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A .p versus N for coupling electrons to interface optical phonons in quantum wells
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The interface optical-phonon modes and their interaction with electrons in layered semiconductor
structures are consi. dered. In a canonical theory where retardation e8'ects are retained from the outset,
the theory leads naturally to the quantization of the free interface oscillations in the radiation gauge for
which the scalar potential is zero and the vector potential is transverse (/=0, V A=O). The descrip-
tion is thus entirely in terms of a transverse vector potential A which satisfies T.A =0 everywhere, ex-
cept at the interfaces where, as usual, only boundary conditions apply. The interaction between the two
subsystems (electrons and interface modes) is the well-known minimal-coupling Hamiltonian which is in
the form e A -p/m *. The main aspects of the quantization of such retarded modes are summarized. It
is then shown that for a double heterostructure the nonretarded vector potential can be expressed in
terms of the gradient of a unique field operator A which enters a unitary transformation e ' . We demon-
strate that the result of applying this transformation on the total minimal-coupling Hamiltonian is the
unitary-equivalent Hamiltonian in which the coupling to electrons is in the form eN. This 4 is identical
to that given by Mori and Ando. The matrix elements using the e4 form of coupling are then compared
with those using the e A .p/m * coupling and seen to be clearly di6'erent. However, when the emission
rates are evaluated using the two coupling Hamiltonians, interesting and nontrivial manipulations are re-
quired to prove that the same results emerge for the total emission rate from any given initial electronic
state of the double heterostructure. The reasons for the agreement of the two sets of results for first-
order transitions are pointed out and discussed.

I. INTRODUCTION

There are a number of excitations in solids, such as the
vibrational modes of polar crystals, which involve an
electric field, and for those excitations which propagate
at speeds well below that of light it is usual to associate
the field with a scalar potential. While this procedure is
correct for truly longitudinally polarized modes, it is,
strictly speaking, incorrect for purely transversely polar-
ized modes, i.e., those (normally identified as polaritons)
whose fields are associated with a transverse vector po-
tential. Nevertheless, in the unretarded limit, the field as-
sociated with a transversely polarized mode is commonly
associated with a scalar potential. The idea behind this is
that the frequency is much lower than it would be for
light at the same wavelength, and an electrostatic approx-
imation, embodied by T XE =0, is therefore valid. This
looks as if the transverse mode has been endowed with a
longitudinal character, therefore allotting the use of a
scalar potential. In fact, of course, a transverse wave
remains transverse with 7 XE always finite, though
small, and it retains thereby its vector potential. Never-
theless, the physical argument for employing a scalar po-
tential is very plausible. If this is accepted, it then
remains to be shown that the interaction with an electron
is as well described by the eN interaction as by the
e A p/m* interaction (here A and @ are the trans-
verse vector potential and the scalar potential, m* is the
electronic effective mass, and p is its momentum opera-
tor). The very diff'erent forms of the two interactions
make their equivalence in this respect by no means obvi-
ous. As far as we are aware, this matter has not been

resolved, though its existence has been highlighted be-
fore. '

A resolution of the issue of which coupling Hamiltoni-
an should be employed in actual calculations is needed,
particularly in view of the importance in layered struc-
tures of the interaction between interface polaritons
(Fuchs and Kliewer interface modes) and an electron,
which has been treated using eN by a number of au-
thors and using A -p by others. Scattering by the
AlAs interface modes of electrons in CraAs wells in a
GaAs/A1As superlattice is predicted to be the dominant
mechanism in narrow quantum wells (a conclusion,
incidentally, indifferent to whether e4 or A .p is used).
The importance of the AlAs interface modes has recently
been confirmed by the experimental work of Tsen et al.

In this paper we analyze how, in the unretarded limit,
the theory with the e A p/m ' coupling can be
transformed to another, where the coupling is eN, using
a unitary transformation, and conclude that the two ap-
proaches give very different difFerential rates between in-
dividual states, but these differences disappear if the tran-
sition is on the energy shell. Surprisingly, considering the
difference in the form of the two interactions, the same
scattering rate is obtained, but a self-energy term appears
in the Hamiltonian where e@ is used and further
differences are envisaged when higher-order transitions
are considered. The equivalence of the first-order scatter-
ing rates for both inter- and intrasubband processes is il-
lustrated in detail for the case of an electron in an
infinitely deep well.

