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Electron transport in Si inversion layers at 300 K is studied using a self-consistent Monte Carlo solu-
tion of the Boltzmann transport equation coupled to the two-dimensional Poisson equation and the one-
dimensional Schrodinger equation. Physical elements included in the model are (1) nonparabolicity
effects to treat quantization in the inversion layer; (2) static screening of the Coulomb interactions ac-
counting for the population of many subbands; (3) anisotropy of the deformation-potential interaction,
shown to be quite important in the case of a two-dimensional electron gas (2DEG); (4) a careful analysis
of the dynamic screening of the deformation-potential interaction, showing that the interaction between
electrons and acoustic phonons can be approximated by the unscreened interaction in the nondegenerate
limit of a 2DEG; and (5) the inclusion of interface Si02 optical phonons. Up to ten subbands have been
included to study the 2DEG together with a bulk-transport model employed to handle high-energy elec-
trons. We have obtained mixed results: In the Ohmic regime, we have found a phonon-limited mobility
that exhibits the correct dependence on carrier density, but which is about 20%%uo larger than the experi-
mental data. This still represents an improvement upon previous nonempirical theories, and even better
quantitative agreement is obtained at the very low and very high carrier densities at which Coulomb
scattering and scattering with surface roughness, respectively, control the mobility. At high longitudinal
fields we find a bulklike saturated velocity, in agreement with some experimental results, but not with
many others that we consider more reliable.

I. INTRODUCTION AND OVERVIEW

In their 1982 review of the electronic properties of
two-dimensional systems, Ando, Fowler, and Stern' stat-
ed that the "theory of phonon scattering is [ .

j at an
unsatisfactory stage, " being unable to account for the
measured field-effect electron mobility in Si inversion lay-
ers. An equally negative picture had been already paint-
ed by Basu in 1978 regarding the high-field drift velocity
of electrons in n channels: From a Monte Carlo study of
high-field electron transport, he concluded that his "mod-
el appears inadequate to account for the variation of the
drift velocity with electric field in (100)-oriented inversion
layer. " After more than a decade since these statements
were made (and more than three decades since field-effect
transistors have permeated our lives), the situation has
not improved much. In the Ohmic regime, experimental
results are consistent and complete, but the phonon-
limited electron mobility is overestimated by many
theoretical models, ' good agreement being obtained
only using simplified' ' or empirical' ' physical pic-
tures. The high-field properties of electron transport ap-
pear to be confusing even at the experimental stage, sa-
turated drift velocities ranging from the bulk value '
( = 10 cm/s) down to about half this value. '

The purpose of this paper is to describe our attempts to
improve the situation, focusing our attention on the
room-temperature behavior, more complicated than the
low-temperature behavior, but certainly more interesting
from a practical point of view. These attempts have been
made in the same spirit of our previous simulations of
electronic transport in bulk semiconductors: ' We try
to embrace a physical model as complete as today's com-

puting facilities allow us. As a rule, we relax many ap-
proximations employed in the past and try to understand
the effect of these approximations. Occasionally, the
large computing power at our disposal lets us improve
the physical model beyond the accepted "state of the
art. " Monte Carlo simulations are chosen for their Aexi-
bility as far as implementation of the physics is con-
cerned. ' Moreover, the solution of the transport equa-
tion provided by the Monte Carlo technique needs not to
be limited by additional approximations dictated by
mathematical difFiculties. This is quite a positive feature,
since approximations dictated by our ignorance of the
physics are already many and significant. Finally, notice
that we have relied on Monte Carlo solutions even in the
Ohmic regime, in which direct approximate solutions of
the Boltzmann transport equation are usually obtained.
Indeed, given the numerical complexity already needed to
implement our self-consistent approach and to evaluate
the scattering processes we have considered, the addition-
al computational burden of the Monte Carlo technique is
minor.

Considering the quite large amount of formulas and
the level of details we shall go into in the bulk of this pa-
per, it is useful to give here an overview of the work, em-
phasizing the key physical elements of the model, some of
them new, and the main results we obtained. The physi-
cal model we have employed includes scattering with all
bulk phonons, scattering with surface optical modes,
scattering with surface roughness, and Coulomb scatter-
ing with ionized impurities, and interface/oxide charges.
What differentiates our approach from previous work are
the following elements.

(1) We have considered the elfect of the band nonpara-
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bolicity on the subband structure of Si inversion layers.
This leads to a 20% reduction of the phonon-limited mo-
bility at 300 K.

(2) The anisotropy of the deformation-potential in-
teraction between electrons and acoustic phonons is
found to be quite important in two-dimensional systems.
This leads to a 10—20% enhancement of the mobility, al-
most cancelling the effect of nonparabolicity.

(3) The scattering rates have been computed using
Fermi's Golden Rule, but otherwise dropping any addi-
tional approximations. Thus all electronic form factors
are computed using self-consistent wave functions and
realistic scattering potentials. Intrasubband and inter-
subband, intravalley and intervalley processes have all
been included, given the small incremental computational
cost of accounting for often negligible scattering process-
es.

(4) Static screening (applicable to Coulomb and surface
roughness scattering) has been included by accounting for
the population of many subbands, by extending Stern's
two-subband calculations, similar to what was done by
Yokoyama and Hess in the case of the
Al Ga

&
As/GaAs system. On the other hand, the

deformation-potential electron-phonon interaction has
been left unscreened: We have investigated in detail the
role of screening in this case and found that dynamic
screening must be used to treat this interaction in two di-
mensions, in contrast to the bulk case. In the range of
low-to-medium densities (=10"—10' cm ) and high
temperatures at which the electron-phonon interaction
controls the mobility, a partial cancellation of dynamic
screening and antiscreening at short and long wave-
lengths, respectively, is found to reduce the role of
screening to such an extent that leaving the interaction
unscreened amounts to a very small error.

(5) The role of the surface optical modes (coupled
modes between the SiO2 longitudinal optical phonons,
and interface electromagnetic waves) is investigated in
detail, paying attention to the coupling between the sur-
face phonons and the two-dimensional plasmons.

In addition, we have improved upon numerical issues,
such as the large number of subbands employed, the in-
clusion of both two-dimensional and bulklike carriers, the
full self-consistency among the Poisson, Schrodinger, and
transport equations, the inclusion of degeneracy" in the
scattering processes, and the generality of situations we
are able to simulate. For example, full self-consistency in
the broadest sense has been obtained in the case of Si
channels by Shihirata, Taniguchi, and Hamaguchi, and
for the Al Ga, „As/GaAs system by Yokoyama and
Hess, but only in the case of a uniform field. Instead,
we allow for a nonuniform channel, with an arbitrary
field configuration, as dictated by the Poisson,
Schrodinger, and transport equations. While most of
these issues are decoupled from the physical model, we
believe that in many cases such numerical issues could
have influenced results obtained in the past.

After all these efforts, our main message is not one of
total success. The calculated phonon-limited mobility
appears to be about 20—30% larger than the experimen-
tal data, while the high-field saturated velocity is con-

sistently higher then the experimental data we consider
most reliable. Surprisingly, surface roughness and
Coulomb scattering appear to be treated quite well in our
model, their effects being noticeable at large and small
electron sheet density n„respectively. While our results
are not fully satisfactory, they do constitute an improve-
ment over previous theories which, as we mentioned
above, either overestimate the phonon-limited mobili-
ty ' or can explain the experimental data in the Ohmic
regime or at high fields only empirically' ' or with ma-
jor simplifying approximations (such as the use of varia-
tional' ' or approximated Airy-type wave functions of
equilibrium subband structure even at large
fields, ' ' ' ' ' approximated form factors in the eval-
uation of the scattering rates, ' ' ' ' and by using ad-
justable parameters' ' ' or neglecting screening' ' ).

The paper is organized as follows: In Sec. II, we shall
present the physical model we have employed, discussing
in detail (1) the role of a realistic conduction-band struc-
ture on the dispersion of the two-dimensional electron
gas (2DEG); (2) the electron-phonon interaction and the
anisotropy of the scattering with acoustic phonons; (3)
the role of interface optical modes; (4) Coulomb scatter-
ing with impurity and oxide charges, and scattering with
interface roughness; and (5) screening in a situation when
many subbands are populated, paying particular atten-
tion to the problem of deciding whether static screening
is appropriate in the case of the deformation potential in-
teraction. In Sec. III, we shall discuss numerical and de-
vice issues and details concerning the implementation of
the physical model into a Monte Carlo (MC) simulation
program. Finally, in Sec. IV, we shall conclude by
presenting our results related to Ohmic mobility versus
electron sheet density at 300 K, and drift velocity versus
field.

II. PHYSICAL MODEL

A. Subband structure

The effect of conduction-band nonparabolicity on
quantized electron states in low-dimensionality systems
has been investigated quite extensively in the context of
III-V compound semiconductors. However, in the
case of Si inversion layers, a parabolic-band approxima-
tion has almost always been employed, the only exception
being a short investigation by Falicov, who studied the
effect of nonparabolicity on the transverse effective mass.
However, considering the complicated structure of the
conduction band near the X symmetry point, and the fair-
ly large nonparabolicity of the six valleys with minima
along the 6 lines, it is sensible to ask what effect a realis-
tic band structure might have on the subband structure
of Si n channels.

In principle, the role of the band structure on the elec-
tron states in Si inversion layers can be obtained by con-
sidering the Schrodinger-like "effective-mass" equation

[E( —iV)+ V(z)]P(r, z)=EQ(r, z) .

Here z is the coordinate along the quantization direction
(that is, normal to the Si-Si02 interface in our case), while
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upper and lower case vectors, here and in the following,
denote three-dimensional vectors and vectors in the plane
of the Si-Si02 interface, respectively. So r is the spatial
coordinate in the plane of the interface, E(K) is the ener-

gy dispersion [so that E( —i%')= —A 7 /(2m, ) for a para-
bolic spherical band with effective mass m, ], A is the re-
duced Planck's constant, and V(z) is the external
confining potential. The unknown P is the "envelope"
wave function, i.e., a modulation of the periodic Bloch
factor of the full wave function.

Equation (1) was originally derived by Slater, by Lut-
tinger, and by Luttinger and Kohn, ' in the context of
shallow electronic states at donor centers. Here we
think it is appropriate to obtain a solution of Eq. (1) in a
"constructive" way, by outlining brieAy a procedure
which parallels the original derivation but is applied to
our situation of a Si channel. In so doing, the approxima-
tions which constitute the "effective-mass" framework
will be clearly pointed out. This derivation is workable
for any type of dispersion s(K), but assumes full transla-
tional symmetry of the unperturbed problem [that is,
V(z)=0], so that we must deal with only one type of
crystal, and no heterojunctions or wave-function penetra-
tion into the Si02 can be handled. As an example
relevant to our model, we shall present solutions for the
case where the dispersion is obtained using empirical
pseudopotentials. The Schrodinger equation we must
solve can be written as

f2+2
+ VL(R)+ V(z) |tj(R)=EQ(R),

2&i
(2)

where Vz (R) is the periodic potential of the lattice and m
the free-electron mass. For the case of Si inversion lay-
ers, we shall assume that the wave function f(R) van-
ishes at the Si-SiOz interface (z =0) and at a distance
from the interface, zQ, sufIiciently large so as to avoid er-
rors. As we stated above, the necessity of avoiding
wave-function penetration in the oxide is required by the
need of full translational symmetry of the unperturbed
problem, and it amounts to an approximation which by
now constitutes common practice, although it may be
quite unsatisfactory particularly for thin insulating lay-
ers. We shall further solve the physically equivalent
problem in ( —zo, zo) with V( —z)= V(z). To fix the no-
tation, let us recall that in the bulk [i.e., V(z)=0], and
approximating the lattice potential with a local pseudo-
potential V~, the solution of Eq. (2) is obtained by ex-
panding P as

where the Cz's are vectors of the reciprocal lattice. Then
Eq. (2) implies

(k+G) fo(K)+g V (G—G')fo (K)=e(K)fo(K) .
2ffl Ql

iK0 Rg(R)=e ' g Pl, (r,z),
k

where

(bq( r, z ) =e '"' g a„(k )sin
n~z

ZQ

X pe' fo ko+kko, +

(Sb)

The goal now is to substitute the expansion (5) into Eq.
(2), eliminating the lattice (pseudo)potential thanks to Eq.
(4). In so doing, we obtain an equation for the coefficients
a, . The form of this equation is significantly simplified
provided we assume (1) that the confining potential is
"slowly varying" over a unit cell, and (2) that its matrix
elements between Bloch functions in different bands are
negligible. The first approximation poses no concerns,
while the second approximation may be questionable and
will prevent us from including valley splitting beyond the
effective-mass approximation. Another crucial approxi-
mation is required so that the solution can be factored
into a periodic Bloch term modulated by a slowly varying
"envelope, " which is the essence of the effective-mass ap-
proach: (3) Since we have already assumed a slowly vary-
ing potential V(z) compared to the lattice potential, it is
reasonable to ignore the n dependence of fo compared to
sin( n ~/zo ), so that

nnfo ko+k, ko, +
ZQ

fG(ko+k, ko, )

(4)

The eigenvalues Ez(K) and eigenvectors f& I(K) of the
linear problem above yield the dispersion (band structure)
and pseudo-wave-functions for band A. at wave vector K.
When the confining potential is turned on, we can expand

around a local conduction-band minimum at
(Ko=ko, k, o) as

g(R)= ggK(R)—:g fo(K)e'
K, G

(3)
Thus from Eqs. (2) and (5) we obtain

ko+k, ko, + +E ko+k, ko, —
ZQ

5„+V„.a„'~'(k ) =E„(k)a '"'(k ), (6)

where

ZOV„= I dz sin
ZQ 0

V(z)sin
ZQ ZQ

and the index p labels the independent eigenvectors and
eigenvalues of the linear problem (6), corresponding to
the different subbands. Note that for valleys which are
symmetric under rejections on the x,y plane, the diago-
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nal terms on the left-hand side of Eq. (6) simplify further.
For some of the X valleys of Si, however, this is not so
and the eigenvalues result from an average of the "left-
going" and "right-going" waves of wave numbers
+nmlzo T. he wave functions, as desired, are now ex-
pressed as products of a Bloch factor and a term,
e'"'g(k, z), which is a solution of Eq. (1) with the re-
quired boundary conditions and which acts as a modula-
tion of the periodic, high-frequency component of the
wave function:

/2 I(„-2 j(-2

yb(K)= + +
2 m1 m2 m

d a4 d4
+A'

2m, dz 4m dz

m1 and m2 being the effective masses in the two Carte-
sian directions on the plane of the interface, and m, the
effective mass along the quantization direction. Using
(11), the Schrodinger-like Eq. (1) can be recast as

g ypD(k) d2

dz

(t)i,(r, z)=e'"'g(k, z) pe' ' fG(ko+k, ko, ),
G

where

(7)

