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Plasmons localized at point charges in semiconductor quantum wells
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The plasmon excitations of inhomogeneous carrier gases in semiconductor quantum wells in the pres-
ence of charged impurities are investigated. The random phase approximation for the carrier gas yields
an integral equation which expresses the condition that plasmons may be self-consistently localized in
the vicinity of the impurity. The localized plasmon is a density wave trapped at the impurity site and ex-
ists in the electron (hole) gas only for negative (positive) impurity charge. Bound states of the intersub-
band plasmon are found for all densities of the carrier gas in a quantum well, a result which difFers quali-
tatively from the bulk case. Numerical results for the binding energies are given for a range of parame-
ters.

I. INTRODUCTION

Both collective effects such as plasmons and also im-
purity bound states have been of considerable interest in
recent studies of semiconductor quantum wells. The
confinement provided by the heterostructure permits the
investigation of the role of dimensionality on these prop-
erties. For example, recent experimental work suggests
that plasmons may be bound by neutral donors in quan-
tum wells. ' The case of a plasmon bound at a point
charge in a bulk electron gas was investigated earlier
theoretically. ' There it was found that in a doped
semiconductor bound plasmon states can exist only for
densities below a low threshold, which is not in the re-
gime of physical interest (see Appendix A). The physical
picture of a bound plasmon in the bulk case is that the
electron density is reduced in the vicinity of the negative
point charge which lowers the plasmon energy there.
The density nonuniformity causes plasmon scattering and
may give rise to a bound plasmon state. The latter is a
density wave trapped at the impurity. Such states may
have interesting effects on optical and transport proper-
ties.

In the case of a semiconductor quantum well (QW)
with finite electron or hole density, there are both in-
trasubband plasmons which are associated with a single
carrier subband, and also intersubband plasmons which
are associated with carrier transitions between two sub-
bands. ' The dispersion of the intrasubband plasmon be-
gins from zero energy and does not have an upper bound.
On the other hand, for intersubband plasmons, as for the
bulk plasmons, there is a lower bound to the energy
dispersion curve. As will be seen from the discussion
below this feature permits the existence of the bound
state of the intersubband plasmon. The system which we
study here is an electron or hole gas in the presence of a
point charge. This model represents physical systems
containing various charge configurations. These include
single ionized donors or acceptors, which exist in states

having one or a few units of charge, or clusters of defects
which have a greater charge. The extended intrasubband
and intersubband plasma excitations in a quantum well
are illustrated schematically in Fig. l.

The random phase approximation (RPA) is commonly
used to derive the collective elementary excitations of the
electron gas in a quantum well. "' We have used an ap-
proach suggested by Sham to obtain an extension of the
RPA for the inhomogeneous electron gas and to derive
an integral equation for the bound state of a plasmon. A
brief description of our treatment of the quantum well
case was presented earlier, where an equation for the
bound state was derived and investigated qualitatively by
using a separable approximation and sharp cutoff in

FIG. 1. Sketch of the energies of plasma excitations in a
semiconductor quantum well vs wave vector. The lower solid
curve represents an intrasubband plasmon, and the upper solid
curve represents an intersubband plasmon. E» is the energy
separation between two subbands. The lightly hashed areas
represent single-particle excitations.
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momentum space for the kernel of the integral equation.
Here, a more complete treatment is presented, and the in-
tegral equation for the bound state is solved numerically
with screening QW form factors properly taken into ac-
count. We find that a bound state of the (intersubband)
plasmon exists for an arbitrary high density of the elec-
tron or hole gas. This behavior is different from that for
the bulk case. ' Explicit results for the binding energies
are obtained as functions of doping density, QW width,
and carrier effective mass.

This paper is organized as follows. In Sec. II the mod-
el of the electron or hole gas in a QW is defined, and the
necessary formalism is described. In Sec. III an equation
for the collective excitations is derived, and the approxi-
mations used are described. The numerical solution for
the bound state is given in Sec. IV for ranges of parame-
ters. The results are discussed in Sec. V. A brief descrip-
tion of the problem in the bulk case is presented in Ap-
pendix A. The discussion there makes clear the qualita-
tive differences between plasmon localization by a charge
in a bulk semiconductor and in a quantum well. The in-
teraction matrix elements and form factors for the
Coulomb interaction in the quantum well are given in
Appendix B, and the parameters describing the long-
wavelength dispersion of free QW plasmons are given in
Appendix C.