The paper is organized as follows. In Sec. II we discuss
the formalism for the polaritons in a system of layered
media and single out the interface polaritons in their fully
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retarded forms for quantization and for coupling to elec-
trons. In Sec. III we discuss the unretarded limit of the
theory and the unitary transformation that is needed to
cast the old Hamiltonian in a new form, emphasizing its
scalar potential coupling. In Sec. IV we compare and
contrast the predictive powers of the two Hamiltonians
by considering explicit evaluations of the lowest-order
process involving interface polariton emission by elec-
trons. In Sec. V we comment on the results and discuss
their implications with regard to gauge transforrnations
and unitary equivalence.

II. FORMALISM

~field g Ep g B(ciJE) E (co,r)+c B (~,r) (2)

where the sum symbolizes a spectral sum over all the al-
lowed transverse electromagnetic fields of the medium,
henceforth referred to as polaritons, satisfying

E(co)WO .

The strategy while using perturbation theory is to divide
0 into a zero-order part, describing the two noninteract-
ing systems (electrons and polaritons) plus the interac-
tion. The zero-order Hamiltonian for the electrons is

2

a,'= ~ +v, .
2m

(4)

With the Coulomb aspects of the problem separated out,
as contained in V„we have only the free fields to consid-
er. The appropriate gauge to choose is that for which

V'. A=O, )=0 . (5)

Writing /=0 for the polaritons merely asserts that all
Coulomb aspects associated with the presence of real
charges (as opposed to polarization charges) have already
been taken into account in V, . Equation (5) describes a

A theory of interaction of electrons with transverse
electromagnetic fields in polar semiconductor media can
be straightforwardly constructed once three physically
motivated approximations are made. First, we assume
that we are dealing with isotropic media, and second,
that a continuum approximation is valid. These, when
taken together, amount to being able to define a single
dielectric function e(co) for the medium. The third as-
sumption involves the efFective-mass approximation for
the electrons near the I minimum of, e.g. , III-V com-
pounds. The Hamiltonian that is consistent with such a
physical situation is written as follows:

H= Ip —e A(x)] + V, (z)+ Jdr&fi, &~,
1

2m

where V, (z) stands for the Coulomb potential in which
the electrons move, x and p are the position and momen-
tum vectors of the electron, and m* is its efFective mass.
The Hamiltonian density &fi,&fi

accounts for the free
transverse electromagnetic fields coupled to the polariza-
tion fields of the medium and can be written succinctly in
the form '

version of the Coulomb gauge, which is normally referred
to as the radiation" or transverse gauge. The transverse
gauge, Eq. (5), provides the natural conditions to impose
for the purpose of quantizing the photon fields. ' ' It
has also been adopted in the context of lattice dynamics
by Chu and Chang. ' The theory can therefore be de-
scribed entirely in terms of a transverse vector potential
which can be shown to satisfy

VA =0, VA+ A =0.
C

A is the transverse vector potential associated with the
polaritons and E and B are the field vectors such that

E = —A, 8=VX A

We should emphasize that, for convenience, we have
chosen to work in the transverse gauge in which the free
fields have no scalar potential. Gauge transformations
that preserve E and B can be legitimately made, but
these will have to involve adding to our transverse vector
potential a longitudinal component A and there will
then have to exist a scalar potential P to account for the
presence of the additional component A . The addition-
al potentials are connected by gauge conditions that are
different from Eqs. (5). Clearly, the resulting formalism,
albeit legitimately correct, would be cumbersome to use.
We therefore continue to employ the transverse gauge
given by Eqs. (5).

The next steps of the theory in the case of the infinite
bulk can be straightforwardly developed. The main in-
gredients involve the quantization of the modes and the
use of perturbation theory to calculate relevant attributes
of their interaction with the electrons through various
emission and absorption processes. Such a treatment has
been previously considered in detail, ' ' so we do not
discuss the case of the bulk any further here.

Our concern in this paper is primarily with the inter-
face modes that are known to exist when such polar ma-
terials are joined at smooth interfaces to other polar ma-
terials, forming a heterostructure. The corresponding
theory is formally the same as that given above, except
that the vector potential A is that satisfying the bound-
ary conditions at the heterostructure interfaces.