+ I'(z) g,(k,z)=E (k)g (k, z) . (12)

g„(k,z)=g a„(")(k)sin
ZQ

where the subscripts 0 indicate that the quantities are
evaluated at k=ko (i.e., at the valley minimum), and

b,E„(k)=—c. k, k, ()+ +E k, k, ()—
2 ZO ZQ

n~—C kO, k, O+
ZO

n~—c k, k0~ zO
0

(10)

This approximation is exact when b,E„(k) does not de-
pend on n (as for parabolic bands), it preserves many
features of the exact dispersion (such as the anisotropy of
the valley) remarkably well in the case of Si, and it has
the main advantage of allowing us to factor out the expli-
cit dependence of wave functions on k and to separate the
normal and parallel components of the dispersion. Yet,
as for the case of the exact solution, the numerical
difficulty remains of evaluating density of states (DOS)
and scattering rates in a transport model. Therefore we
shall employ the even cruder approximation of assuming
a bulk dispersion of the form:

E(K)=y(, (K)[l+ayb(K)],
where a is the nonparabolicity parameter, and

The factorization (7) was the original intent of the
effective-mass approximation. Unfortunately, when
abandoning the parabolic approximation in favor of a
more realistic band structure, we lose some simplicity.
Most notably, the "envelope" wave functions g depend
on k since we cannot separate the dispersion E(k, k, ) into
a "normal" and a "parallel" component, as in the
parabolic-band approximation. This translates directly
into a computational stumbling block from a numerical
perspective: An ensemble Monte Carlo simulation would
require a solution of Eq. (6) for every particle at every
time step. We can consider two approximations which
remove this difhculty: The first one consists in ignoring
the k dependence of g„(k,z ). In this case the eigenvalues
E„(k)are approximated by

E„(k)=E„0++l(i„'"o' l'&E„(k),

d + y(z) g(o)(z) —E(o)g(0)(z)
2m V V V (13)

Therefore the perturbed dispersion in subband v is given
by

E (k)=E' '+a&(E' ' —V) &

where

+„.(k)l I+ y,.(k)+2 &E.' —I &.], (14)

&g &.—:f «g( z)lg."(( z)l'

denotes the expectation value of the function g in sub-
band v.

In Fig. 1, we show the dispersion obtained from the
pseudopotential method (using about 50 sine waves and
the local pseudopotential form factors given by Cheli-
kowsky and Cohen ) compared to the conventional para-
bolic approximation in the case of an inversion layer of a
0.1-pm-long channel Si metal-oxide-semiconductor field-
effect transistor (MOSFET) previously studied. ' Note
that the solutions in the figure are not self-consistently
obtained from a simultaneous solution of Eq. (1) and the
Poisson equation. This is due to the almost prohibitive
numerical task of obtaining the DOS when using the
pseudopotential dispersion. This self-consistency will
be recovered later in our simulations, using the first-order
nonparabolic approximation. The confining potential at
the (100)-oriented Si-SiOi interface at a location about
midway along the channel from the source to the drain
contact has been chosen as a typical practical situation
encountered in many Si MOSFET's. Figure 1(a) shows
the situation in a valley having the heavy, longitudinal
mass m, =m& =0.91m, along the direction normal to the
interface. Such valleys are usually referred to as
"unprimed" valleys. The opposite situation (transverse

Here the parabolic "parallel energy"

k k
ym«)= +

2 ' m1 m2

takes different values for each of the two "ladders" of
subbands in Si. We can solve Eq. (12) using first-order
perturbation theory, in the spirit of Eq. (11), treating the
nonparabolic corrections proportional to the parameter a
as a perturbation to the parabolic problem:
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mass, I,=rn, =0.19m, along the quantization direction,
"primed" valleys) is shown in Fig. 1(b). Note how the
parabolic and pseudopotential minima of the subbands
differ, particularly in Fig. 1(a). The dispersion in the
ground-state subband deviates significantly from the par-
abolic dispersion at high energies [Fig. 1(a)] and in the
transverse (110) direction away from the minimum at ko
[Fig. 1(b)]. The dotted line shows the validity of the ap-
proximation given by Eq. (9): only for the extremely high
energies shown in Fig. 1(a) and along the (k &ko) direc-
tion [Fig. 1(b)] does the approximation fail visibly; other-
wise it is identical to the full pseudopotential treatment.

FIG. 1. The confining potential and bottom of the first sub-

bands (left) and the Eo(k) dispersion of the ground state (right)
obtained at midchannel of a 0.1-pm-long channel of a Si-
MOSFET with the pseudopotential, approximated pseudopo-
tential (labeled "approx. " in the figure), and the parabolic model
for the conduction bands of Si, as given by Eqs. (6), (9), and (14)
of the text, respectively. In (a), the quantization is done along
the longitudinal-mass direction (unprimed valleys), in (b) along
the transverse-mass direction (primed valleys). In (a), we show

the dispersion of the ground state in the (100) and in the (110)
directions away from the conduction-band minimum at
Ko= (0,0,0.85) (2~/a ), where a is the lattice constant. By
definition, the parabolic model yields the same dispersion in

every direction. Note that the "approximated-pseudopotential"
dispersion coincides with the "exact" pseudopotential disper-
sion along the (100) direction. In (b), we show the dispersion
when moving along the (100) direction from the band minimum

Ko=(0.85,0,0) (2~/a) toward the zone center (k & ko) and to-
ward and across the zone edge at the symmetry point X into the
second conduction band of the next Brillouin zone (k„)ko).

=2)'~'(E)a. (E E,), — (15)

whirr~ g, is the degeneracy of the subband (2 for the
unprimed subbands, 4 for the primed subbands),
E,=E,(k=O), md is the DOS effective mass in subband
v, (mi „mz, )'/, and 8(x) is the step function. We have
expressed the nonparabolic DOS as the product of the
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FIG. 2. The dispersion in the ground-state subband for the
situation of Fig. 1(a), as obtained from the pseudopotential, the
parabolic, and the nonparabolic approximations. The latter two
are spherically symmetric and therefore apply to both the (100)
and (110)directions.

Note that every correction to the parabolic approxima-
tion results in energy levels more closely spaced and
dispersions which have a lower slope. This is bound to
have strong consequences on electron transport in Si in-
version layers resulting in a lower electron velocity.

In Fig. 2, we present a comparison between the "pseu-
dopotential, " the parabolic, and the perturbative nonpar-
abolic approximation for the situation of Fig. 1 restricted
to the "unprimed" (low-energy) ground-state subband. A
nonparabolicity parameter a = —0.5 eV ' has been used
in the latter model. We see that the (spherical) nonpara-
bolic approximation yields satisfactory values for the
"subband bottom" Eo(k=O) and averages the "exact"
behavior in the (100) and (110) directions. Above about
0.5 eV, the first-order expansion of Eq. (11) fails and no
agreement can be expected.

The first-order nonparabolic approximation (simply
called "nonparabolic" in the following) presents two ma-
jor computational advantages: First, the full translation
symmetry is not required any longer, so that interfaces
and heterojunctions can in principle be treated by allow-
ing for a space-dependent effective mass and nonparaboli-
city parameter. Here we will not make use of these ex-
tensions, but they are trivially implemented. Second, it
allows us to express analytically many quantities needed
in the study of transport: For example, the DOS, 2),(E),
at energy E in subband v is given by
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parabolic expression 2)'"' and a correction factor for the
subband v,

ii (E)=1—2aE —2a(E' ' —V)

which we will employ in the following. Similarly, the ve-
locity of an electron in subband v with wave vector k is

v(k)=v' '(k)[1+2ay2D(k)+2a(E' ' —V) ],
where v ' '(k) is the parabolic velocity Vy2D(k)/fi Fin.al-

ly, the equilibrium electron sheet density at temperature
T as a function of Fermi level EF is

n, (EI; T)=g n„(E~,T)

As shown by Stern, in the extreme quantum limit (low
temperature and only the bottom subband populated), the
image potential approximately cancels the many-body
corrections given by the exchange and correlation term
above. At high temperature, many-body effects have
been considered by Das Sarma and Vinter ' both in a
perturbative approach as well as with local-density-
functional calculation. In the general situation in which
we are interested (high temperature, high source-drain
fields resulting in off-equilibrium electron population in
many subbands), we found these rigorous approaches
computationally too expensive and have decided to ig-
nore both exchange-correlation and image potential
effects. Details about the numerical procedure followed
to solve Eqs. (12) and (19) together with the Boltzmann
transport equation in a Monte Carlo context will be
presented below, in Sec. III.

2a—a, Z I "dx
(1+e )

where kz is the Boltzmann constant, and
rj„=(E~ EF)/(k&—T). This relationship between n, and
Ez is needed to account for degeneracy effects in the
Monte Carlo simulations, which we have implemented as
described in Ref. 23.

Having finally settled for the nonparabolic model (12),
the self-consistent solution is obtained in a "convention-
al" way: The external potential energy is given by the
sum of various contributions

V(z) = Vd(z)+ V, (z)+ V;(z)+ V„,(z), (18)

expressing the potential due to the ionized impurities in
the depletion layer, to the induced charges in the space-
charge layer, to the image charges at the semiconductor-
insulator interface, and to the exchange and correlation
effects. We have written this last term as a simple lo-
cal function of z, although in general this is not the case,
V„, being usually expressed as a functional of the electron
density. In the present work, we have considered only
the first two terms, which are obtained from the Poisson
equation

t Vd(z)+ V, (z)]= pd(z) —e g n„~(„(z)i
dz SC

(19)

where e is the magnitude of the electron charge, and n„ is
the occupation of subband p, given either by the corre-
sponding term in Eq. (17) at equilibrium, or by a direct,
"particle counting" in a high-field Monte Carlo simula-
tion. The eigenfunctions g„are the solutions of Eq. (13),
which we will use in the following, having dropped the
superscript (0) for simplicity. Also, s„ is the semiconduc-
tor permittivity, and pd(z) the charge of the ionized im-
purities, given by the difference between the ionized ac-
ceptor and the donor charge densities, e(ND —Kz ), in
the depletion region of thickness zd, vanishing otherwise.

B. Bulk phonon-electron interaction

We have considered the interaction between electrons
and bulk phonons in a rather conventional way, as de-
scribed, for instance, in the reviews by Price and Rid-
ley, considering both intravalley and intervalley nonpo-
lar processes. In this subsection we shall give the
relevant equations and the parameters we have employed.
Yet we must stress one major exception we took from the
conventional approach, concerning the anisotropy of the
deformation-potential interaction between electrons and
acoustic phonons.

Herring and Vogt have analyzed the anisotropy of
the intravalley deformation potential in the ellipsoidal
valleys in Si. Expanding the electron-phonon matrix ele-
ments over spherical harmonics and retaining only the
leading terms, they have expressed the anisotropy of the
interaction in terms of the angle 0& between the wave
vector Q of the emitted/absorbed phonon and the longi-
tudinal axis of the valley. They have shown that the ma-
trix element is proportional to g via the deformation po-
tential b, , (8&) (i =LA or TA) given by

b,L~(8o) =:-d+:"„cos(8()),

b,~A( 8& ) =:-„cos(8& )sin( 8&),

(20a)

(20b)

where the labels TA and LA denote transverse and longi-
tudinal acoustic phonons, respectively. Note that Eq.
(20b) accounts for the contributions of both TA branches.
:-„and:-d are the uniaxial-shear and dilation deforma-
tion potentials, respectively. In bulk Si, this anisotropy is
usually ignored by using an effective deformation poten-
tial:-LA, for the interaction with longitudinal modes and
ignoring the role of the lower-energy TA modes. This ap-
proximation is partially justified for the following reason:
Acoustic modes are most effective at low energy. In this
regime and in the usual elastic and equipartition approxi-
mations, thanks to the linear dependence on Q, scattering
of electrons at energy E samples almost uniformly the
equienergy ellipsoid e(K)=E. Therefore, one can take
the average values of 6; over the ellipsoid. Since there is
nothing to fix an energy scale in the problem, this averag-
ing procedure is independent of the electron energy. To
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make it explicit, using Eq. (20) and ignoring (for now)
nonparabolicity, the intravalley electron- TA/LA
photon-scattering rate I /r, (E ) in bulk Si can be written
as

1

r;(E,P) f d p'sin/3' f d y'b, ; (8&),
Smk pc; 0

(21)

cos(8&) = [K(P)cosP K(P')c—osP']

X I [K(P)sinP —K(P')sinP'cosy']

+K(P') sin P'sin y'

+ [K(P)cosP—K(P')cosP'] ]

where

for either emission or absorption, having aligned the lon-
gitudinal axis of the valley with the z axis and having ex-
pressed the initial and final electron wave vectors K and
K' in terms of the polar angles p and /3', and of the az-
imuthal angles y and y'. In Eq. (21), c; is the
transversellongitudinal sound velocity, p the Si volume
density, md the DOS effective mass in the given valley,
and the phonon wave vector Q is simply K' —K. Using
energy and momentum conservation, the angle 0& can be
obtained in terms of the quite awkward expression (set-
ting y =0 without loss of generality)

—1/2
cos p sin p

ml m,

The equation above shows explicitly that the electron en-
ergy E does not enter the definition of the effective defor-
mation potential. Using the values =d = —11.7 eV and
:-„=9.0 eV, as we shall discuss below, we find that the
averaged effective values are 9.9 (LA) and 5.3 eV (TA).
The first value is close to that typically employed in the
Monte Carlo literature.

Moving to the two-dimensional situation, we find that
we cannot follow a parallel path to arrive at an isotropic,
energy-independent effective deformation potential. This
is bound to have a profound effect on the strength of the
electron —TA/LA-phonon interaction and affect negative-
ly our mobility results. Using once more the elastic,
equipartition approximation suitable to the high-
temperature simulations of interest here, and reintroduc-
ing nonparabolicity, we can write the rate for an electron
with parallel wave vector k in subband p to scatter into
any other subband v by emission or absorption of a
TA/LA phonon as

Comparing Eq. (21) with the usual expression obtained
from an isotropic model, we can define the effective de-
formation potential by averaging over the initial polar an-
gle P:

(:-;. )
=— f dPsinP f dP'sin/3' f dy'A, (8&) . (22)

k~T 2'
, +8[E„(k)—E ]~ [E„(k) E]m„ f—dp' f dq, ~V„(q, )~'b. , (8o)', (23)

V„(q, )=f dz g„(z)e *
g (z) .