II. RPA FOR AN INHOMOGENEOUS ELECTRON GAS
IN A QUANTUM WELL

c(r,z) = A '~ g c„(k)exp(ik r)g„(z),
k

(2.1)

where g„(z) is a subband wave function of a one-
dimensional confining potential and can always be chosen
as real; A is the normalization area.

To derive a linear-response equation for the inhomo-
geneous QW system, we introduce an off-diagonal density
operator,

In real space the position of the carrier is given by a
three-dimensional (3D) vector R=(r, z), where r is a 2D
vector and z is taken along the growth direction. Let
c (r, z) be a carrier creation operator in second quantiza-
tion. The density operator is given by
p(rz ) =c (r, z )c (r,z). Calculations will be performed in
the basis

~ n, k ) where n is a QW subband index, and k is
a 20 wave vector. Correspondingly,

p(r, z„zz)=A ' g exp( —iq r)f„(z,,zz)p„(q),
q, nm

p„(q)=pc„(k+q)c (k) .
k

A weak external charge distribution described by the
operator p'"' with matrix elements p';~"'(r) couples to the
carrier gas and changes the Hamiltonian H to H+H„,
with

H,„,= fdr dz dz'p(r, z) V(r, z, z')p'"'(r, z'),

where V is the Coulomb interaction. This external per-
turbation induces a change 5p„~(r)in the subband ma-
trix elements of the operator P(r;z, z'), and the usual
derivation of the linear response gives

5p„(r,t)=A' ' f dt dr'dr" g D„&(r,r', t t')—
plij

X V I, ( r' —r" )5p', ,"'(r"),
(2.4)

where the retarded density response function D is defined
as

D„~&(r,r', t t') = i 8(t———t')( [p„(r,t},p~I(r', t') j ) .

(2.5)

Here, p(r, t) is a Heisenberg operator e ' 'P(r)e' ', and
in case of zero temperature the expectation value is taken
in a ground state of H. The interaction matrix element is
defined by

V „;,(r)= f dz dz'V(r;zz')g (z)g„(z)g;(z')gj(z') .

In the
~ n, k ) basis and after Fourier transformation in

time,

5p„(k,co)

=( Afi) 'g g D„~i(k,k', co)V i; (k')5p';,"'(k', co). .
ijpl k'

(2.6)

The change of the total carrier density in the presence of
H„,is

5p„(k,m)=5p„(k,co)+5p'„"'(k,co) .

We define the off-diagonal dielectric operator c in the
momentum space in analogy to that in the homogeneous
system in the operator form as

p(r, zi, zp ) —c (I', z) )c(l,z2 )

In the
~ n, r ) basis,

P(r, z &,zz ) = g f„(zi, z2 )p„(r),

(2.2)

(2.3)

E
' =A 'DV+I,

so that

5pT (k, co)= g E„'„(k,k', co)5p';,"'(k', ~) .
mn, k'

(2.7)

where

f„=g„())zg (zp),

p(r) =c„(r)c(r),
and in the ~n, k) basis f dk' g E „;~(k,k';co)5p J(k', co)=0 . (2.8)

Inverting Eq. (2.7) and defining the collective excitations
by the condition 5p'"'=0 while 5p %0, we obtain an
equation for the collective excitations of the system H,
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Here, and elsewhere, the k sums are converted to the 2D
integrals by

g~(2m) 3 fdk.

Our next task is the evaluation of e(k, k';co) for an elec-
tron or hole gas in a QW in the presence of a fixed point

I

charge. Here we will be interested in bound states of the
intrasubband and intersubband plasmons, and thus we
will include only the first two levels in a symmetric quan-
turn well with only the lowest level occupied by carriers.
Tunneling into the barrier will be neglected in this calcu-
lation.