We are interested in the case of a double heterostruc-
ture, for example GaAs/A1As. A layer of width d of
GaAs is sandwiched between two much-thicker layers of
A1As. We use the labels 1 and 2 to refer, respectively, to
A1As (occupying the region ~z~ )d/2) and GaAs (occu-
pying the region ~z~ (d/2). The dielectric functions ap-
propriate for the two types of material are given by

2 2

Tl

where, for material i, we have e; as the high-frequency
dielectric constant, and coL; and coT; as the zone-center
I.O and TO phonon frequencies. The field equation is

2

V A + ' A =0,
C2
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where e(co,z) describes the abrupt changes of e at the two
interfaces separating the three regions of the heterostruc-
ture. The required interface modes emerge from the pro-
cedure of applying the standard electromagnetic bound-
ary conditions at the two interfaces at z =+d/2 and
seeking solutions that decay on either side of the inter-
faces. The mode frequencies conform with the well-
known dispersion relations

2 2
q~~ +q

DE =~~e '
3 ~

+g'~
~q& CO CO

with

(qll+qz }»nh(qzd) —
qzd (qll

—
qz )

ks=
2qzcosh (qzd/2)

and

(20)

(21)

= —coth(qzd/2) (8 modes)
E lq2

(10) (q
ll
+qz )sinh(qzd)+qzd (q

ll

—
qz )

2qzsinh (qzd/2)
(22)

= —tanh(qzd/2) ( 3 modes),

where S and A stand for symmetric and antisyrnmetric
solutions, respectively. The symmetry refers to that of
the in-plane component of the electric-field vector. The
wave vectors q, and q2 are given by

CO E';

c
(12)

(13)

where we have written r=(rll, z). The vector coefficients
A (qll, z) are the mode vector functions associated with
branch cx and are found to be given explicitly by

The quantized transverse vector potential A associated
with the interface modes can then be written as

A'(r, t)= y fd'qll[A. (qll z'e " " a 'qll'+H c. 1

For DB we have

q)d
qiiE e

B
2qiC

+ . , (23)
q iqz qzsinh(qzd)

H= (p e A ) +V (z}+Hs1

2m* (25)

with gs=1 and gz = —1.
The above equations (13)—(23) define the quantized

transverse vector potential associated with the interface
polaritons in the double heterostructure. The mode
operators a (q~l~) and a (qll) are boson operators satisfy-
ing the commutation relation

P qil j=~-8 qll
—

qll (24)

and the procedure is carried out in such a way that the
field Hamiltonian given by the last term of Eq. (2) reduces
to the canonical form. The total Hamiltonian of the elec-
tron in interaction with the interface polaritons is thus
given by

where H„,&d is given by

" =-'& f"'qll" -[ -(qll} -'(qll)+"-(qll} -(qll) j

(14)A =C [rllF (z)+zG ]e

(26)

(15) The above Hamiltonian will be referred to as the
minimal-coupling Hamiltonian. It is the basis for the cal-
culations of transition rates due to emission of interface
polaritons by quantum-well electrons reported recently
by Al-Dossary, Babiker, and Constantinou.

(16)

(17) III. UNITARY TRANSFORMATION

We have seen that in a fully retarded canonical theory
it is natural that the interface modes be quantized only in
terms of their transverse vector potential A . The total
Hamiltonian of the electrons in interaction with the inter-
face optical modes in the double heterostructure is given
by Eqs. (25) and (26) and the mode operators satisfy the
commutation relations given by Eq. (24). The mode fre-
quencies of the difFerent branches satisfy the fully retard-
ed dispersion relations given in Eqs. (10) and (11). Our
concern in the rest of this paper is with the large-q~i limit
of the theory. The large-q~i limit, in fact, corresponds to
the regime in which one deals with calculations of
electron-phonon interactions and in fact corresponds to

where the vertical bars represent the left (at z = —d/2)
and right (at z = + d /2) boundaries of the double hetero-
structure. Finally, the quantities C appearing in Eq.
(14) are the mode coefficients and are given by

1/2
ACt) ~

(2') eo(Dg+2Dg }
(19)