0
(24)

The angle 0& is given by another awkward but trivial set
of expressions which we quote here, since they will be
used repeatedly in the following:

where once again /3 and P' are the polar angles of the ini-
tial and final wave vectors, respectively, on the plane of
the interface, and V„„is the electronic form factor

where

I~ (E ) = 1 aE —2a ( E '——V )„.
We can recover the "usual" isotropic expression by ig-
noring the dependence on 8& in Eq. (23), replacing b, ;(8&)
with ™e,obtaining

I
cos(8Q

(q +q, )
(25)

k~T
, g m„(:-;~)'8[E„(k)—E ]

r;.„(k) 2R'pc, '

where Q& is the component of the phonon wave vector
along the longitudinal axis of each valley. The magnitude
q of the component of Q on the plane of the
semiconductor-insulator interface can be expressed in
terms of the electron energy using energy and momentum
conservation:

q =k —2k'k cos(P —/3')+k'~, (26)

X~ [E„(k)—E,]F„

where F„ is the "usual" form factor

F„„=f dz g„(z)'g,(z)':— f dq, ~ V„(q, ) ~' .

(28)

—1/2
cos P' sin /3'+
~i, v m2, v

[2(E E)R,(E E)]'~— —

(27)

where k' is the magnitude of the final electron wave vec-
tor which can be written as

Comparing Eq. (28) with Eq. (23), we see that if we want
to define the equivalent of the effective averaged deforma-
tion potential given by Eq. (22) for the bulk case, this
quantity must now depend explicitly on the pair of initial
and final subbands p and v. Averaging as before over the
initial polar angle /3, it is expressed as
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(:-;~.)'=, f d/3 f d/3' f dq, b.2(()q)
l P„.(q, ) I' .

(2~)'F„.
(30)

The angle 8& is again given by Eq. (24). Explicitly, for
the unprimed valleys we have

cos(8&)=
k

[(cosP—cosP') + (sin/3 —sin/3')

+(q, yk )']-'",
which depends on P—/3', by symmetry, so that the in-
tegration over either /3 or /3' can be made trivial. For the
primed valleys we have instead

cos(9&)= [k(P)cosP k(P')—cos/3']

X I [k(/3)cos/3 k(/3')—cosP']

+ [k(/3)sin/3 —k(P')sin/3'] +q, ]

where the function k(/3') is given by Eq. (27). The main
observation is that, due to the presence of q, in the equa-
tions above, 0&, and, therefore, =', depend on the elec-
tron energy. The reason is that the form factor 9'„(q, )

introduces an energy scale in the problem by fixing the
"fuzzy" component, the phonon wave vector q, . For in-
stance, in the unprimed valleys, at low electron energy
the average phonon wave vector will be mostly aligned

with the longitudinal axis of the ellipsoid, so that
:-P&-—-=d+:-„~ and:-@~=0. &s the electron energy in-
creases, the phonon wave vector rotates toward the plane
normal to the longitudinal axis, so that in this case
:-'„„=:-„while, as b~fo~e, =~~=0. The coupling with
TA modes will peak at some intermediate energy, maxim-
izing the angular average of Eq. (20b). This is illustrated
in Fig. 3. We have plotted the effective deformation po-
tentials in the lowest-lying unprimed [Fig. 3(a)] and
primed [Fig. 3(b)] subbands. Note the strong energy
dependence introduced by the anisotropy of the interac-
tion. Its effect on the scattering rates can be seen in Fig.
4, which shows the total electron-phonon-scattering rates
in the device described below, for electrons in the lowest
unprimed subband, at low density ( =2.6X 10" cm ) for
parabolic bands. The anisotropic correction depresses re-
markably the scattering rate at low electron energy. This
is bound to have a profound effect on the electron mobili-
ty in the medium-density range, at high temperature,
where scattering with acoustic phonons dominates the
picture. In Fig. 5, we show the effect of the nonparabolic
corrections to the total electron-phonon-scattering rates
in the same situation.

The last issue related to scattering with acoustic pho-
nons is the choice of the values for the deformation po-
tentials =„and:-d. The available experimental data are,
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FIG. 3. Effective intravalley deformation potentials for in-
trasubband scattering with acoustic phonons in the lowest-lying
unprimed (a) and primed (b) subbands. A parabolic model is
employed in this figure. The "effective" average deformation
potentials in bulk Si are also shown.

FIG. 4. The total electron —bulk-phonon-scattering rate at
300 K for electrons in the bottom unprimed subband using a
parabolic-band structure in the channel of the device described
in Sec. III of the text, at an electron density of about 2.6X 10"
cm . The effect of the anisotropy of the intravalley scattering
with the acoustic phonon is very pronounced at low energy.
The "steps" are due to the thresholds of emission and absorp-
tion processes, as well as to the appearance of additional sub-
bands. 40 subbands have been included in the calculation. The
scattering rates in bulk Si are also shown for comparison. Note
that the anisotropic scattering rate does not go to zero as the ki-
netic energy goes to zero, but approaches the value of about
6X 10" s
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FICx. 5. The calculated total electron —bulk-phonon-
scattering rate at 300 K in the situation of Fig. 4, using parabol-
ic and nonparabolic models for the band structure.

unfortunately, not fully consistent among themselves.
The uniaxial-shear deformation potential is probably the
most well known, with values of:-„=8.6—9.2 eV having
been reported. ' The value of:"d is less certain from
an experimental point of view. However, we can rely on
the several constraints which:-& must satisfy. Among
them, =d must be consistent with the value for the defor-
mation potential E& ==d+:-„/3 at the X point of the
first conduction band. From the point of view of trans-

port, for a fixed value of:-„,the ratio D- =:-d /:-„deter-
mines the phonon-limited bulk electron mobility. Re-
scaling the Herring-Vogt results for the mobility at 100 K
to account for the larger value of:-„=9eV we adopt, we
find that a ratio D- of about either —1.3 or 0.8 yields
the correct phonon-limited electron mobility of about
12000 cm /V s at 100 K (Ref. 60). This implies that =d
must take a value of either —11.7 or 7.2 eV. Only the
former is consistent with measurements of E& yielding
IE,

~

=8.7 eV (Ref. 66). In addition, theoretical esti-
mates, based on the rigid pseudoion model, provide
negative values for the ratio D- and values for the
uniaxial-shear and dilation potentials not too far from
those we select here. Therefore, we shall choose the
values of —11.7 and 9.0 eV for "d and:-„, respectively.
However, we should keep in mind that uncertainty still
remains. Since the electron mobility depends on the
square of these parameters, it is clear that small errors on
the deformation potentials can result in large errors in
the final results. Note that previous workers'3 '6' 8'6

have almost always ignored the TA phonons and selected
large, isotropic values for the e6'ective potential (typically
12 eV) for scattering with LA modes. ' '

Finally, nonpolar intervalley scattering can be treated
in a more conventional fashion. (Note that intravalley
scattering with optical phonons vanishes in Si for elec-
trons sufficiently close to the bottom of the s-type valley
minima along the 6 lines, and we shall ignore this pro-
cess. ) These processes are treated assuming bulk phonon
dispersions and deformation potentials. Table I lists,

X ( —,
' + —,

' +n„)F„„, (31)

where E& is the final electron energy E&=E„(k)+fico„
(the upper/lower sign is for absorption/emission of a
phonon), b, '„'"I is the deformation potential for the rth
transition, n„ is the thermal (Bose) population of phonons
of type r, and the form factor F„ is given by Eq. (29).
The degeneracy factor g„'"' expresses the multiplicity of
the final state for the rth process and can vanish for par-
ticular transitions, as dictated by symmetry: Only g pro-
cesses (g„'"' = 1) are available for transitions between
unprimed subbands, while both g (g„'"' = 1) and f process-
es (g~"'=2) are available for transitions between primed
subbands. Transitions from an unprimed to a primed
subband are assisted by f processes only (g„'"' =4), and,
finally, transitions from primed to unprimed subbands are
also assisted by f processes only, but with g„'"' =2.

Note that in Eq. (23), as well as in (31), it is not partic-
ularly computationally expensive to consider intravalley,
intersubband transitions, as it amounts only to additional
bookkeeping in an already sizable computer program.
Therefore, we have retained all possible transitions from
any subband p to any other subband v, as in Eqs. (23) and
(31). As a rule, however, intravalley intersubband pro-
cesses are strongly depressed by the small form factors
and do not represent a significant contribution.

C. Scattering with interface modes

The presence of the Si-Si02 interface undoubtedly al-
ters the dispersion of the phonons, their nature, and their
coupling to the electrons. The nature of surface acoustic
modes has been studied by Ezawa and co-workers. ' As
clearly outlined in Ref. 1, they have idealized the insula-
tor as an infinitely soft medium, so that the eigenmodes
could be obtained assuming a stress-free boundary.
Several independent modes, called "surfons, " have been
found, one of them corresponding to the well-known
Rayleigh wave. The results of the monumental efforts by
Ezawa and co-workers ' are somewhat disappointing.
Compared to bulk acoustic modes, the surfon-limited
electron mobility is lowered by 20% or less in the ex-
treme quantum limit. %'e should keep in mind that SiQz
is not as soft as assumed in Refs. 9 and 10, so that the
difference between bulk and surface acoustic modes prob-
ably has been overestimated. Moreover, at room temper-
ature, intervalley processes play a significant role and in-
travalley acoustic-phonon scattering matters less, partic-
ularly at low densities. Therefore the difference between
bulk-phonon-limited and surfon-1imited mobility should
be even smaller than 20%. For these reasons —and for
the difficulty of accounting correctly for the nonzero
stress of the interface, beyond what was done by

among others, the f an-d g-scattering parameters we have
chosen. Labeling these processes by the index r, the rate
at which an electron with wave vector k in subband p can
scatter into subband v by emitting or absorbing a phonon
of energy Am„can be expressed as

(g(iv) )2~ (r)" ~,(E/ E—)9(E/ E,—)
2A pcoy
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Bulk Si:

mI

d

CL

CT

Symbol

TABLE I. Semiconductor and insulator parameters.

Quantity

transverse effective mass
longitudinal effective mass
nonparabolicity parameter
uniaxial-shear def. pot.
uniform dilation def. pot.
density
longitudinal sound velocity
transverse sound velocity
static permittivity

Value

0.19
0.91

—0.5
9.0

—11.7
2.33
9.2
4.7

11.7

Unit

eV
eV
eV
g/cm'
10' cm/s
10' cm/s
Ep

Intervalley electron-phonon scattering parameters:
g(iv)

1

g(iv)
2

g(iv)
3

g(iv)
4

g(iv)
5

g(iv)
6

%co )

AC02

AC03

AC04

Ac05

ACO6

g-scattering,
g-scattering,
g-scattering,
f-scattering,
f-scattering,
f-scattering,
g-scattering,
g-scattering,
g-scattering,
f-scattering,
f-scattering,
f-scattering,

TA def. pot.
LA def. pot.
LO def. pot.
TA def. pot.
LA def. pot.
TO def. pot.
TA phonon energy
LA phonon energy
LO phonon energy
TA phonon energy
LA phonon energy
TO phonon energy

0.5
0.8

11.0
0.3
2.0
2.0

12
18.5
61.2
19.0
47.4
59.0

10' eV/cm
10' eV/cm
10 eV/cm
10 eV/cm
10' eV/cm
10 eV/cm
meV
meV
rneV
meV
rneV
rneV

Bulk Si02..
(ox)

Ep
(ox)
l

&(ox)

~~To, i

~~TO, 2

static permittivity
intermediate permittivity
high-frequency permittivity
bulk TO-phonon, low energy
bulk TO-phonon, high energy

3.9
3.05
2.5

55.6
138.1

E,p

Cp

Cp

meV
meV

Interface roughness
A step correlation length

step rms height
1.3
0.48 nm

Ezawa —we have ignored the presence of the interface in
dealing with acoustic modes. Intervalley processes are
assisted by short-wavelength phonons, so that a bulk pic-
ture seems appropriate. We are left with the possibility
of electrons scattering with the fringing fields of polar
modes in SiOz. This possibility was first considered by
Hess and Vogl, later studied by Moore and Ferry.
Once more, the eff'ect of the surface optical (SO) modes
was found to be small: On the one hand, the large energy
of the modes prevents a strong coupling with low-energy
electrons, so that the mobility is largely unaffected by
them. On the other hand, the scattering rate with SO
modes decreases with electron energy, although not as
fast as bulk polar scattering. Therefore, their effect on
the high-field properties of transport is relatively small.
Despite these considerations, in our attempts to find ways
to improve the agreement between experimental data and
results of our simulations, we have investigated in some
detail the optical interface modes and their coupling to
interface electromagnetic waves (polaritons) and two-
dimensional plasma excitations of the 2DEG. The com-

plicated nature of these coupled modes has the effect of
reducing the importance of the SO modes even beyond
the already small corrections found by Moore and Fer-
ry, ' although, eventually, we will end up treating these
processes in a way very similar to Refs. 73—75.

The main motivation for reconsidering the results of
ang and Mahan, of Hess and Vogl, and of Moore

and Ferry, ' is that surface polar modes may couple
strongly to plasmons at the high densities usually present
in Si inversion layers. This coupling is well known in the
context of III-V compound semiconductors, ' and it is
reason for concern. Scattering with plasmons —or modes
mixed to plasmons to some extent —is dificult to treat in
a transport model. Plasmons are not excitations "exter-
nal" to the electron system, as phonons are. The momen-
tum and energy transferred from single particles to col-
lective electronic excitations are not lost, but mainly
"redistributed" among the electrons. Only when
plasmons are quickly dissipated via scattering with
"external" excitations (e.g., phonons or impurities) can
they be treated as effective in removing energy and
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momentum from the carriers. In heavily doped bulk Si,
this is probably the case, as discussed by one of us be-
fore. On the contrary, this is not generally true for
low-effective-mass, polar materials, as shown by Sirko
and Mills. Care must be taken to understand whether
plasmons feed back their energy and momentum to the
electron system before claiming that plasmons affect the
momentum and energy relaxation rates. ' In the con-
text of Si inversion layers and SO modes, we have to face
the same problem and we want to understand over which
range of wavelengths of SO modes we can ignore this
dificult issue.