The Hamiltonian for the system in second quantization
is

H=H, +H, ;,
H, =IC+H;„,= g e„(k)c„(k)c„(k)+(2A)' g [V», i(q)p, (q)p, ( —q)+2V» 22pz(q)p2( —q)]

k;n =1,2 q&0

+(2A) ' g [[V&z,2(q)c, (k)c2(k+q)c, (k')c2(k' —q)+(1~2)]
kk'q

+ [ V, z z, (q)c, (k)c2(k+q)cz(k')c, (k' —q)+(1~2)]],
H, ; = —3 ' g ZV„„(q)p„(q).

q&0; n

(2.9)

H, represents a system of charged carriers including the
carrier-carrier Coulomb interactions; H, , represents the
interaction of carriers with impurity of charge Ze. The
Coulomb matrix elements are given by

V~ „(q)=f dz dz'g, (z)gj. (z) V~(z —z')g (z')g„(z')

(2.10)

and

V „(q)=f dz g' (z)V (z)g„(z), (2.1 1)

where V (z) is a 2D Fourier transformation of the
Coulomb potential energy V(r, z —z') and is given by

V (z) = (2vre /E „q)exp( —
q/z/ ) . (2.12)

In this equation the background dielectric constant is
taken to be the high-frequency value for the frequencies
larger than LO-phonon frequency coLo. In the isotropic
effective-mass approximation,

E„(k)=A'k /2m +E„,
where E„is a QW subband energy. The density operator
p„is a diagonal part ofp„ in momentum space,

p„(q)= g c„(k+q)c„(k). (2.13)

In actual calculations we will take

g', (z) =&2/L cos(mz/L )8(L/2 —
~z~ ),

g'2(z) =v'2/L sin(2~z/L)0(L /2 —
~z~ ) .

(2.14)

Explicit expressions for the interaction Inatrix elements
in this model are given in Appendix B.

A detailed treatment of the homogeneous electron gas
in a QW can be found in Ref. 4. In order to extend it to
the present case which lacks the translational invariance
in the QW plane, we define a time-ordered Green's func-

I

tion which is off diagonal in k space,

fiG„(k,k', t) = i (0'0~ T—c„(k,t)c (k', 0) ~%'0), (2.15)

ReII (co)=ReII (co),

ImII (co)=(sgnco)ImII (co) .
(2.18)

where c„(k,t) is a Heisenberg operator e ' 'c„(k)e' '.
In order to derive a perturbation theory formalism for H,
we rewrite Eq. (2.9) as

H =H0+H;„, ,

H0=K+H, ; .

Dyson's equation and the RPA then can be derived in
close analogy to the homogeneous QW case."' We define
a density propagator as a time-ordered correlation func-
tion,

D„,, (k, k';t)= i(40~ Tp„(—k, t)p)(k', 0)~qlo) . (2.16)

It satisfies the usual Dyson's equation in operator form,

D'= rr+II VD',
where H is an irreducible part of D, and V is the bare
Coulomb interaction. The lowest-order term in the per-
turbation expansion of the irreducible part is given by

II'„.(k, k;~)
=(2m)f dq.dq' f des'G„(q,q';co+co')

X G (k+q, k'+q', co'),

(2.17)

where G„(k,k';co) is the (n, n) component of the electron
propagator for H0=K+H, ;, i.e., for the system of in-
dependent electrons interacting with the impurity. This
term is shown diagrammatically in Fig. 2. The RPA is
derived by same general arguments as in a homogeneous
bulk case. %'e define the operator II by
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5p (k,z) =g')(z)(2(z)g(k)+g(z)5p»(k),

where g, is a subband envelope wave function.

(2.24)
q, , m

rI„(k),kz;ro) =

q~+k~, nq,+k, , n

X
A
I \

I
I \

III. EVALUATION OF IIgp AND AN INTEGRAL
EQUATION FOR THE LOCALIZED

INTERSUBBAND PLASMON+ ~ ~ ~

In order to obtain an explicit integral equation from
Eq. (2.23), we have to evaluate the polarization propaga-
tor II„(k,k', co). In principle, we could use Eq. (2.17) if
we knew 6 (k, k', co). However, for the gas of indepen-
dent electrons interacting with an impurity via the
Coulomb potential an exact expression for the one-
particle Green's function is not known. Here we will de-
velop an approximation for II„using a spectral repre-
sentation and evaluate it with what amounts to an infinite
sequence of sum rules, as was suggested by Sham in the
case of the bulk system. In this way we shall derive in
the next section a reasonable approximation for the ker-
nel of the integral equation (2.23) together with a cri-
terion for its validity.