DE and DB arise from the canonical quantization pro-
cedure and are described as follows. For DF we obtain

where the carets denote unit vectors. The functions I'
and G for e=S and A are given explicitly by

—
q) d/2

e ' cosh(qzz) q,+s= e
cosh(qzd /2)

—
q) d/2

e ' sinh(qzz)

sinh(qzd/2)
—

q) d/2
qll q qie sinh(qzz) —

qGs=- e
q, qzcosh(qzd/2)

—q&d/2
qll q z qie cosh(qz ) qz——e
q, qzsinh(qzd /2)
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the unretarded limit of the theory. It is not too difficult
to check that when this limit is applied to expressions
(13)—(23) they amount to the result that the transverse
vector potential A can be conveniently written in terms
of the gradient of a field operator A as follows:

fi
retarded unretarded e

where A is given by

A= —g J dqll
—(a t)) +a P*) .

(27)

(28)

The corresponding unretarded forms of the dispersion
relations are as follows: for the symmetric branches
(a=S) we have

H=(p+RV.'A)
+V (')

207

+ —,
' g Jd q lib'a) ( qll, a )[a ( qll )a ( qll )

+a (qll)a (qll)] . (34)

Equation (34) is the unretarded Hamiltonian that can be
used for the evaluation of the matrix elements and the
transition rates of electrons in GaAs/AlAs quantum
wells, leading to approximate results compared to those
that have already emerged from the fully retarded theory
described in our earlier work. We have verified that the
results thus obtained are excellent approximations of
those given earlier.

Consider now the unitary transformation that is gen-
erated by the operator U, given by—= —coth(qll 0 /2)

E1
(29)

U (35)

and for the antisymmetric ones (a = A) we have

—= —tanh(qlld/2) .
E'1

(30)

In Eq. (28) we have, for convenience, omitted the qll
la-

bels in the mode operators a and a . The functions P
are the mode functions pertaining to branch cz at wave
vector ql). Each p corresponds to the unretarded ver-
sions of F and 6, obtainable from the full expressions
given earlier in Eqs. (15)—(18). We have for the sym-
metric functions (a=S)

where A is as defined by Eqs. (27) and (28) and is thus
strictly dictated by the expressions correctly emerging
from the procedure of taking the unretarded limit of the
fully retarded transverse vector potential. When the uni-
tary transformation is applied to the theory correspond-
ing to the Hamiltonian in Eq. (34), it amounts to the
transformation of the relevant operators, represented
generically by 0, via the well-known expansion

'2
0'=e' Oe ' =0+i[A, O]+—[A, [A, O]]+

RE2

2(2qr) e()qllD

' 1/2 (36)

Thus, although H' will formally have the same appear-
ance as H in Eq. (34) but with primed quantities, i.e.,

X eIIq (z +d/2) COSh(qllZ) —
q (z —d/2)

cosll( q
ll
d /2 )

(p'+fiVA) +
2@i

II
i (q r —cot)

(31)

AE2

2(2qr) eoqllD

qII(z+d/2)X —e

1/2

sinh(qllz) —
q (z —d/2)

II

sinh( q
ll
d /2)

where the vertical bars represent the left (at z = —d/2)
and right (at z = +d /2) boundaries of the double hetero-
structure. Similarly, for the antisymmetric functions
(a= A ) we have

(37)

the evaluation of the right-hand side of Eq. (36) leads to
expressing H' in terms of the old (unprimed) operators.
With the square involving p' expanded, the Hamiltonian
H' can be evaluated by transforming it term by term us-
ing Eq. (36). Alternatively, and much more conveniently,
we can proceed without expanding the square as follows.
Consider first the transformed p'. We have, using
p= —iAV,

II

i (q r —cot)
(32) p'=p+i [A, p]= p fiVA, — (38)

8E1 BE2
D —E2 E1 (33)

In the above the quantity D appearing in the denomina-
tors of the mode coefficients is given by

where, for 0 —=p, the series in Eq. (36) terminates at the
first commutator. Since VA commutes with A, the only
other operator transformations required to complete the
evaluation of the new Hamiltonian are those of a' and
a'~. We have for a '

The nonretarded minimal-coupling Hamiltonian is ob-
tainable simply by substituting from Eq. (27) into Eqs.
(25) and (26). We have

a' =a +i[A, a ],
and the commutator gives

(39)