In order to study the optical interface modes, we draw
from the large literature on interface modes
(plasmons, phonons, ' and mixed modes such as
plasmarons and other excitations ) subject to elec-
tromagnetic boundary conditions, as done originally by
Fuchs and Kliever. ' We consider two ideal systems
of media characterized by a frequency-dependent dielec-
tric constant (possibly nonlocal, as is the case for the
2DEG). We take Fourier components of Maxwell's equa-
tions and solve them, subject to the boundary conditions
of continuity across interfaces of the component of the
electric fields parallel to the interfaces, E()(co), and of the
electric displacement fields normal to them, D) (co). With
this procedure we obtain a secular equation yielding, for
a given radian frequency co, the eigenmodes of the system,
that is, the dispersion of the interface excitations. The
first system consists simply of two semi-infinite media, an
insulator with permittivity E,„(co) for z (0, and a semi-
conductor with a nonlocal permittivity corresponding to
the 2DEG dielectric response given by Dahl and Sham,
EzD(co;z, z'), for z 0. This geometry approximates the
situation we expect for very thick oxides. We shall as-
sume that two transverse optical modes exist in the oxide,
with energies Ac@To f (i =1,2), with coTo z))coTo, so
that'~

2

(~)—E(ox)+ IE(ox) E(ox)] ~TO, 2
OX oo 2 2

~TO, 2

+ [E(ox) E(ox)j~p
~To, &

where c'"' and cp"' are the high-frequency and static
permittivities, respectively, while c.';"' is the permittivity
at "intermediate" frequencies. For the dielectric function
of the 2DEG, we shall follow Dahl and Sham and consid-
er the long-wavelength response in the extreme quantum
limit. These approximations will be relaxed below con-
sidering screening of the Coulomb scattering processes.
For now, in view of the i11ustrative nature of the present
analysis, the qualitative behavior of the results should not
depend on these restri. ctive assumptions. Therefore, we
have

2

E~D(~;z, z') =E„5(z—z') —
~ $0(z) ~ ~

go(z')
~

Pl

(33)

where m~( is the (conductivity) mass on the plane of the

interface (=m, when only the lowest-lying subband is
considered). In the absence of the insulating layer, the
collective excitations of the 2DEG, as obtained from Eq.
(33), have the dispersion co~(q) given implicitly by

e n,
CO P

SCI

2
P sc

Gq, ppc ~p
(34)

where c is the speed of light, c.p is the. permittivity of free
space, and

G, = f "dz f dz'~g (z)~'G, (z,z')~g (z')~'.
p p

The function 6 is the Green's function satisfying

(35)

CO SC2 2

dz c ~o
q G (z,z') =5(z —z')

d2

dz2
CO E(Q7)

q
c ~p

in the Si channel, (36a)

G (z,z') =0 otherwise,

(36b)

with the additional boundary conditions fixed by the con-
tinuity of fields across the interface(s), as mentioned
above. The solution of Eq. (36) for the geometry under
consideration (and for other cases) has been given by
Dahl and Sham. In the no-retardation approximation
(i.e., ignoring the thickness of the inversion charge layer
compared to the wavelength of the excitations), the
dispersions of the interface excitations for this geometry
are given by the solutions of the secular equation

2
( )

+])+OX+SC
rC.„E„+Z„E'" (~)=E,

67

where
1/22 E(ox)( )K„= q

c E,p

(37)

2
CO SC

SC q
Cp

1/2

and 0~~
=e n, /(Eom(~). Figure 6 illustrates the disper-

sions of the eigenmodes given by Eq. (37) with the param-
eters given in Table I for the case of the lowest-lying
unprimed subband populated at two values of the elec-
tron density n, . At low q the three upper branches coin-
cide with the dispersion given by Wang and Mahan in the
case of only one TO mode in the insulator: As q ~O, two
branches, Acu+

&
and Ac@+ 2, approach the energy of the

LO phonons in bulk SiO~, a high-frequency mode of ener-

mode of energy AcoLo (=QEO /EI f2coTo ). The oxide

and Si lightlines, fico=hcq /QE( "'/Eo and Rcq /QE„/Eo,
respectively, are indicated by dash lines, the Si lightline
being the lower curve. Dotted lines indicate the "uncou-
pled" dispersions obtained by ignoring the phonon-
plasmon coupling. Branches above the lightlines are ra-
diatively damped. The lower branch A~ at low q is
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u ies the—d ~ 0 the space-charge layer occup'dox ln ox Z
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'

n 0 & z ~d, while, finally, the half-space z &
bulk Si with permittivity c„. For is g
equivalent of the secular equation (37) becomes' '

(ox)( )SCcoth(K„d„)+
Ox SC

2
AiiK,

cotll( Ko„d~„)=Eo
~s ~

(so, i)( )0'q

where

2mE;q
(40)

1 1
(ox) + & &(ox) + &
1 SC

(39)

The corresponding solutions arare shown in Fig. 7. Com-
r is de ressedd F' . 6 note how the plasma energy is depressepared to ig. , n

at low q y e n'b the finite oxide thickness. The hig - g
exhibits a "hump" above the asymptotic valueSO mode ex i its a um "

ut both modes areAce 2 at intermediate values of q, u o
d b the finite thickness of the oxideotherwise unaQ'ecte y e n'

and space-charge layers.
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d nature of the optical interface modes, wethe complicate na ure
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corn
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ill need the scattering potential

associate wid 'th these modes, and their matrix e emen s
~ with the electronic wave functions.associate wi e

sume a afI t dispersion for the two SQ mo es, g
b Kittel' " as re-E . (38). Following the derivation y i

p d Mahan, the electrostatic fieldphrased by Wang an a an,
t etwoSO"associated with the q component of t e two

modes (i =1, in e
'

, 2 &

'
th inversion layer is approximate y

given by

s 102, 103hile the p onon conh h ph content of these excitations,
= ( . z;— ) is approximately uni-(~2, ~~ ) /(~so,

bout intersubbandt . Note that we are being cavalier a ou
h altogether. These are excita-lasmons, ignoi Ing t em a

h' fild htthe interface optical modes. T eir e s a

aild

1 1
(ox) + SC

1
(ox) +l SC
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0.3

0.2—

0.1—

represent a better approximation to the physics of the
collective excitations of the 2DEG than the classical solu-
tion of the Poisson equation could provide, the latter ac-
counts automatically for the plasmon decaying and feed-
ing back to the electron ensemble.

We are left with the simple task of obtaining the rate
required for an electron with wave vector k in subband p
to make a transition to subband v with the absorption or
emission of a SO mode. From Eqs. (40) and (42), we get

0.0
10 10 10 10 10 10 10

0.3

0.2—

1
(so, i )(k)

ir [E„(k) E—+Acoso, . ]v p v SO)L

X 0[E„(k) E,+—Acoso; ]

z „ , II„.[q P' ]
'

X
0 q(p')

XK(I3 ) (
i + i+nso ) (43)

0.0
10 10 10 10 10 10 10

q(cm '
)

FIG. 7. The dispersion of the coupled optical-
phonon —plasrnon modes as in Fig. 6, but for finite thickness of
both the oxide and the space-charge layer. The finite oxide
thickness (4.5 nm in the figure) depresses the plasma dispersion
at long wavelength and causes two humps in the dispersion of
the surface optical modes.

Ngai and Economou have described a procedure to ob-
tain the field associated with surface plasmons. Follow-
ing their canonical quantization scheme we find that the
potential y' ' associated to the two-dimensional plasmons
1s

iricoi, (q)+(&)(z)—
~(E,'"'+E„)q

e
—qz (41)

The matrix element for a transition from subband p to
subband v due to these scattering potentials is simply

M „=2~ef dz g (z)(p (z)g„(z) . (42)
0

In principle, electron-plasmon scattering is a legitimate
scattering process and should be accounted for. Howev-
er, there are two reasons to ignore this process. First, we
must face the problem related to the decay of the
plasmons and their "feeding back" energy and momen-
tum to the 2DEG. Second and more important, in our
simulations the Poisson equation is solved self-
consistently with the transport equation. In complete
analogy to the situation we have already discussed at
length for the case of bulk semiconductors, ' the
long-wavelength Coulomb interactions among carriers
are already accounted for classically by the self-consistent
procedure. The introduction of an explicit electron-
plasmon scattering mechanism would result in double
counting these processes. Therefore, they should be ig-
nored. Although the results given in this section

where K(P') is defined before Eq. (22), the upper and
lower signs are for absorption and emission, respectively,
nso, is the thermal population of the SO mode of type i,

I„„(q)=f dz g (z)e ~'g„(z),
0

and q(P') is given by Eqs. (26) and (27), by modifying
trivially Eq. (27) to account for the different final energy
entering this inelastic process.

D. Coulomb and surface-roughness scattering

e X,
ir [E„(k)—E, ]8[ E( )k—E ]7„'"'(k) 8vrfi E„

II(r)
) Pv

o q(P')
(44)

where, again, q(P') is given by Eq. (27), and the form fac-
tor H„" is defined as

0„'"„'(q)= f dz f dz'g, (z)g (z')I'"'(z, z')g„(z)g„(z') .
0 0

(45)

The index r runs over impurity, oxide, and interface
charges. For impurity scattering, after integration over
the semiconductor space-charge layer of thickness d„, we
have

In this section, we consider Coulomb scattering with
charges located in the semiconductor space-charge re-
gions (the ionized impurities), in the oxide (fixed oxide
charges), and at the Si-SiOz interface (interface fixed
charges). We shall also consider scattering with the
roughness of the Si-Si02 interface. Electrons are assumed
to interact with the unscreened scattering potentials,
deferring the discussion of screening effects to the next
section.

Stern and Howard' have given the expression for the
potential due to charges located in the regions of interest.
Under their expressions, also summarized in Ref. 1, and
employing the Born approximation, we can express the
Coulomb scattering rate (with obvious notation) as fol-
lows:
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~imp
= ~sc &

= (N~ +ND )d„,
I'-~( )=((I.—'I+q )).-q) -')+I/(2 )( -q~ +')+ "'+'' '"-')

+-[( + q+ —)) —q(x+2') 1/(2 )[
+ sc + sc ]]

+E e q'+' '(1 —e ")/(2q))/d„,

(46a)

(46b)

(46c)

where E = (e„—eo) "')/(E„+ Eo "'). For scattering with
charges uniformly distributed in (

—d~, —d, ) in the ox-
ide, after a similar integration over the distribution of the
charges, we find

2

r„.(q)=r„".'+ ' eH„". '(q),
~sc

where

N „=N',„'(d2 —di ),
1{ox)( )q

=e q~ + ')(e ' —e )/[2q(di —di )],

(47b)

(47c)

I „''=f dz g„(z) g (z) E—"
g (z)

a V(z)
p aZ dZ

dg (z)+E„g„(z)
dZ

(53a)

where X',„'is the volume density of charges in the oxide.
Finally, for scattering with interface charges, we have

(48a)

H„',"'(q) = f dz g, (z)q)q '(z)g„(z),

with

(53b)

X;,= areal density of interface charges,

I)' )( ')= q( +

(48b)

(48c)

2
'(z)=(n +N. )e q'+

q s imp 16m

K)(qz) ——Eo(qz)

(53c)
Intervalley processes can be considered by accounting for
the degeneracy of the final valleys and modifying the
wave vector q to account for the valley separation in the
Brillouin zone. In general, the larger wave vector in the
denominator of Eq. (44) will reduce the strength of these
collisions.

The last scattering process we consider is scattering
with the roughness of the Si-Si02 interface. %"e have fol-
lowed Ando's approach, ' modified only in order to ac-
count for intersubband transitions, consistent with the
generality of the scattering rates we have obtained so far.
We have

1

(sR)(I )

E. Screening

Coulomb and roughness scattering have quite a strong
effect on the electron mobility, particularly at low and
high electron densities, respectively. Obviously, the
scattering potentials are strongly affected by the screen-
ing of the mobile charges in the inversion layer, and every
theory hoping to explain the density and temperature
dependence of the electron mobility must account for
these screening corrections. However, because of the
diScultly of treating it correctly, screening has either
been ignored, as done originally by Sah, Ning, and
Tschopp, " or has been approximated rather crudely,
since the approximations introduced by Ning and Sah"
have been embraced by many authors with additional
simplifications. For example, the q component of the
scattering potential q)q(z) is sometimes screened by ap-
proximating the low-frequency dielectric function
E2D(q, co ~0), with c.„[1+q, (q ) /q ], where the two-
dimensional screening parameter q, (q) is quite often tak-
en to be independent of q (e.g., Ref. 71, which ignores the
form factor accounting for the finite extent of the wave

hA
~ [E„(k)—E ]8[E„(k) E]—

2A

x f dp'K(p') Is[q(p')]I'Ir .[q(p')]I' .

(49)

Here S(q) is the term of the matrix element which de-
pends on the spectral distribution of the "steps" at the in-
terface, 6 being the rms step height and A the autocorre-
lation of the step distance. For the original Cxaussian
model, ' we have

Is( )I2 ——q A /4

while for the exponential-decaying model proposed by
Goodnick and co-workers' ' —which we have
adopted —we have

IS(q)I =(1+q A /2) (51)

In Eq. (49) we have defined

Ep and K, are the modified Bessel functions. Note that
Eq. (53a) is occasionally expressed in terms of the deriva-
tives of the envelope wave functions at the interface. "
We prefer the form given above, since it is more accurate
when numerical solutions are available for g„(Ref. 111).
Finally, note that we ignore additional complications due
to the finite oxide thickness, which may further reduce
the mobility via scattering with remote roughness. "
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functions) and to be given by the equivalent of the
Debye-Huckel expression in two dimensions:

2 2Bn, en,
2Esc REF 2csckg T

(54)

the last step being taken in the high-temperature limit.
When working in the extreme quantum limit, Stern" has
employed the random-phase approximation (RPA) to
show that the dependence of q, on q is actually quite
strong, the screening parameter decreasing fast at short
wavelengths, so that the effects of screening are reduced
compared to what is predicted by Eq. (54) above. Even
accounting for these form-factor corrections, Ning and
Sah" have noticed that screening is overestimated in the
Debye-Huckel approximation, except at low electron
densities. Another issue, usually ignored, is related to the
population of many subbands in a realistic room-
temperature situation. Obviously, the different spatial
and energetic distribution of the carriers in higher-l. ying
subbands alters the picture. To our knowledge, the only
attempts to estimate the effect of screening resulting from
carriers populating more than one subband are due to
two-subband (p=0 and 0') calculations by Stern, and to
the more recent and sophisticated approach by Yokoya-
ma and Hess for the Al Ga& As/GaAs system, while
Stern and Howard' and Siggia and Kwok" have stud-
ied the case of the multiple-subband population and its
effect on impurity scattering only at a formal level. We
can easily apply these results to the case of an arbitrary
number of subbands within the RPA, following Stern and
Howard, ' Stern, and Yokoyama and Hess.