As a digression we note that if one were to choose to
model the carrier's interaction with an impurity by the
point potential 5(r), an exact expression for 6 (k, k', co) in
Eq. (2.17) would be available. But even then the direct
evaluation of Eq. (2.17) would still be very cumbersome.

The polarization propagator ))111„(k,k';co) in the RPA
is a time Fourier transformation of the retarded density-
density correlation function,

I
I
I
I
I
I
I
I

I

I

I

+
I

I

I

I+ ) + ~ ~ ~

FIG. 2. The random-phase approximation for the density
propagator H„.The thick solid line represents the one-
particle propagator of the system of independent carriers in the
presence of impurity. In the approximation employed here the
impurity-carrier interaction is separately screened in the RPA.

&=I—H V . (2.19)

We substitute this expression into Eq. (2.8) and obtain a
system of coupled integral equations. Omitting the ex-
plicit co dependence,

g [5&),
—II, (k, k')V, , (k')]5P, (k') D„„(k,k', t) = i 8( t ) ( [p—„(k,t),p„(k',0) ]),k'

+ y [ —11'„(kk)V„„(i)5p,', (k ) ]=0, which is a momentum Fourier transformation of the
density-density response function D (r, r', t) defined in Eq.
(2.5). Therefore it has a spectral representation easily de-
rived by using the identity

k'
(2.20)

+21(k k )V21, 12(~ )5P12(k )]
k'

dc' e8(t)=-
~ ~—oo 27Tl CO+ l'g

+ g [5,—11,', (k, k') V„„(a)5p,', (k ) ]=0 .
k'

According to Eq. (2.10), with g —++0. We then have

V12, 12( ) V12,21(~) V21,21(~) dv o„(k,k', v)
))III„(k,k';co) =

—oo 27K CO V+l'g
(3.1)

The two coupled integral equations (2.20) are decou-
pled simply by adding and subtracting them. By defining

where we have defined the spectral function per unit area
as~=n'+n' (2.21)

o.(k, k', ro)= J dt e' 'o(k, k', t),
o(k, k', t) = 3 '( [p„(k,t ),p„(k',0)] )

(3.2)g(k) =5p)2(k)+5p21(k), (2.22)

we obtain an integral equation for the intersubband col-
lective excitations In terms of a complete set of eigenstates ~a) of the

Hamiltonian Ho defined as

g [5k),—y(k, k') V)2 12(k')]g(k') =0 . (2.23) HO=K+H, ;, (3.3)k'

The carrier density in the ~k, z) basis is related to the
function g(k) as

the spectral function at zero temperature is given by the
following expression:

Then, from Dyson's equation for D"and the definition of
the inverse dielectric operator c ', we obtain the RPA
for c, in operator form,
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0„(k,k', cD)=2vr g [[p„(k)]o[p„(k')]o

X 5(E Eo——cD)

—[p„(k)] [p„(k')]*
X5(E —Eo+cD) J, (3.4)

(2m. )
' f dvv~cr„(v)=( i—) 0„(t)~, +0

QO Btp
(3.6)

and evaluate this from the equations of motion for the
Heisenberg operators p(t), p (t),

We evaluate the right-hand side of this equation by using
the Fourier transformation

where [p„]o:—(a~p„~0) and ~0) is being a ground
state of H0. The part diagonal in k is obviously real,

a. (k, k;~)=2~g l[p. (k)].ol'[5(E.—Eo —~)

—5(E Eo+—cD)] .

