13.7
—13.7
—13.7
—13.7
—13.7
—13.7
—13.7
—13.7

—669
—669
—669
—669
—669
—669
—669

-669
—669
—669
—669

0
0
0
0
0

—3.65
—3.97
—3.45
—3.06

1.19
1.04

0
0
0
0
0

—218
—240
—205
—182

70
57

0
0
0

—3.80
—2.54

0
0
0
0
0
0

0
0
0

—228
—153

0
0
0
0
0
0

A1As (dotted line) and InAs layers (solid line) grown epi-
taxially on GaAs substrates with orientations [ilk] and
[kk1], where k is an integer. The exact formula of the
tetragonal deformation for the above crystallographic
orientation is given in the Appendix [Eqs. (A4)]. It
should be noted that the lowest tetragonal deformation is
observed for layers grown along the [111]direction, while
the highest deformation occurs along the [001] direction
(Fig. 3). Moreover, the tetragonal deformation is slowly
varying for [kk 1] substrate orientations; on the contrary,
the tetragonal deformation varies much more for [ilk]
surfaces. Figure 4 shows the normalized shear strain
(E»/E") as a function of the direction cosine of the sub-
strate orientation. The exact formula for the shear strain
of the above orientations is given in the Appendix [Eqs.
(A4)]. The maximum shear strain value is obtained for
the [113] substrate orientation. This result is related to
the fact that the [113] direction is the orientation with
the highest distance from the high-symmetry orienta-
tions. Furthermore, the shear strain has an opposite sign
for the [kkl] substrate orientations with respect to the
[ 1 1k] orientations.

In Table I, we report the shear strain values and the
shear displacement directions for A1As and InAs layers
grown epitaxially on GaAs substrates for different crys-
tallographic orientations of interest. The shear strain for
a certain surface orientation is higher for InAs than for
A1As due to the much higher lattice mismatch between
InAs and GaAs ( =7%) with respect to the 0.14% lattice
mismatch between AlAs and GaAs. It is worth noting
that the values of the shear strain are not negligible com-
pared to the hydrostatic component c~~, e.g. , —,

' of c~~ for
the [113] orientation. In addition, the shear displace-
ments always occur in the plane perpendicular to the
direction of highest symmetry for the interface plane.
This finding is of particular importance for the epitaxial
growth on patterned or intentionally corrugated surfaces.
The epitaxial growth on corrugated surfaces means that
the growth occurs on facets with different orienta-
tion. ' ' As we have shown, the deformation of the
unit cell strongly depends on the surface orientation, and

consequently a "misfit" at the boundary between two
growth regions could be obtained, which may generate
dislocations and defects. However, it should be noted
that the "misfit" between these two growth regions is not
generated by a lattice mismatch, but by a different shear
displacement of the unit cells.

VI. CONCLUSIONS

In this work, we studied theoretically the strain fields
and the lattice deformation of epitaxial layers grown
pseudomorphically on arbitrarily oriented substrates us-
ing the asymmetric elastic strain tensor and minimizing
the strain-energy density. The constituent material of the
epitaxial layer and of the substrates has cubic symmetry.
We showed that the elasticity theory and the appropriate
boundary conditions (commensurability constraints) lead
to the presence of shear strains for lower-symmetry sur-
faces (less than twofold), in contrast to the study reported
by Caridi and Stark. For (100), (110), and (ill), no
shear strain was obtained, in agreement with earlier
theoretical and experimental studies. ' We found that
the highest shear strain occurs for the [113] surface,
while the highest tetragonal deformation occurs along the
[001]surface direction. These findings are independent of
the epitaxial layer/substrate material system.

APPENDIX

T»=l/( 1+2k ) with 0(T»( 1
33 (A2)

Now we calculate the analytical expressions of the
shear strain and the tetragonal deformation as a function
of the direction cosine T33 for the substrate orientations
[1lk] and [kk 1], where k is an integer. For the [ 1 lk]
orientations, the relation between T33 and k is given by

T33=k/( 2+k ) with (T33 (1,1 (
3

whereas for the [kk 1] orientations we have
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The axes of the coordinate system are chosen as

x)= —(Ql —T33 &Ql T3$ &+2T33),v'2

x2= —(1,1,0),1

2

(A3)

1
x3 ( T33 & T33 &

—+2+ 1 —T33 )
2

From Eqs. (19) and (20) we obtain, for the tetragonal de-
formation and the shear strains, the following expres-
sions:

QE/Ell =
I (C() +2C)2 )[C44+(CCg4/2)(1 —3T33+2T33 ) j(3C /4)( T33 —2T33+ T33 ) I I /b, ,

I
c23 =0,

(C»+2Ci2)
E,3/E" = C(+1—T33 T33 )[(C44/2)(1 —3T33 )+(C/4)(1 —3T33+2T33 )j,2A

where

b = IC))C44+(CCq4/4)(C))+C)2)(1 —3T33+2T33)+(C /4)(C))+2C)2+C44)(T33 —2T33+T33)) .

(A4)
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