The screened potential q)"(r,z) due to the external
charge distribution p'""(r,z) satisfies the Poisson equa-
tion

the vth subband, and A, is the thermal wavelength of
electrons in subband v, [2~Pi /(m„ks T)]', where m, is
the conductivity mass in the vth subband, and the func-
tion g, is defined as

1/2

gi(x) =
4 &y2

(60)

where y'""(z) can be viewed as the unscreened scattering
potential. Multiplying Eq. (60) by lg„(z)l and integrat-
ing, we find that the intrasubband matrix elements of the
screened scattering potential, y"„„can be obtained from
the unscreened matrix elements yq pp by inverting the
linear problem:

() ( t) q, -q(q)
(&)

&q(V=q'q() & )) vv(q)q'q vv ' (61)

where the form factor 0„,ii(q) is given by

(q) = f dz f dz'g„(z)g (z)
0 0

XG (z, z')gi(z')gi(z') . (62)

where

@(y ) =2e ~ f dt e '
0

is the plasma dispersion function. " ' " Using the
Green's function (36), the Fourier-Bessel components of
the screened potential can be written as'

()( )
— (et)( )q q

—2+q, ,(q) f ™dz'Gq(z,z')lg (z')l y(', ,
0

( p (s)) (
(ext)+ (ind)) (55)

where p'" ' is the induced charge density. Let us consid-
er the Fourier-Bessel components yq" (z):

y"(r,z ) = f dq qJ()(qr )y"(z), (56)

where J0 is the Bessel function, and assume linear screen-
ing, so that the induced charge density is proportional to
the expectation value of the potential in each subband,
(+(s) ) =+(s)

p,
'" '(z) = —2E„Q q, (q)lg, (z)l'q" (57)

The matrix elements of the scattering potential are

gqp~
— dZ Z gq Z p Z

0
(5 &)

and the screening parameter q, (q) can be evaluated us-

ing the high-temperature limit given by Fetter:"

8 O~

2c„k~T
(59)

where the "Debye-Huckel" parameter q,
' ' is simply

given by Eq. (54), replacing n, with the population n, in

Here G is simply the Green's function given by Eq. (36)
multiplied by 2q, in order to exhibit explicitly the "usual"
q dependence in the denominator of Eq. (61). For the
simple geometry of two semi-infinite media:

G ( )
—

q z —z' +— —q(z+z')
q r r (63)

s having been defined after Eq. (46c). Having obtained
the "diagonal" intrasubband terms, the intersubband ma-
trix elements are similarly obtained from Eq. (60):

(s) (ext) (q) (s)
q q )zv q'q )sv 2 ~)zv i.i.(q)q'q ii (64)

Were we wishing to simplify the picture somewhat and
employ the Hartree approximation instead of the RPA,
we would replace the screened matrix elements yq pp in
the right-hand sides of Eqs. (61) and (64) with the un-
screened values cpq pp so that the inversion of the dielec-
tric matrix required by Eq. (61) would not be needed.
However, from a computational point of view, we would
not gain much, since the numerically intensive step is set-
ting up the dielectric matrix, considering the double in-
tegrals in Eq. (62). Therefore, we adopted Eqs. (61) and
(64) as they stand.

Static screening, as derived above, is certainly satisfac-
tory in the case of Coulomb and roughness scattering.
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The unscreened potential for scattering with interface
charges playing the role of (p'""(z) in Eq. (60) is simply

(it)( )
e —

q~z~
(ox) +E

(65)

For scattering with surface roughness, the matrix ele-
ments of the unscreened potential are given by Eq. (52),
up to a multiplicative constant which is immaterial here.
In the case of scattering with oxide charges and impuri-
ties, there is a slight complication due to the integration
over the distribution of charges which we have performed
to arrive at Eqs. (44) and (46c) and Eqs. (44) and (47c), re-
spectively. Thus we must consider the potential due to
an impurity or oxide charge at z„consider its screened
matrix elements, square them, and integrate them over
the charge distribution in order to replace the factor
H„'"'(q)/( eq) in Eq. (44) with its screened expression.

The potential in the semiconductor due to an impurity at
ze 1S

—qfz —z
f

—qfz+z
(t()' )')(z, z, )= [e ' +c.e ' j,2c„q

(66)

while for a charge at z, in the insulator, the unscreened
potentia1 for z & 0 is

e —qfz —z, )~(o )(z z ) e
( E(ox)+ e )

(67)

We shall describe later in Sec. III C how we have handled
the scattering rates with screened potentials from a nu-
merical point of view.

The effect of screening on electron-phonon scattering is
not as clear as the effect of static screening on Coulomb
or roughness scattering. Scattering with the SO modes
involves excitations at large frequency, much larger than
the plasma frequency of the 2DEG. Therefore, short of
using a formulation of dynamic screening much more so-
phisticated than we are capable of handling, it is probably
"less wrong" to leave those scattering potentials un-
screened. Intervalley scattering with short-wavelength
phonons will be largely unaffected by screening, in view
of the large wave vectors entering the transitions. More-
over, for most of those transitions the frequencies in-
volved are once again much larger than the frequencies at
which the two-dimensional plasma can respond.

Finally, we must discuss the complicated role played
by screening in intravalley scattering with acoustic pho-
nons. The conventional static dielectric function has
been used in many instances in the bulk. ' ' ' More re-
cently, after some debate on whether screening of the
deformation-potential interaction is appropriate in order
to analyze transport in modulation-doped heterostruc-
tures, ' ' the RPA formalism used by Stern"—
extended to finite temperatures following Maldague'
has been employed to screen statically the deformation-
potential interaction in two dimensions. ' However, the
issue is not trivial. At first, the use of static screening
seems intuitively correct, since at the low frequencies of
long-wavelength acoustic phonons, free carriers should
screen the ionic deformation potential in a trivial way, as
it happens in the case of the long-range Coulomb poten-

tial. On second thought, from the microscopic perspec-
tive of the electron-phonon interaction, such as presented
in the excellent review by Vogl, ' one may wonder why
the potential of the ions responsible for the short-range
electron-phono n coupling, already screened by the
valence electrons, should be modified to such a large ex-
tent by a few extra free carriers in the conduction band.
Indeed, as shown in Ref. 128, this short-range component
of the electron-phonon interaction is left unaffected by
the free carriers. Boguslawski and Mycielski, ' on the
other side, have shown that in bulk semiconductors,
long-range components of the electron-phonon interac-
tion, when screened by free carriers, are responsible for a
partial cancellation of the short-range component, result-
ing in an effective screening of the deformation-potential
interaction which can be expressed as the unscreened po-
tential divided by the static (Thomas-Fermi type) dielec-
tric function. The net result is that the naive picture we
started from (i.e., conventional static screening) does
indeed hold. Does this hold also in two dimensions? A
qualitative idea of whether static screening is appropriate
or whether dynamic screening should be employed in this
case can be obtained by assuming that a simple (local and
scalar) dielectric function can be defined for the 2DEG
and by expressing the frequency dependence of the dielec-
tric function in terms of the static function, E2D(q, O), us-

ing the Lundqvist-Overhauser plasmon-pole approxima-
tion. ' Following Vinter, ' we have

cop(q )
E2D( q, co ) =E„ 1 +

CO CO

where

e n
(t)p(q) =

(E„+e()'"')m
~~

is the plasma frequency, and

~p(q)

&sc —1
ezD(q, O)

1/2
1/2 (69)

(70)

We see that static screening represents a good approxi-
mation when dealing with the scattering potential associ-
ated with excitations for which tt)'")(q) ((co~(q). On the
contrary, when co'")(q) )&e)~(q) screening becomes
ineffective, since the free carriers are unable to respond to
the fast perturbation. In the bulk semiconductor, the pic-
ture is qualitatively similar. However, in this case, at
sufficiently high carrier densities the plasma frequency
takes a value almost independent of Q, while the frequen-

cy of the acoustic phonons, co"(Q), goes to zero approxi-
mately as c, Q (c;, with i =longitudinal or transverse, is

If we account for the finite oxide thickness, and going to
the limit of a very thin oxide, the low-q plasma frequency
above should be replaced by the dispersion relation ob-
tained from Eq. (39):

e n
1/2

(71)
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the sound velocity) at small Q. It follows that static
screening is always appropriate. If we move to the two-
dimensional case, we notice a dramatic difference: While
the frequency of the plasmon approaches zero at low q,
according to Eqs. (69) or (71), the wave vectors of pho-
nons with which the electrons interact always have a
nonzero component normal to the interface, q„which,
for intrasubband transitions in subband p, is of the order
of

Fetter and Walecka:" '
q, (q, co) =q,'"(q, co)+iq,' '(q, co),

where

1/2
q~i~(q ~)—q(DH)

q

(73)

q„—f dq, I V„„(q,) I
=2~F„—

oo z.
(72)

X
2kB T

1/2
co Aq

2m
where z„ is the average width of the charge density asso-
ciated with the pth subband. Therefore, as q ~0, the fre-
quency of the phonons involved in intrasubband transi-
tions within the pth subband, co"(q)=c;(q„+q )', ap-
proaches a nonzero value, so that co'"'(q)
=co"(q)))cop(q) and screening becomes ineffective. In
physical terms, if we are willing to ignore intersubband
plasmons (i.e., the "secondary screening" effects of Ref.
131, shown there to be in general small), perturbations
propagating along the direction normal to the interface
cannot be screened by the electrons, as they are "frozen"
into their wave functions and cannot oscillate in the
quantized direction. We can reach the same conclusion
by going to the extreme quantum limit and considering
the dielectric function given by Stern" in the RPA. We
find that as q~0 and co-q (as we expect if the phonons
propagated in the plane of the interface), then
E~E„(1+q,/q), where q, =e m, /(E„fi ) in the 0 sub-
band. This is the expected result, i.e., conventional static
screening. However, if we let q~0, but co-c;q„o, as it
happens in reality, then the real part of the dielectric
function approaches E„en,q

—/(2m, co ), i.e., it ap-
proaches the unscreened value with a small amount of
antiscreening, as noted by Ridley. We see that while we
could neglect the energy of the acoustic phonons coIn-
pared to the average electron energy in order to obtain
the electron-phonon-scattering rates at large enough tem-
peratures, on the contrary we are not allowed to ignore it
when dealing with the dielectric response, since co"(q) is
comparable to (or larger than) the plasma energy.

These arguments are only qualitative and indicate that
static screening may be inadequate at long wavelengths.
We need more general arguments to tell us under which
conditions the deformation-potential interaction should
be screened or not. We can obtain such a quantitative
picture in a couple of meaningful cases, by selecting the
extreme examples of intrasubb and LA phonons —for
which we expect significant deviations from static screen-
ing, due to their relatively large frequencies —and the
smaller corrections relative to TA phonons. A quantita-
tive measure of the role played by dynamic screening in
modifying the phonon-limited mobility can be obtained
by considering only electrons in the lowest-lying subband
(assumed here to be parabolic for simplicity), and by go-
ing to the limit of high temperatures and low densities,
i.e., nondegenerate situations. In this regime we can re-
place' the static screening parameter q, (q) given by
Eq. (59) with its dynamic value q, (q, co), as given by

2kB T

1/2
co Aq

q 2m

(74a)

and

(DH j &%co

kBT

rn cu
2

2k, Tq'
Aq

8m kBT

%co
sinh

B

%co

2k T

(74b)

evaluated along the LA-phonon dispersion
co=cL(q, +q )'~ . We can now obtain the screened
electron-phonon matrix elements by solving Eqs. (61) and
(64) employing the unscreened acoustic-phonon potential
—exp( iq, z ). As —a significant example, we can evaluate
the screened intrasubband matrix elements employing the
phonon potential at the particular value of q, given by
Eq. (72) above, just to get a quantitative idea in a particu-
lar, "average" case. In Fig. 8(a), we show the real part of
the dynamic screening parameter. Notice the large
amount of antiscreening at long wavelengths as compared
to the large amount of screening obtained in the static ap-
proximation. The resulting correction to the phonon po-
tential has been expressed in terms of the magnitude of
an "effective" inverse dielectric function E„so'o '(q)
defined as the ratio between the magnitude of the matrix
elements of the screened phonon potential and the magni-
tude of those of the unscreened potential, which is shown
in Fig. 8(b). It appears that screening has no effect, ex-
cept for the two large structures at small values of q re-
sulting from the quasisingular behavior of the dielectric
matrix as electrons in the two most populated subbands
exhibit complete antiscreening: Given their slow
response, as indicated by the low plasma frequency at
small q, carriers cannot keep up with the faster-
oscillating deformation potential: At very long wave-
length they do not screen at all, while for particular but
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static

I I

n, = 2.6x10" cm
scattering angle. The LA-phonon-limited electron mobil-
ity is then proportional to the integral over the equilibri-
um electron distribution, i.e.,

+LA" f d«,'" '«»0«)l 1 —fo«)] (76)

—1
104

10

I

10'
I

10 10' 10s

10"

10

,' static

10—2 I I

104 10'

10

106

q (cm-' )

10 10s

FIG. 8. The dynamic screening parameter in the lowest-lying
subband (a) and screening corrections to the intrasubband
electron —LA-phonon-scattering potential (b) evaluated in the
high-temperature limit using screening due to the first five sub-
bands of each ladder. In (a), the dynamic screening parameter is
evaluated along the linear dispersion of the LA phonons

2co=co'" '(q)=cL {qo+q )', accounting for the "fuzzy" com-
ponent of the phonon wave vector along the quantization direc-
tion z. In (b), the correction to the scattering potential is shown
for the case of intrasubband scattering in the lowest-lying sub-
band, and it is compared to the much stronger screening correc-
tion obtained in the static approximation.

~ f dP(1 —cosP)~s„coo '(q) '~ br~(8&)

(75)

where q =2k sin(P/2), k=(2m, E)'~ ~fi, and P is the

still long "resonant" wavelengths they end up being in
complete opposition to phases with external perturba-
tions, thus actually enhancing, rather than weakening,
the external potential. The small value of the imaginary
component of the screening parameter, Eq. (74b), is not
effective in smearing these structures, while collisional
broadening will probably reduce them. ' We can now
use this result to estimate its effect on the LA-phonon-
limited mobility for intrasubband scattering for electrons
in the bottom subband. The momentum relaxation rate
1/r~" '(E) is proportional to the angular average of the
screening corrections, i.e.,

where fo(E) is the Fermi function in subband 0. Divid-
ing Eq. (76) by the similar quantity obtained by ignoring
screening, we find that dynamic (anti)screening actually
reduces the electron mobility by about 14%. Admittedly,
this is an extreme example. A similar calculation for the
0' subband yields a mobility only 5% lower than the un-
screened value, due to the almost complete cancellation
between long-wavelength antiscreening and short-
wavelength screening. The role of TA phonons is quite
different. Their lower frequency allows proper screening
to occur at longer wavelengths, so that the corrected
TA-phonon-limited mobility in the lowest-lying subbands
is now larger than the unscreened value, by amounts
varying from 11% in subband 0', to almost 40% in sub-
band 0. Combining such a set of results for the most pop-
ulated subbands (0, 0', and 1), we estimate that dynamic
screening would result in a less than 20%%uo enhancement
of the intrasubband, intravalley phonon-limited mobility
at a density of about 2.6X10"cm . This is only part of
the whole picture, since we should keep in mind many
additional factors which also affect the mobility, although
not to a dramatically large extent: The effect of a finite
oxide thickness will slow down the plasma response at
long wavelengths [see Figs. 7 and Eq. (71)], thus reducing
even more these already moderate corrections. The role
of intersubband plasmons, able to screen via a conven-
tional static model, will be that of increasing moderately
the mobility, ' ' while intravalley phonons would be large-
ly unaffected by screening, as mentioned above. More-
over, at higher densities and/or lower temperatures, the
corrections probably will be in the direction of conven-
tional screening (i.e., yielding a higher mobility), since de-
generate electrons will sample mainly the relaxation rate
at the Fermi energy and, therefore, the role of the
screened large-q phonons will be dominant. On the other
hand, these are precisely the conditions for other scatter-
ing mechanisms (Coulomb and surface-roughness scatter-
ing most notably) to control the mobility. Therefore we
conclude that at room temperature and in nondegenerate
situations, treating screening within the static approxima-
tion may result in an excessive reduction of the
deformation potential interacti-on and that ignoring screen
ing altogether is not IikeIy to introduce major errors.