Equations (3.4) and (3.1) constitute the Lehmann repre-
sentation of II . To keep the notation simpler, we omit
the superscript R in II . The ofF-diagonal part of
0.(k, k', cD), in general, is a complex number, and so is the
polarization propagator. We shall use only the real part
of the polarization II in Eq. (2.23). Then, the solution
will have a finite lifetime because for the general solution
ImcD&0. The lifetime will be estimated as in Ref. 2. Now
we want an expression for ReII„(cD)in terms of 0(cD).
From its definition, II(cD) is an analytical function of cD in
the upper half-plane and vanishes at infinity. Therefore,
we can use the Kramers-Kronig relation which we substi-
tute into (3.1) and obtain

11( ) P f dcD 0 (cD )

27T co co

dCD dCD 0'(CD )—tP
2& 2' co' —co co' —co"

iA p =[p,HO],~p

=0.„(kk, t',=0)

'(p„„(k—k') —p (k —k')) .

Recall that in terms of c and c,
(3.7)

p„(k)=gc„(k+q)c (q),

p(r)= A 'g e'"'p(k) .
k

We define the macroscopic density n .(r) as

with Ho given by Eq. (3.3). In this way we obtain an
infinite sequence of sum rules.

It is clear on physical grounds that upon resummation
we should end up with the expansion of II2i(cD) in inverse
powers of (cD Ez, ),—and indeed that will turn out to be
the case. Evaluating the commutator [p„(k),p„(k')]
we obtain the first sum rule in terms of the Schrodinger
operators,

(2m. )
' f dvcr„(k,k', v)

If we expand cr(k, k', cD) in a Taylor series in k and k'
and find that to some order the expression
I' jdcD'0(cD' )/(cD —cD') is real, then it follows that to the
same order in k and k',

ReII(k, k';CD) =P f—ra 2rr (v cD)

and

n, (r) = (p,, (r) )

n. (k) = g '(p "(k) ) = A ' f d r e'"'n (r),
so the first sum rule in Eq. (3.7) can be written as

(3.8)

(3.9)

Now, we formally expand (cD —v) ' in powers of v and
obtain

dv a„(v)f =(2') ' g cD t'f dvvi' '0„(v).
p=1

(3.5)

(2') ' f dvcr„(k,k', v)=n„(k—k') n(k —k')—.

(3.10)

The second sum rule is evaluated from Eq. (3.6) with

p =1 and the repeated application of the equation of
motion which yields

(2') ' f dv vcr„(kk;v) , E'„=[n (k „k)—n'(k —k—')]+(A' /2m)k k [n ('k „k)—+n'(k —k')]

—ZA ' g [ V (q) —V„„(q)][n„(k—k' —q) —n (k —k' —q)],
q&0

(3.1 1)

where E „=E—E„is the difFerence between the energies of the subbands m and n. From these and higher sum rules

we learn that our expansion turns out to be also an expansion in powers of k and k'. The corresponding expansion in
the bulk case starts with 0(k k') as seen in Appendix A. In contrast, the QW intersubband expansion starts with 0 (1)
in every sum rule for Eq. (3.6). The orders 0(k ), 0(k' ), and 0(k.k') will be collectively referred to as 0(k ). We
only write down 0 (1) orders in k explicitly in the higher sum rules.

We introduce the following notation:



2228 S. RUDIN AND T. L. REINECKE

4V „(k)=V (k) —V„„(k),
b, n „(k}=n(k) —n„(k).

(3.12)

The next two sum rules to leading order in k are

(2m. ) f dvv cr„(k,k', v)=E „bn„(k—k') 2Z—E „A 'g bn„(k—k' —q)b V „(q)
q

+Z2A g bn„(k—k' —q —q')b, V „(q)b,V „(q')+0(k )
qq'

(3.13)

and

(2m) f dvv cr„(k,k', v)=E „bn„(k—k') 3ZE—„A 'g bn„(k—k' —q)b V „(q)
q

+3Z'E „A 'g hn„(k—k' —q —q')&V „(q)&V„(q')
qq'

—Z3A g hn„(k—k' —q —q' —q")hV „(q)AV „(q')4V„(q")+0(k) .
qq q

(3.14)