2240 M. BABIKER, N. C. CONSTANTINOU, AND B. K. RIDLEY 48

[A'-]=' y fvqil [a ''a ]P = P*. (40)

We therefore have

a'=a +
'Ado

and similarly

(41)

(42)

Denoting the Hfi, 1& the field part of the Hamiltonians in
Eq. (37), we have on substituting for a' and a' using
Eqs. (41) and (42)

Hr ia
= i X f ~qll~~

IV. COMPARISON OF A -p AND 4 COUPLINGS

In Sec. II we derived the quantized vector potential
A . From A we were able, in Sec. III, to deduce a
specific scalar potential N associated with it in the unre-
tarded limit, and we saw that this N is precisely that
given by Mori and Ando.

In this section we consider the relaxation processes
mediated by the interface modes that can arise for elec-
trons confined in a double-heterostructure quantum well.
We distinguish intersubband and intrasubband processes
and aim to compare and contrast the predictive powers of
the two theories using both the minimal-coupling version
and its unitary equivalent.

The two alternative interaction Hamiltonians ap-
propriate for the emission processes referred to above are

a — P a +
and

H;„,(A )= — A p (48)

+ a + e H;„,(4)= —e4 . (49)

(43)

Hfi 1d fi 1d e++~ 1f ~ (44)

where Hfi„z is exactly the field part of the old Hamiltoni-
an. The second term eN emerges from the expansion
such that

On multiplying out the brackets, we find that the result
can be written in the form

The first-order processes we are interested in occur be-
tween an initial state, denoted by i &, and a final state,
denoted by f &. These are defined as follows:

If &
= Iq'q, (qll, ~) &, (50)

where ~%'; & and ~%'I & are electronic stationary states cor-
responding to the Hamiltonian H, given by Eq. (4).
~(qll, a)& is the single interface polariton state of wave
vector qll and branch a, while

~

(0) & is the vacuum state.

4= g f dqll(a P
—a P*) . (45)

A. Intrasubband transitions

We are thus naturally led to define a new operator N,
which turns out to be exactly the scalar potential for the
interface modes. With P given by Eqs. (31) and (32), the
above scalar potential, given by Eq. (45), is in fact the
scalar potential given by Mori and Ando. The last term,
denoted by h„,z, is formally identified as a self-energy
term contributing to the mass of the electron due to its
coupling to the interface modes. It is given by

1/2
e' ll 'llcos

277 d d

iri (k' )
E, =D, +

2m

(51)

(52)

The electron states and their energies associated with
the intrasubband scattering within the first subband are
given by

~self e g f ~qll (46)

Substituting for p' and Hfi, 1& using the above results
and after cancellation of the terms involving V'A within
the square of the first term, the transformed Hamiltonian
Eq. (37) can be written as follows:

EI=C, +

1/2
e' ll '"cos

fi (k()
2m

(53)

(54)

/AH —iA

2

+ V, —eN
2m

where, for simplicity, we have assumed an infinite
confining quantum-well potential V, . 6„are the lowest-
energy eigenvalues corresponding to the Hamiltonian in
Eq. (4) and are given by

+-,'y f dqllfico(a a +a a )+b,„,&. (47)
g2 2 2

n =1,2, 3, . . . ,
2m

(55)

The Hamiltonian H' given by Eq. (47) is the unitary
equivalent of the "old" unretarded Hamiltonian H given
in Eq. (34).

with d the quantum-well width.
From symmetry considerations, only the symmetric in-

terface modes contribute to intrasubband processes. The
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first matrix element can now be written down using the
original minimally coupled version in unretarded form.
We have

2m*~(q„)
go= (66)

At(A'&=(f A~ p i), (56)

It is easy to see that conservation of energy in effect wipes
out the differences in the matrix elements and therefore
leads to identical intrasubband rates.

which is

dI(t( A )= — f (qll)[kllcos(8) —
—,'qll]

2(2') eh'

x5(k (57)

with 0 the angle between the vectors kll and qll. The
second matrix element emerges when the transformed
Hamiltonian is employed. It is Iq, )= 2

2' d
27TZ

sin (67)