As a result of this long discussion, we can identify two
limiting cases: At low temperature and/or high densities,
phonon scattering does not play any major role in fixing
the electron mobility, while dynamic screening of the
deformation-potential interaction matters the most. In
this situation, screening is quite intractable, due to the
necessity of accounting for degeneracy corrections and
for the screening effects of intersubband plasmons, among
other complications. On the contrary, in a nondegen-
erate situation (i.e., low density and/or high tempera-
ture), electron-phonon collisions play a major role, but
dynamic screening is not dramatically important, as we
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have seen above. Therefore, we have decided to leave
this interaction unscreened.

III. NUMERICAL ISSUES

The task of implementing the machinery developed in
the previous section into a computer program is not trivi-
al. In this section we describe the approach we have tak-
en. Before going into details, we feel it is necessary to
stress a basic condition that our implementation must
satisfy. Our goal is not a "one-shot, " simulation of elec-
tron transport in Si inversion layers under simplifying as-
sumptions, such as uniform field, absence of injecting
contacts, rigid specifications of geometrical configuration,
etc. Rather, the results presented below represent only
the necessary "calibration" step before transport in real-
istic devices can be studied with some —perhaps only
moderate —degree of confidence. Therefore, the numeri-
cal implementation of the physical model described above
must be performed while keeping in mind a quite general
situation of real, nonuniform Si channels, the presence of
highly doped, field-free contacts, and a very general
geometry. These requirements open a series of problems,
some of them involving not only crude numerical issues,
but also some physical questions of a nontrivial nature.
As an example, given our obvious inability to "quantize
the whole device, " we must face the problem of letting
bulklike, three-dimensional electrons coexist with two-
dimensional electrons in the quantized channel and of be-
ing able to transform one population into the other, as
transport dictates, without unduly mistreating the basic
physics. Also, in order to account for the nonuniformity
of the electric field along the channel, a scheme Inust be
devised to maintain the full self-consistency of the
Boltzmann, Poisson, and Schrodinger equations in such a
situation, along the entire channel. This problem has
never been faced before. Our task is rendered somewhat
easier by the availability of self-consistent
Poisson —Monte Carlo computer program we have de-
scribed at length before. ' ' We refer the reader to
those references for a detailed description of the self-
consistent procedure in two spatial dimensions which we
have followed.

Our discussion of the numerical issues wi11 proceed as
follows: In Sec. III A, we shall consider the spatial and
"energy" regions in which electrons are treated according
to the two-dimensional transport model of Sec. II. We
shall also describe how we have attempted to satisfy ener-
gy and momentum conservation when particles leave and
enter these regions. In Sec. III 8, we describe how we ob-
tain full self-consistency during a Monte Carlo run, and
in Sec. III C we shall dwell upon some specific issues re-
lated to the eKcient computation of the scattering rates.
Finally, in Sec. III D we shall describe the device we have
simulated.

A. The "quantum region"

Starting from a simulation dealing with bulk electrons
(which we shall refer to as 3D electrons in the following,
as opposed to the 2D electrons we are interested in here),
the initial step toward the inclusion of quantization in the
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FIG. 9. The calculated electron-phonon-scattering rate at
300 K in the anisotropic and nonparabolic approximations, as
in Fig. 5, evaluated using a variable number of subbands. The
error made when employing only the three lowest-lying sub-
bands is clearly seen.

inversion layer is the definition of a spatial quantum re-
gion Az, defined as the region in the x,z plane of the de-
vice (the y direction being absent in the simulation), such
that two-dimensional transport can be used to deal only
with electrons in Az. In addition, we must define an en
ergy quantum region Az, in which 2D transport is used
to treat electrons in Az with energies lower than some
critical value E,h. The necessity of defining these regions
should be quite obvious: As stated above, we cannot use
2D transport in the whole device. Similarly, the simula-
tion of high-energy carriers would require too many sub-
bands to be practical. Moreover, even if it were compu-
tationally feasible, it would be very well approximated by
the "classical limit" of 3D transport. Therefore, we must
handle carrier transport within a bulk-transport model
above some suitable energy.

The actual definition of the boundaries of %s and Wz
is nontrivial. Let us consider first the relatively easier
task of determining the value of the threshold energy E,h
which defines %z. In order to choose the maximum
threshold energy above which electrons are treated as 3D
carriers, we have taken care to represent the dynamics of
the carriers (i.e., their scattering rates) as accurately as
possible. To illustrate better what we mean, consider Fig.
9, in which we show the electron-phonon-scattering rates
for electrons in the 0 subband, computed using a variable
number of subbands. Considering the result for 40 sub-
bands as "exact" (as it is indeed the case in the energy
range shown in the figure), we see that the scattering
rates are incorrectly underestimated already at very low
kinetic energies when using the widely used set of the
three subbands (v=O, 0', and I), since too many final
states are dropped out of the picture even at low energies.
As pointed out by Imanaga and Hayafugi, ' calculations
performed using three subbands and 2D electrons only
should be regarded with suspicion, since the errors are
seen to be quite large in Fig. 9: The almost flat scattering
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rates above 0.1 eV (the slight slope being due only to non-
parabolicity corrections), results in very incorrect carrier
dynamics even at moderate source-to-drain (longitudinal)
electric fields, unless we were willing to consider a switch-
over to bulk 3D transport at very small kinetic energies, '

thus underestimating by definition the importance of
quantization in the channel. By contrast, the use of ten
subbands is satisfactory up to energies of about 0.2 eV.
Looking at Fig. 5, we see that switching to a 3D model at
that energy would result in an error of about 15—20%
for the scattering rate when using a bulk, first-order non-
parabolic model. In our case, the bulk model at those en-
ergies uses anisotropic rates obtained from the pseudopo-
tential band structure of Si, and the error —unavoidable,
unless Eq. (6) is employed —is of comparable magnitude.
After some "empirical" trial-and-error experimentation,
we found that over the range of densities we are interest-
ed in, we represent correctly the scattering rates by
switching from 2D to 3D transport whenever a carrier
has total (kinetic + potential) energy larger than the bot-
tom of the fifth unprimed subband. Thus E,h =E5
(which is about 120 meV in Fig. 5). Typically, seven sub-
bands are populated in the Ohmic regime (the four
lowest-lying unprimed and the three lowest-lying primed
subbands). However, additional subbands are retained in
the simulations for reasons to be discussed below.

A major problem we had to face concerns energy and
momentum conservation whenever an electron leaves or
enters the region %z. The 3D~2D transition may hap-
pen in two cases: (1) after a phonon emission process, or
(2) whenever a 3D carrier moves toward a region of high
potential energy and drops below the kinetic-energy
threshold E,h. For the opposite of both cases, a 2D~3D
transition is in order. If the electron is at position (x,z),
conservation of kinetic energy and conservation of
"parallel" momentum k upon a 2D —+3D transition in-
volving subband v would demand, classically,

E (k)+ V(x,z)=e(k, k, )+ V(x,z), (77)

2m, [E', ' —( V(x) ) ]
k, = (79)

Note that nonparabolicity is accounted for in Eq. (79),
since, to first order in a, the "parabolic" value E' ' is re-
lated to the nonparabolic value E (k=O) by

E' '=E (k=O) —a([E (k=O) —V(x)] )

as is seen from Eq. (14). Equation (79) exhibits a real
problem, ultimately due to the nonphysical and artificial
nature of what we are doing. In a 3D~2D transition,

where E (k) is given by Eq. (14) and e(k, k, ) is the bulk
electron dispersion. Since the position z of a 2D electron
is an ill-defined concept, Eq. (77) is more correctly recast
by requiring conservation of the expectation value of the
kinetic energy on subband v:

(E (k) —V(x)) =e(k, k, ),
which, for the case of a bulk dispersion given by Eq. (11),
is equivalent to

Eq. (79) cannot be satisfied: the 3D electron cannot be
converted to a 2D carrier in subband v conserving energy
and momentum exactly. In order to minimize the error,
we scan the subband index v over the subbands at our
disposal, conserve k, and choose the subband which
yields the lowest energy mismatch. There are no prob-
lems in the case of a 2D~3D transition, since Eq. (78)
can be solved easily without additional concerns, by as-
signing the (now) 3D electron the component k, required
by Eq. (79), and a z coordinate selected with probability
distribution

~ g (z)
~

.
This discussion brings us to the main criterion which

guides us in the selection of the boundaries of the spatial
region %s. Most of the troublesome 3D—+2D transitions
occur at the boundary between contacts (i.e., the heavily
doped source and drain regions) and the channel. Parti-
cles seeking to enter %s must undergo the procedure out-
lined above. By moving the left and right boundaries
(x;„,x,„)of As as far as possible into the contacts, the
wider confining potential in those regions causes a very
small subband spacing, thus allowing us to make only
"forgivable" violations of energy conservation, on the or-
der of a few meV. Of course, as we already mentioned,
the problem stems from the unnatural attempt of forcing
a 2D —+3D separation in the electron ensemble. Better
approaches have been investigated, but only for the case
of sharp and well-defined "channels, " such as the study
of Ref. 135. In the present investigation, these problems
are irrelevant, since, once launched in the channel,
memory of the injecting procedure is soon lost. But our
concerns, as always, are related to possible artifacts in de-
vice simulation. Finally, the boundaries of the region. Rz
along the z axis, (z;„,z,„), are quite naturally selected:
The Si-Si02 interface is the lower boundary, so z;„=0.
The upper boundary is given by the intersection of the
threshold energy E,h, with the potential along a "vertical
slice" at x, that is V[x,z,„(z)]=E„h,since electrons at
z)z „obviously cannot have total energy lower than
Eth ~

So far we have fully specified the regions in phase space
in which electrons are treated as 2D carriers, and we
have given rules to handle electrons leaving and entering
the quantum region during ballistic transport. One ques-
tion which remains open is how to account for
scattering-assisted 2D~3D transitions. In order to cir-
cumvent the awkward problem of defining "mixed"
scattering process between 2D and 3D electron states, we
have included in the simulation a few "bufFer subbands. "
Scattering rates for 2D electrons are computed for a
number of subbands larger than specified above. Thus a
2D electron can absorb a phonon and scatter into sub-
band p & 5, being temporarily treated as a 2D electron
with total energy above the threshold E,h. At the begin-
ning of the next time step, the electron will be reclassified
as 3D and a 2D~3D transition will be handled as de-
scribed above. With this procedure, the dynamics of the
scattering process is treated correctly. On the other
hand, a 3D electron losing energy after phonon emission
will be immediately converted to 2D whenever its energy
is lower than E,h, without further complication. As stat-
ed above, typically ten subbands are included (three of
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them of the "buffer" type). Occasionally, up to 20 sub-
bands have been handled, with E,i, =E &o, without detect-
ing noticeable differences in the results.

B. Self-consistency

We now describe how full self-consistency between the
Schrodinger, Poisson, and Boltzmann equations is ob-
tained numerically. Let us start by considering a simula-
tion of a Si MOSFET with the Si-SiO2 interface in the x,y
plane, at z =0. The device is assumed to be uniform in
the y direction, so that the Poisson equation is solved in
the two dimensions x,z. Electron transport in the device
is first simulated employing only a bulk electron-
transport model, solving the Poisson equation self-
consistently with a particle Monte Carlo transport tech-
nique, as described in Refs. 22 and 23. In order to do
this, a mesh is set up in the x, z plane (the Poisson mesh),
the pointlike charge of the simulated particles is mapped
onto the nodes of this mesh as described in detail in Ref.
105, and the Poisson equation is solved on this mesh.

In order to account for quantization in the channel,
starting from the potential obtained from the bulklike
simulation, the Schrodinger equation (13) is solved along
each of the "vertical" mesh lines x =x, with (o.= 1,%, ),
where x& =x;„and x& =x,„are the left and right

X

boundary of the spatial quantum region As. To render
the computation more eKcient, a one-dimensional uni-
form mesh (the Schrodinger mesh) is introduced along
each line, so that Eq. (13) can be solved by a fast direct
matrix inversion. The wave functions are assumed to
vanish at the interface and at a distance zo which is
empirically determined in order to avoid errors in the
spectrum of the subbands and the form of the wave func-
tions. Typically, zo—-50 nm for the device described
belo~. Thus we obtain eigenvalues and eigenfunctions
E' ' and g' '(z) along the channel at the mesh lines.
Typically, the number of points employed in the Poisson
mesh, N„ is about 100—200, resulting in a spacing of
0.25 —0.5 nm. The level of coarseness of this mesh affects
not only the accuracy of the Poisson-Schrodinger self-
consistent procedure, but also the accuracy of the form
factors entering the expressions for the scattering rates.
These results are now needed for two purposes: we must
evaluate the charge density to be fed back to the Poisson
solver, and we must evaluate transport parameters.

The charge density is evaluated by assigning each
simulated electron in subband v its own envelope wave
function, by interpolating along the x direction the wave
functions g' ~(z). The square wave function is then
mapped back from the uniform Schrodinger mesh to the
(in principle nonuniform) Poisson mesh. The charge
density —obtained by multiplying the squared wave func-
tion by the particle statistical charge weight' and the
electron charge and by summing over all 2D particles-
is then integrated over each Poisson-mesh element and
mapped onto the Poisson nodes in a way similar to the
"cloud-in-cell" method employed in a bulk situation.
The Poisson equation is then solved by accounting for
both the bulk charge density resulting from 3D particles
and the 2D charge density obtained in this way. Particles

are then moved in the new field configuration, allowed to
scatter, and the procedure is repeated again at the succes-
sive time step. We use very small time steps
( —10 ' —10 ' s) to evolve the system self-consistently
in time. A similar interpolation between "vertical cuts"
is employed also for the subband spectrum, needed for
evaluating scattering rates. It should also be noted that
the effective longitudinal component of the electric field,
F „, driving 2D particles in subband v in their ballistic
Aights between collisions is obtained as

1 BE (k=0)
e Bx

when the energies E are all measured from a fixed refer-
ence throughout the entire device. In the case of a
nonuniform channel, this accounts for the driving force
resulting from the shift of the subband bottoms which
move up or down as the channel gets narrower or wider.