Substitution of these sum rules into the right-hand side (rhs) of Eq. (3.5} generates an expansion in powers of Z. Note
that the part of the density n (k) induced by the impurity charge Ze is itself 0 (Z), but for now we classify the terms in
the sum rules by the order of Z that explicitly appears as a factor in the expansion. Now we resum the rhs of Eq. (3.5)
to all orders of frequency co in each given order of Z. First, we resum all 0 (Z ) terms,

b,n„co '+b,n„E„co +An„E „co + . =b,n„(co E„)— (3.15)

The corresponding term in the expansion of g „=H, +H„will be

b,n„(co E„)'+—b, n „(co E„)'=2—b,n„E„(co E„)—
The series on the left-hand side (lhs) of Eq. (3.15) is convergent only if

co/E „I)1.

(3.16)

(3.17)

In the case of intersubband plasmons of particular interest here, n = 1, m =2, and Eq. (3.17) restricts the validity of the
expansion to the physically reasonable region co )Ez, . The terms to 0 (Z) can be resumed as follows:

[ Zco 2ZE—„co 3—3ZE „co— . ]$b—n„(k—k' —q)b, V „(q)= Z(co E„) $ hn—„(k——k' —q)b, V „(q).
q q

(3.18)

This contributes to y„ the following term:

z
+mn

2E
„1+

&mn

' g b,n„(k—k' —q)b, V „(q).
q

(3.19)

Similarly, the summation can be performed for every
set of 0(Z") terms. This yields an expression for y„as
an expansion in orders of Z. Each term of the expansion
involves successive convolutions in momentum space.
The polarization y can be written as

(3.20)

X g b,n„(k—k' —q, — . —q )

q& q.

Xb, V „(q&) . hV „(q) . (3.21)

where
By transforming to the real space it is possible to per-

form the summation in Eq. (3.20). The Fourier transform
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of AV can be written as a 1D integral. For example, for
n =1, m =2, using Eqs. (3.12), (2.11), and (2.12) we ob-
tain

where

S(k) = f dz e "~'~g' (z) . (3.28)

b, Vz, (r) = (2e /E „L)f dz [g(z) —$2(z) ](z +r ) The form of E(k) for a QW static screening is given by

(3.22) s(k) =1+(kTF/k)F(k)G(k), (3.29)

where gi 2 is the QW envelope functions. The density
Fourier transformation is defined in Eq. (3.9). So the
leading term in the long-wavelength approximation takes
the following form:

(k, k';co)=(2n) f d r e' ""y(r,co),

E „—Zb, V „(r)f (r, co) =26,n„(r)
n~2 —[E „—Zb, V „(r)]

(3.23)

This leading term turns out to be a function of k —k'.
Terms that would appear to 0 (k ) and higher order de-
pend on k and k' differently, as seen in Eq. (3.11). Repre-
sentation of y by Eq. (3.23) produces an expression for
the kernel of the integral equation which makes a numer-
ical investigation quite complicated. A considerable
simplification is achieved if ZAV/E2, l

is small enough
to neglect j 1 terms in Eq. (3.20). The criterion for this
to be valid will be formulated below in terms of the
momentum space functions.

In our model only the first QW level is occupied, so
that n2=0, and b.n, 2=n(k). Let us write the electron
density as

G (k) = 1 if k (2kF,
G (k) = 1 —[1—(2kF /k) ]'~ if k )2k~ .

(3.31)

In these equations, k~ is a 2D Fermi momentum and kT„
is a 2D Thomas-Fermi momentum equal to the inverse of
the 2D Bohr radius. Explicit expressions for the factors
S(k) and F(k) are given in Appendix B.

Now we can formulate in momentum space a criterion
for neglecting the j & 1 terms in Eq. (3.20) and thus re-
taining only the term given by Eq. (3.16) in the expansion
of the polarizability. From Eqs. (3.23), (3.16), and (3.19)
we deduce the following criterion:

lZ'& &V ) /Ep, l
« I; (,b, V ):—g b, V„(k)5n(k)

k

(3.32)

where the screening form factor F(k) is defined by

F(k) =f dz dz'g(z)g(z')e (3.30)

and the function G (k) takes into account the finite size of
the Fermi surface,

n(k) =no5k o+5n(k),

n (r) =no(r)+5n (r),
(3.24)

and from Eqs. (3.27) and (3.29),

(b, V)=(2~) f d k[V„(k)—V (k)]

where 5n(r) is a change in the electron density due to the
presence of impurity of charge Z*e, where Z*=Z/E
an external charge screened by the dielectric background.
It is the same charge density that appears in the Poisson
equation for the response potential P„,when an external
perturbation P,„,is applied. Using Eq. (2.3) we can write