B. Intersubband transitions

In the case of intersubband scattering we assume that
the electronic initial state is that at the bottom of the
second subband and relaxation is by transitions to the
lowest subband. The initial electronic state is therefore
given by

' 1/2

JR(e) = —(fleell'),
which yields

(58)
The corresponding energy eigenvalue is that conforming
with k' =0:

II

2(2m. ) ego qll
3

"
f(qll)~(kll —

k(l
—

qll ~

qlld

In Eqs. (57) and (59) the function f (qll ) is given by

—q d/2 tanh( q
ll
d /2 )

2+(2~/d)2f(q )=C(q )e

(59)

(60)

E,. =8
and the appropriate final state is

' 1/2

2~ d

(68)

(69)

where C(qll ) is given by
1/2

I ( A ) = f d qll fd k(~Id'�( A') l'&(&; Ef—

Aez
(61)

2(2'�) eoqll (qll )e D

It is seen from the above that A. ( A ) and JM.(@) are
different. In particular, the former has an angular depen-
dence (8), while the latter does not.

If, however, one is interested in calculating the emis-
sion rate using Fermi's "golden rule" then one would
evaluate the following:

with the corresponding energy eigenvalue

111 (k()
Ef =8)+

2m
(70)

(A (=(f . Ai p i), (71)

glvlng

At( A )= —
—,'ecood qll)e " coth(qlld/2)

From symmetry, only the antisymmetric modes contrib-
ute and it is straightforward to show that the correspond-
ing matrix elements are as follows:

and similarly

I (+)= '„ fdqllf dk(~l~(+)l'&«, —Ef

(62)

(63)

(qlld) +qr

where coo is given by

3

( d)2+9 2 5(q +k ),

(72)

It is straightforward then to show that we have

r( A') =r(e) and finally we have

3m A

2m d
(73)

where

16(2n. ) e m'

q+

q t4ki 2
( 2+ 2 )2~1/2

(64)

JR(e)= —2ecl7(qll)dc(qll)e " coth(qlld/2)

X 1 1

(q d) + qr (q d ) + 9m.
5(q+k ).

II II

(74)

q =k'+(k' —qo)'

where qo is defined by

(65) Again it is evident that the two matrix elements are quite
different for the same transition. It is, however, straight-
forward to proceed to the calculation of the correspond-
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ing transition rates, and we obtain the simple result
2 2 2

I(A )

r(e) 3' (75)

It can now be verified that the right-hand side reduces to
unity once we make use of the relation of conservation of
energy embodied in the 6 function

(76)

V. COMMENTS AND CONCLUSIONS

In this paper we have discussed the theory of interac-
tion between interface polaritons and electrons in semi-
conductor low-dimensional structures. The main issues
have concerned the calculational frameworks that may be
used for the evaluation of dynamical attributes of the in-
teraction involving the emission and absorption of the in-
terface modes by the electrons. We have shown that a
theory developed from first principles would involve
quantizing the fields in the transverse gauge (radiation
gauge) for which /=0 and the vector potential is pure
transverse. This leads to the minimal coupling of elec-
trons to the interface modes in their fully retarded form,
described only via a transverse vector potential. Calcula-
tions using the minimal-coupling form are therefore like-
ly to give the desired results whether retardation is re-

The above conclusions are consistent with the situation
in which two canonically connected theories are used to
describe the first-order interactions involved in the transi-
tions between stationary states of the total zero-order
Hamiltonian. ' For real transitions, involving matrix ele-
ments on the energy shell, the two theories yield exactly
the same results. This is one of the main conclusions of
this paper and confirms the validity of the methods used
by Al-Dossary, Babiker, and Constantinou in their cal-
culations of the electron-interface optical-phonon interac-
tions. For virtual transitions, however, energy need not
be conserved and the interaction Hamiltonians yield
different matrix elements. The appearance of the self-
energy term 6„&f in the transformed Hamiltonian, Eq.
(47), is indicative of the fact that the transformation has
resulted in the explicit appearance of contributions that
would otherwise have arisen from virtual self-energy
transitions. Similar aspects would arise if the two
theories were to be employed in calculations of scattering
profiles and spectroscopic line shapes. Then the scatter-
ing cross section determining the profile P(co) would be
proportional to the square of the transition matrix ele-
ment, which is not on the energy shell. ' As a result,
when the relevant predictions of the two theories are
compared, one would expect a relative shift of the center
of the line profile and, in principle, perceivable differences
in the line shape.