C. Numerical evaluation of the scattering rates

The idea of evaluating the scattering rates of Sec. II in
a straightforward way is soon ruled out if we want to be
able to handle nonuniform channels, as implied above.
Every 2D particle carries its own wave function, depend-
ing on its position along the channel, and we must per-
form a different rate evaluation for every particle at every
time step. Necessarily, this evaluation must proceed as
eSciently as possible. On the contrary, the multidimen-
sional integrals appearing in the expressions for many
scattering rates are quite some consuming. Screening
effects would render the situation simply hopeless.
Therefore we had to invoke many embodiments of the
procedure, well known in the Monte Carlo community,
of "internal self-scattering. " Let us consider first the
electron —TA/LA-phonon deformation-potential interac-
tion, Eq. (23). In that form, a triple integral should be
performed, and we cannot afford this luxury from a
computing-time perspective. Therefore, we abandon
temporarily the anisotropic model of the interaction, by
replacing b, , (8&) in Eq. (23) with its upper bound:",
given by ~:-z~+~:-„ for scattering with LA phonons,
:-„/2 for scattering with TA phonons. Thus we are left
with an expression similar to Eq. (28), with:-', replaced
by =, „,which requires the numerical evaluation of one
integral only. The expression thus obtained can be
viewed as a self-scattering rate. Using this upper bound
to the real scattering rate, electrons which undergo this
"fake" collision must also undergo a further check: After
each scattering event, a value of q, is selected at random
with probability distribution

~ V,(q, ) ~, a random angle
P' is selected uniformly in (0,2~), so that the angle 9& is
uniquely determined via Eq. (25). The ratio
r =b, , (8&)/:-, ,„ is compared with a random number g
in (0, 1): If g) r, the interaction is considered to be of the
self-scattering type, and the electron proceeds as if it nev-
er scattered. Otherwise, the collision is real, and the elec-
tron is scattered normally. Note how this procedure also
allows the determination of the final state after collision.

Intervalley processes given by Eq. (31) require only the
evaluation of a one-dimensional integral and pose no
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problems. The rates for scattering with SO modes, Eq.
(43), involve a double integral, which is tolerable. Not so
for screened Coulomb or surface-roughness interactions:
Eqs. (44) and (49) in themselves already involve triple and
double integrals, respectively. To render the task even
harder, the squared matrix elements given by Eq. (45)
must be screened and numerically integrated over the
charge distribution. Invoking again the self-scattering
technique, we proceed in two steps: First, for all 2D par-
ticles, these scattering rates are evaluated by replacing
the form factor H„'"„' in Eq. (44) with unity, and an upper
bound to screening is introduced by multiplying the in-
tegrand in Eq. (44) by [ I+q/q(P')] . The parameter Q
is introduced only to provide a lower cutoff for the rnag-
nitude of the q vector and avoid the divergence of the
scattering rates as the energy of the electrons approaches
the bottom of the subband. Typically we use
@=10 q,

' '. In the case of scattering with surface
roughness, the integrand in Eq. (49) is similarly replaced
by [ 1+q (P' ) A /4] . As a second step, for those par-
ticles which undergo this type of fake collisions, we com-
pute less approximated scattering rates, reintroducing the
dependence of the form factors on the wave functions,
but otherwise still considering the interactions essentially
unscreened. Finally, for those particles which undergo
this second type of interaction, we select a final state by
obtaining a value for q with the rejection technique, us-
ing the probability distribution H„'"'(q)/(q+Q) as in
Eqs. (45) or I „(q)~

as in (52). For this value, we screen
the corresponding potential inverting the matrix implicit-
ly defined in Eq. (61) [or also using Eq. (64) for intersub-
band processes]. In the case of Coulomb scattering with
impurities or oxide charges, we select a random location
z, of the scattering charge with probability distribution

~
q&q' „~'(z, ) ~ N; ~(z, ) or p~'„"' (z, ) ~ X,„(z, ) [see Eqs. (66)

and (67) above] to perform this last step. Note that in the
simulations we have actually assumed a uniform distribu-
tion of impurities in the depletion layer. Finally, we con-
sider the ratio r=(1+&/q) pq'„(z, )i / yq, „'(z )l

(where ext labels the external impurity, oxide, or inter-
face charges unscreened potential), and accept or reject
the collision, depending on whether g ~ r or g ) r, as done
above in the case of anisotropic scattering with acoustic
phonons.

plant of Sb and As. A deep channel implant is used to
prevent punch-through in short-channel devices and to
minimize the degradation of the mobility at the surface of
the semiconductor. This implant is modeled by a Cxauss-
ian profile peaking 70 nm below the Si-SiOz interface,
with a width (standard deviation) of 30 nm and a peak
concentration of 7 X 10' cm . Thus the average doping
charge in the depletion layer is about 5.5 X 10" cm in
strong inversion. The gate oxide is 4.5 nm thick. The
major modification of the design with respect to previous
simulations is that now the channel length we are forced
to choose is at the upper limit of what our CPU-time-
consuming program can handle: The metallurgical junc-
tions source/substrate and drain/substrate are separated
by 1 pm, yielding an effective channel length of about
0.95 pm. This distance is sufficiently long to ensure that
transport reaches steady state toward the drain-end of
the channel even at the lowest electron sheet densities at
which phonon scattering yields the longest momentum
relaxation times. To ensure a good channel uniformity
with the thin oxide we have chosen, we have employed
the equivalent of the resistive gate ' ' often employed ex-
perimentally to achieve the same effect. The gate contact
actually consists of about 20 small contacts, the voltage
dropping in a stepwise linear fashion from source to
drain, so that the gate-to-source and the gate-to-drain po-
tential drops are equal. The channel density and the lon-
gitudinal field were found to be remarkably constant
along the channel in this configuration. Typically 10000
particles were employed in the simulation, about 3000 to
7000 (depending on gate bias) of them treated as 2D car-
riers. Time steps ranging from 2X 10 ' to 10 ' s were
chosen, as dictated by the value of the source-drain field
(smaller time steps at higher fields). Very long simula-
tions had to be performed initially in a pure 3D-transport
mode, in order to achieve a good equilibrium solution of
the steady-state problem. Indeed, at longitudinal (i.e., a
source-to-drain) fields of 1.0 kV/cm, transit times of the
order of 10 ' s are expected. Even after a state solution
has been obtained, moving to another steady-state solu-
tion with a difFerent gate and/or drain bias can require a
comparably long-time evolution of the model.

IV. RESULTS

D. The device

Before presenting the results of our simulations, we
must describe the device we have employed. From the
discussion of the previous subsections, it is clear that our
machinery is well equipped to handle small, nonuniform
devices in which off-equilibrium transport dominates;
however, the extraction of Ohmic mobility and drift-
velocity characteristics requires large devices and a
homogeneous situation. Therefore, we must stretch our
simulation capabilities and face problems of device design
similar to those experimentalists also face. We have con-
sidered a device we have studied successfully before, de-
scribed in detail in Refs. 22 and 136. It consists of highly
doped source and drain regions with a peak doping densi-
ty of about 1.5X10 cm obtained from a double im-

A. Ohmic mobility

In Fig. 10(a), we show our results for the field-e6'ect
electron mobility p,z versus the electron sheet density,
obtained from the electron velocity in the x direction
along the channel at a longitudinal (i.e., source-to-drain)
field of 1 kV/cm. The electron velocity has been calculat-
ed by mimicking what is done experimentally, i.e., by in-
tegrating along the z direction the x-directed current den-
sity and dividing it by the electron density similarly in-
tegrated along the z direction. A direct evaluation of the
x-directed electron velocity was also performed, obtain-
ing, in general, results which were identical within the
statistical errors. Only at the lowest density and for
simulations including only phonon scattering, some
differences were observed. Since in this case the momen-
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turn relaxation length is long enough to amount to a
significant fraction of the channel, steady state was ob-
served to occur only toward the drain end of the channel.
Therefore, the direct evaluation of the x-directed velocity
in the drain-end section of the channel was preferred.
Figures 10(b) and 10(c) show the energies of the bottom
of the subbands —measured from the surface
potential —and the subband population at various densi-
ties. The topmost solid line in Fig. 10(b)—corresponding
to the bottom of the fifth unprimed subband —marks the
critical energy value E,h above which electrons are treat-
ed according to a bulk-transport model. The fraction of

electrons treated in this fashion is seen in Fig. 10(c) never
to exceed 15% at the lowest densities, dropping to less
than 10% for n, ) 10' cm . In Fig .10(a), we can see
the effect due to nonparabolicity on the phonon-limited
mobility (as obtained from simulations performed includ-
ing phonon scattering only), and the role played by
Coulomb and surface-roughness scattering at low and
high densities, respectively. In Fig. 11, we have decom-
posed the electron mobility into its separate contribu-
tions, the phonon-limited mobility pph the Coulomb mo-
bility due to scattering with the ionized impurities in the
space-charge region p;, and the mobility limited by
scattering with surface roughness psR. Assuming that
Matthiessen's rule holds, for the sake of illustration, we
see the following trends (indicated by the dashed straight
lines in the figure): The expected dependence of the
phonon-limited mobility on electron density ppQ
is obtained only for n, ~2X10' cm . At this density
the Fermi level is less than k~ T below the bottom of the
lowest subband —so that the 2DEG approaches
degeneracy —and the population of the 0 subb and
exceeds the population of the 0' subband. The n, '

behavior is expected from the fact that the form factor
F„ increases with density roughly as n,', as originally
obtained by Kawaji for the case of a single occupied
subband, and later demonstrated for the case of two sub-
bands by Hamaguchi and co-workers. ' ' At small den-
sities the small subband energy spacing complicates the
picture, since intersubband and intervalley processes are
very effective. At larger densities degeneracy effects may
also depress the mobility, as suggested by Kim et al. '

(but see Ref. 138). We should also keep in mind that at
very large densities (n, ~ 5 X 10' cm ) our treatment of
screening may become inappropriate, since it is based on
the nondegenerate, high-temperature approximation.
Scattering with surface roughness reduces the mobility at
high densities as expected, psR ~ (n, +N; „),from Eqs.
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FIG. 10. The calculated field-effect electron mobility (a), sub-
band energies measured from the surface potential (b), and the
electron population in each subband (c) vs the electron channel
density. Solid lines refer to the unprimed subbands, dashed
lines to the primed subbands. In (a), results obtained with the
inclusion of phonon scattering only in a parabolic- and
nonparabolic-band model are compared to the results obtained
by using a nonparabolic model and including scattering with
ionized impurities and surface roughness.
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FIG. 11. The calculated field-effect electron mobility and the
various contributions due to scattering with phonons, ionized
impurities, and surface roughness obtained assuming that
Matthiessen's rule is valid. The dashed lines are for the purpose
of illustration only.
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FIG. 12. The calculated field-effect electron mobility vs elec-
tron channel density compared to experimental data. The num-
bers in parentheses indicate the total density of ionized impuri-
ties in the depletion layer in units of 10" cm in strong inver-
sion. Note that Fowler's data (unpublished, reproduced in Ref.
1) are Hall mobilities.

(49) and (53c). Coulomb scattering loses its strength
roughly linearly with increasing electron density, as
screening gains importance. However, note that the
quasilinear dependence indicated in Fig. 11 is no more
that suggestive because of the very few points we have
calculated.

The results of Figs. 10 and 11 are encouraging, as they
reproduce qualitatively all features we expected. But
when we compare our results with experimental data, we
see that our phonon-limited mobility is larger than the
measured values. In Fig. 12, we have plotted experimen-
tal data from Refs. 3 —7 in addition to unpublished Hall
mobility data by Fowler reproduced in Ref. 1. Looking
at the results of our simulations performed including only
scattering with phonons, we see that our model predicts
values consistently about 20% higher than the experi-
mental data at the low densities at which the mobility is
limited by phonon scattering. Coulomb scattering with
ionized impurities and scattering with surface roughness
improve the situation. Indeed, we are able to obtain very
good agreement with the experimental data at high densi-
ties, while at low densities the Coulomb mobility shown
in Fig. 11 compares favorably with the measured one of
Ref. 7. A similarly satisfactory result related to Coulomb
scattering is shown in Fig. 13, which illustrates in (a) the
effect of interface charges on the effective electron mobili-
ty, and in (b) the N;, ' dependence of the interface-
charge-limited mobility p;, . These results are somewhat
surprising, since we thought at first that our theoretical
understanding of Coulomb and roughness scattering was
in a much worse situation compared to phonon scatter-
ing, which is so well understood in bulk Si. Corrections
to the impurity scattering rate obtained by going beyond
the first Born approximation, the complications of treat-
ing Coulomb screening correctly, and the still largely
empirical nature of the conventional treatment of surface
roughness are all elements which made us uneasy about
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the theory. Yet, considering that we employ no adjust-
able parameters (the values of the surface-roughness pa-
rameters 6 and A have been taken from Ref. 108 without
any modification, despite their dependence on process-
ing), we are surprised by the excellent agreement. In-
stead, phonon scattering remains the real cause of con-
cern. Figure 14 shows that the situation is even worse
when plotting our results versus experimental data fol-
lowing the engineering custom of employing the
"effective" normal field F,ff = (e IE„)(n,12+N; ~ ) to
"scale away" the diff'erence of substrate doping (and the
corresponding difference in subband structure) and com-
pare a wider set of experiments. Despite the lack of a
physical justification for this "universal curve, " its
widespread use in the engineering community forces us to
pay attention to this way of plotting results. The
disagreement is worse because of the quite unusual chan-
nel doping profile we employ in our simulation.

Finally, we would like to briefly mention results we
have obtained from using simulations employing the iso-
tropic approximation to treat the deformation-potential
interaction and using various forms of the static approxi-
mation to screen the interaction between electrons and
acoustic phonons. The former approximation would al-
low us to obtain lower values for the mobility (=850
cm /Vs at a density of about 3X10" cm ), in almost
perfect agreement with data in the lower portion of the
experimental range. This is expected, considering the
larger intrasubband electron-phonon scattering rates

FIG. 13. The calculated field-effect electron mobility at low
density in the presence of scattering with phonons and interface
charges as a function of density of interface charges (a). In (b),
the effective mobility due to scattering with interface charges
exhibits the expected dependence X;, ', shown by the dashed

line. Impurity scattering has not been included in this case.
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FIG. 14. The calculated field-effect electron mobility com-
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shown in Fig. 4. The use of static screening, on the other
hand, yields disastrous results: The simplified form
E(q)=E„(1+q,' /q) yields phonon-limited mobilities
about a factor of 2 larger than those found when using
unscreened phonons, while multisubband static screen-
ing, as discussed above, yields values of about 1600
cm /Vs at the lowest densities we have investigated, i.e.,
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FIG. 15. The calculated expectation value of the electron ki-
netic energy (a), and electron drift velocity (b) vs longitudinal
field at low electron density. Results obtained with and without
scattering with SO modes and within the parabolic-band ap-
proximation are also shown.

B. Velocity-field characteristics

In this subsection, we discuss results related to hot-
electron transport at a large longitudinal field, i.e, at large
source-to-drain bias. Figure 15 illustrates the average ki-
netic energy of the electrons (a), and their drift velocity
along the x directions (b) versus the longitudinal electric
field. In Fig. 16, we also show the subband energies (a)
and the population in each subband (b). These data refer
to simulations performed at a small value of the electron
sheet density ( n, =2. 6 X 10" cm ), corresponding to a
normal (i.e., along the direction z normal to the Si-Si02
interface) field of about 1.3 kV/cm. Only phonon scatter-
ing has been considered in these simulations. Note that
the average kinetic energy of an electron in subband v
has been defined in a rather unconventional way as the
expectation value of its kinetic energy, (E (k) —V(x) )„
rather than the average kinetic energy itself. This
definition has the advantage of allowing a meaningful
averaging over 2D and 3D particles which coexist in the
simulation. The disadvantage is, obviously, the depen-
dence of the equilibrium values (i.e., the "thermal" ener-
gy) on the subband structure. In Figs. 15(a) and 15(b), we
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FIG. 16. Calculated subband energies (a), and electron popu-
lation in each subband (b) vs longitudinal field for the conditions
of Fig. 15 in a nonparabolic model including scattering with SO
modes. Solid lines refer to the unprimed subbands, dashed lines
to the primed subbands. Note in (a) the change of subband en-

ergies at a fixed electron density as the carriers become hot and
the charge density in the inversion layer changes from its equi-
librium spatial distribution.
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have also shown the results of simulations performed
without the inclusion of scattering with SO modes. Note
that this process has a very minor effect on either average
energy or velocity. The latter is actually slightly in-
creased at fields around 10 V/cm, as SO scattering is in-
troduced, as carriers are removed from the high-energy,
low-velocity region of phase space and put in the low-
energy, high-velocity regime by these small-angle col-
lisions. This is exactly the opposite of what was reported
by Moore and Ferry. The discrepancy is most likely
due to the anisotropic model we have employed for the
deformation-potential interaction: The scattering rates at
low energies are strongly reduced in this approximation
when compared to the isotropic model. Thus electrons
which lose a large amount of energy in collisions with SO
modes enter low-energy regions of much longer momen-
tum relaxation rates (which implies much larger velocity)
than is the case in the Moore-Ferry model. In Fig. 16(b),
note that at longitudinal fields larger than about 10
V/cm transport becomes almost completely bulklike, as
more than half of the total electron population has a ki-
netic energy exceeding the threshold value we have set.
This worries us to some extent. On the one hand, our ap-
proach is certainly more accurate than models which em-
ploy only a small number of subbands and 2D electrons
only. As remarked above in discussing Fig. 9, and as also
noted by Imanaga and Hayafuji, ' the incorrect way the
scattering rates are treated in this case renders the results
quite suspect. On the other hand, we are unable to deal
with a smooth transition from 2D to bulk transport and
we must switch transport models rather abruptly at the
threshold energy E,h [the topmost solid line in Fig. 16(a)j
in order to retain a dynamics which is approximately
correct and avoid the artifact of a "Hat" scattering rate as
we "run out of subbands. " We continue to wonder
whether transport can really be described correctly by a
bulk picture even at these high effective temperatures and
whether the bulklike saturated velocity seen in Fig. 15(b)
is caused by this approximation. We should remark here
that our 3D electrons were subject to Coulomb scattering
in a bulklike model, accounting for the phase-shift
corrections described in Ref. 82, whenever Coulomb
scattering was turned on for 2D electrons. Note in Fig.
16(b) that, as pointed out by Shihirata, Taniguchi, and
Hamaguchi, the full self-consistency between the trans-
port model, the Poisson solver, and the Schrodinger
equation is an essential ingredient for simulating high-
field transport, as the subband energies change —for a
fixed sheet density —due to the different spatial distribu-
tion of the hot carriers at high longitudinal fields. From
Fig. 16, it is clear that any model using a purely 2D
transport model and a subband structure calculated at
equilibrium (i.e., at zero longitudinal field) will severely
mistreat both the carrier dynamics and the subband and
field configurations.

In Fig. 17, we compare our low-density results with ex-
perimental data (a) and results of previous simulations (b)
obtained in samples with channel doping ranging from
negligible (N; =2X10' cm in Cooper and Nelson's
experiments and 1V; =8 X 10' cm in Cohen and
Muller's samples ) to moderately large (N; =2X10"
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FIG. 17. The calculated electron drift velocity vs longitudi-
nal field with and without the inclusion of scattering with ion-
ized impurities compared to experimental data at similar values
of the normal field (indicated in parentheses) (a), and compared
to previous simulations and to the results of bulk simulations
(b).

cm in Modelli and Manzini's experiments '), at values
of the "effective" normal field F,& indicated in
parentheses in the figure. Given the non-negligible
amount of impurity and interface charge scattering
affecting some of the experimental data, we think it is not
too unfair to compare them with results of simulations
performed by introducing scattering with ionized impuri-
ties (N; =5.5X10" cm in our device). At low fields,
we note the same disagreement between experimental
data and our "phonon-scattering-only" simulations as we
have already seen in the phonon-only data of Fig. 12.
The inclusion of Coulomb scattering obviously improves
the situation. In the velocity-saturation regime we find,
as already discussed, bulklike velocity-field characteris-
tics. These results agree with the measurements by
Cooper and Nelson, but we do not believe that this
agreement settles the issue: Results by Fang and
Fowler' shown in Fig. 18, by Cohen and Muller, and
by Modelli and Manzini ' all give much lower values.
These last measurements have been obtained using either
very thick oxides' —so that the criticisms by Muller and
Eisele' do not apply —or resistive gates. ' ' On the con-
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trary, the results of Ref. 5, obtained using a time-of-Aight
technique, require a quite complicated analysis to extract
the data and are related to a situation of quasidepletion,
rather than inversion, of the channel, as remarked in Ref.
21. We are willing to state that this issue is still unsettled
and refrain from drawing strong conclusions. However,
we are frankly inclined to consider the lower values as
more credible, despite our failure to reproduce them.
Concerning Fig. 17(b), we see that the bulk simulation of
Ref. 69 predicts a bulklike saturation velocity, ruling out
possible explanations of a lower channel saturation veloc-
ity based on the different energetics of the carriers, ' while
Basu's results, obtained using only one or three sub-
bands, predict even larger velocities, as expected from the
lack of 30 carriers at higher energies. Imanaga and
Hayafuji's results ' are similar to ours, except in the
Ohmic regime, where Coulomb scattering and the
diA'erent model for the deformation-potential interaction
which we have employed explain the difFerence.

Finally, velocity-field characteristics at a larger density
(n, =6X10' cm ) are considered in Fig. 18. Compar-
ison is made with both experimental data (indicated by
symbols) and previous theoretical results (indicated by
curves). The experimental data by Miiller and Eisele'
are split into two groups, drift velocity at the source end
of the channel and at the drain end, according to their
procedure. The former show a smaller saturated velocity,
which they claim is due to the pinning of the longitudinal
electric field at the source end of the channel in their
thin-oxide (50-nm) samples. Note that these data, as well
as those by Hamaguchi, ' are taken at a larger electron
density. The small value of the saturated velocity of Ref.
15 is surprising, since it is lower than the data obtained
by Fang and Fowler' at a density not much smaller, and
it is also in contrast with the small dependence of the sa-
turated velocity on sheet density reported by Modelli and
Manzini. ' The theoretical calculations range from
Ferry's three-subband, drifted-Maxwellian model (includ-

ing scattering with surface roughness and Coulomb
scattering, both with adjustable parameters), to the full
self-consistent Monte Carlo model by Shihirata, Tanigu-
chi, and Hamaguchi. Their non-self-consistent results
are also shown, together with the results by Hamagu-
chi. ' Our results behave quite well in the low-field Ohm-
ic regime, thanks to the good behavior of our model for
interface scattering. At high fields the situation parallels
the low-density results discussed above.

C. Density dependence

Si 300K &100&

10
g

R IC ~I

7

6-
M

aR
4- Ot

~ t ty g

~ O12

n, (cm 2)
) O13

FIG. 19. Theoretical electron effective mobilities vs carrier
density as obtained in this work and in previous studies, com-
pared to the experimental data of Fig. 12 (small symbols).

We have already discussed our results in the high-field
regime and our moderate unhappiness with the inability
to obtain a saturated velocity lower than the bulk value.
Here we wish to discuss our results concerning the elec-
tron field-effect mobility as a function of carrier density
(Figs. 10—12). These can be better appreciated consider-
ing Fig. 19. Our results, with and without the inclusion
of impurity and surface-roughness scattering, are com-
pared once more to experimental data and to results of
previous investigations. We have not included in the
figure the qualitative exploratory attempt by Kawaji,
and the results by Hamaguchi' and by Shihirata and
Hamaguchi, ' which only show that the overlap integral
E„yields the correct dependence of p,z on n„but re-
quire an empirical fit to obtain good quantitative agree-
ments with the experimental data. The first complete
quantitative calculations by Ezawa, Kawaji, and
Nakamura' gave quite large values for the mobility,
ranging from 3500 cm /V s when considering only surfon
scattering within the ground subband, to 3150 cm /V s
with the inclusion of intrasubband scattering within
higher subbands, and dropping finally to about 1900
cm /V s with the additional inclusion of intersubband, in-
travalley scattering. In Ref. 10, it was noted that the in-
clusion of intervalley scattering depresses the bulk Si mo-
bility by a factor of almost 3, and that a correction of a
factor of 2 could have been expected for the electron mo-
bility in Si inversion layers. This was found to be the case
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by Roychoudhury and Basu, " who also accounted for
the degeneracy of the 2DEG and obtained a result of
p, ir= 1000 cm /V s at n, = 10' cm, which is quite con-
sistent with our results. Ferry' introduced intervalley
scattering and the interaction with first-order optical
phonons to obtain good agreement with experiments.
However, a very crudely approximated expression for
scattering with interface charges and surface roughness
had to be added, and the coupling parameters adjusted to
experiments in order to achieve that agreement. A fair
agreement was obtained recently by Masaki et al. ,

' par-
ticularly at high densities, when surface-roughness
scattering (computed using A = 5 nm and b, =0.6 nm in
the curve we reproduce in Fig. 19) is important. They
have assumed that Matthiessen's rule holds, have em-
ployed two spherical and parabolic subbands, while ig-
noring intersubband processes and —quite surprisingly—the strongest intervalley phonons. Impurity scattering
and degeneracy effects were also ignored, but the problem
was otherwise solved self-consistently. Despite these
differences, their results are very close to ours, at least at
densities where impurity scattering is not important: The
absence in their calculations of nonparabolicity correc-
tions appears to accidentally cancel the effect of the iso-
tropic approximation employed for the deformation-
potential interaction, both amounting to corrections of
about 20% to the mobility, but acting in opposite direc-
tions. Similarly, the absence in the model of Ref. 12 of
the strong g-type intervalley processes assisted by LO
phonons appears to have an effect similar to the one
caused by the lower values for the intravalley deforma-
tion potentials we have chosen. Thus, the agreement be-
tween the results of Ref. 12 and ours is purely accidental,
the physical models differing substantially in the two ap-
proaches.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have shown that the 300-K field-
effect electron mobility in Si inversion layers can be ex-
plained with moderate success by accounting for all ma-
jor known scattering processes (with acoustic, intravalley,
and intervalley bulk phonons, with surface optical modes,
with interface/oxide charges, with impurities and with
interface roughness). Essential ingredients of the physi-
cal model we have employed are the band-
nonparabolicity effects on the subband structure, leading
to a 20% reduction of the mobility; the anisotropy of the
intravalley deformation-potential interaction with acous-
tic phonons, leading to corrections of the same magni-
tude, but in the opposite direction; and a detailed analysis
of screening effects. In particular, we have argued that
while static, multisubband screening applies to the
Coulomb interaction, a more complete dynamic picture
must be employed to treat the deformation-potential in-
teraction for a 2DEG in Si. Short of a rigorous formula-
tion, ignoring screening altogether seems to be appropri-
ate under the nondegenerate conditions in which phonon
scattering dominates. On the other hand, our results on
the hot-carrier-saturated velocity are less satisfactory.
We have expressed our concern that numerical issues

(namely, the need to merge 2D and 3D transport models,
as dictated by computational constraints) may actually
play a non-negligible role in our computations which
yield bulklike value for the saturated velocity. We have
also presented a scheme to implement our physical model
in general device simulations, accounting for the self-
consistency between the Boltzmann, Poisson, and
Schrodinger equations. Despite our efforts and partial
success, fully satisfactory solutions to some problems of a
general nature, such as the coupling of 2D and 3D trans-
port models, are still lacking.

From the discussion of Sec. IV, we see that our results
on the field-effect mobility are roughly consistent with the
expectations expressed in Ref. 10 concerning a theory in-
cluding intervalley scattering and the results of Ref. 11.
The problem remains of ascertaining the importance of
physical elements we have overlooked and of explaining
the 20% overestimation of p, ir which affects our calcula-
tions. We have already remarked that surfon (as opposite
to bulk acoustic modes) scattering may give perhaps a
5% reduction of the effective mobility. This may be com-
pensated for by what we expect from corrections due to
many-body effects: Nakamura and co-workers ' have
shown that accounting for the nonzero imaginary part of
the electron self-energy due to electron-electron scatter-
ing may increase slightly the mobility. Overall, it appears
that our theory is still subject to 5 —10% corrections in
either direction depending on the physical mechanism we
add or neglect: We have seen already that nonparabolici-
ty and anisotropy of the deformation-potential interac-
tion have almost cancelling effects on the final result.
Screening of TA phonons and antiscreening of LA pho-
nons may also play competitive roles, enhancing and re-
ducing the mobility by small amounts in opposite direc-
tions. Finally, we have already stressed the fact that the
values of the deformation potentials themselves are some-
what uncertain, and different values may be appropriate,
despite our efforts to pin down a particular set of values
satisfying various experimental constraints. We conclude
with the perhaps discouraging observation that we could
not have expected anything better than a 20% agreement
with the experimental data. The ability to improve the
original calculations' —a factor of 4 too large —and ob-
tain a modest 20% disagreement should leave us satisfied.
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