Higher-order processes, too, are expected to involve
different calculational details arising from the use of the
old or new Hamiltonians. We defer further comments on
the relative calculational merits of the two theories to the
last section.

tained or ignored at an intermediate or later stage of the
calculations. The unretarded limit of the theory has been
shown, by application of a unitary transformation, to
lead to a version of the theory in which the coupling is in
terms of a scalar potential. Thus the connection between
the complete theory and its nonretarded scalar potential
version is established, clarifying a recent controversy
about the appropriate coupling between the modes and
electrons. '

The transformation is not a gauge transformation, as it
may appear at first sight. Gauge transformations change
the longitudinal part of a vector potential, leaving the
electric and magnetic fields unchanged. ' In the present
case we have chosen to work in the radiation gauge for
which /=0 and V. A =0, so there is neither a longitudi-
nal field A nor a scalar field P to begin with, i.e., before
the unretarded limit is taken. However, when the unre-
tarded limit is taken, we find that the longitudinal part
introduced is the limit of a unique transverse vector po-
tential, not an addition to it. This is apparently a pecu-
liarity of interface polaritons which, in the unretarded
approximation, acquire a longitudinal character, in addi-
tion to their normal transverse character, i.e., the modes
appear to be both divergence free and curl free simultane-
ously. If retardation is retained throughout, this ap-
parent anomaly would be absent and there is no question
of applying any transformation. When the unretarded
limit is found, the vector potential merely takes the shape
of the gradient of a scalar function: taking the unretard-
ed limit is not tantamount to applying a gauge transfor-
mation. When the unitary transformation is applied, the
theory is equivalent in full to the unretarded polariton
theory. However, we have demonstrated here that the
predictive ability of the transformed version depends on
the way it is utilized in conjunction with perturbation
theory.

We have seen that, for all first-order interactions in-
volving real transitions, the two theories lead to exactly
the same results. In contrast, the manifest differences in
the transition matrix elements are indicative of
differences in predictions whenever virtual transitions
come into play, as one would expect in principle to be the
case, for example, in calculations of electron-energy-loss
spectroscopy involving such interface modes. Further-
more, the appearance of the self-energy term in the
transformed Hamiltonian is a clear indication of the role
of such virtual transitions in exhibiting differences in cal-
culational details using the two Hamiltonians. In the
context of III-V semiconductor heterostructures such as
GaAs/A1As systems, clearly we have established that use
of the two coupling Hamiltonians e A .p/m' and e4
would lead to the same results for intersubband as well as
intrasubband emission rates, since these involve first-
order matrix elements that are on the energy shell.

We now discuss the implications of this work for the
different models employed to describe the electron-
phonon interaction in layered structures. We emphasize
that the use of a scalar potential in the unretarded limit
to evaluate the interface optical-phonon scattering rates
in III-V quantum-well systems is justified. Any previous
criticism of the scalar potential approach' and the sug-
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gestion that the interface modes couple to electrons weak-
ly turn out to be not applicable in the unretarded limit.
A brief mention of the appropriateness of a scalar in-
teraction for interface modes emerging from the
minimal-coupling form of the interaction was in fact
made in Ref. 21, but the point was not pursued any fur-
ther there. Finally, we address briefly the question of
which model is appropriate for the description of the
confined modes in the GaAs/A1As system. Recent com-
plex lattice-dynamical calculations and more-involved
continuum models ' have shown that the simple dielec-
tric continuum (DC) model (e.g., Ref. 7) and the related
continuum model of Huang and Zhu (HZ) (Ref. 24) give
good agreement with the scattering rates found via
lattice-dynamical calculations, in contrast to the hydro-

dynamical model, ' ' which gives lower rates. Despite
their success in yielding rates that are in agreement with
microscopic calculations for CsaAs/A1As systems, the
DC and HZ models are found to be inadequate (as is the
hydrodynamic model) in explaining the angular anisotro-
py of the zone-center optical modes ' in these systems.
In this case, microscopic models ' ' or macroscopic
models which include bulk dispersion ' ' are required.
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