S(k)G(k)
k /kT„+G ( k)F (k)

(3.33)

The quantity (b.V) /E2i is shown in Fig. 3 as a function
of QW width L for two typical carrier mass values. For
given m and s there exist a range of QW widths where

V P„,(r,z)=4~e5n(r)g(z),

(rT, z ) =P,„,(r, z )+P„,(r, z) .
(3.25)

QT(k)=p,„,(k)/E(k) . (3.26)

We assume that the point charge is placed at the center
of QW. From Eqs. (3.25) and (3.26) we obtain the linear
screening approximation for 6n as

(3.27)
1(k) Z*S(k)

F(k)

For the case of the hole gas one should replace e by —e in
this equation and in the definition of the impurity charge.
Equation (3.25) implies that the impurity-carrier interac-
tion is screened statically as indicated in Fig. 2. We
define the QW average by

P(k) = f dz P(k, z )g(z)

and then the static screening of the impurity-carrier in-
teraction is given by

04—
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FICx. 3. The interaction parameter ( 6V) /E2, defined in Eq.
(3.32) is shown here as a function of QW width for volume den-
sity n, =1X10' cm, c =10.9, and two di6'erent values of
carrier mass m /mo.
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Therefore, we suggest that for such range of parameter
values the j =0 term in Eq. (3.20) is the dominant one. It
is the term given by Eq. (3.16).

Now, Eqs. (3.24) and (3.23) are substituted into (2.23)
to obtain an integral equation for the function g(k)
defined in (2.22). In the long-wavelength approximation
for terms containing the unperturbed density no5k o we
need only the diagonal part g(k) but to 0 (k ) in order to
take proper account of the free plasmon dispersion. '

With these approximations we obtain the following equa-
tion:

[k' —(pE„/o)k —@]g(k)

+ f 2Ei, 5n (k —k')g(k') =0,a dk'
2n o cr (2' )2

g(k)= g f&(k)k ' e'
1=0

(3.36)

and we obtain for the 1=0 component the following in-
tegral equation:

[k —(@ED,/o. )k+ ~@]fo(k )

f dk'K (k, k')f (k'), (3.37)

By substituting

where

G(bk)S(bk)
"o bk/krF+F(bk)G(bk)

(3.38)
bk —= ik —lt. '~ =(k +k' —2kk'cos8)'i

(3.34) Po(k) =fo(k)[k —(pE~, /o. )k+ ~@]'i (3.39)
where the energy parameter is defined as

(a~ —coo)A' e„
4~e norr(co)

(3.35)

where ~o is the frequency of the intersubband plasmon at
k =0 in the absence of impurity and is obtained from Eq.
(C7) as co &(k =0); a, p, and o(co) are coefficients in the
long-wavelength approximation (LWA) expansion for
plasmon dispersion and are defined in Appendix C in
Eqs. (C2) and (C5). The LWA is compared to the full
RPA for the free plasmon in Fig. 4. It is seen that the
LWA, which will be used here for plasmon dispersion,
gives a good approximation for the RPA at long wave-
lengths. The inter subband plasmon dispersion has a
lower bound given by minIai, (k)], and thus bound states
may exist below it. Accordingly, for bound states, '

8 & 0. Expanding g (k) in 2D spherical harmonics gives

we transform Eq. (3.37) into the integral equation with
the symmetric kernel

po(k) = f dk'K(k, k')$0(k'),
(3.40)

Z*aE2i
K (k, k') = — Ko(k, k')

2mno~

X [k —(@ED,/o)k+ ~8~]
X [k' —(pE, /o)k'+ i@i]

This equation has solutions only for Z &0. Recall that,
by definition, here the impurity charge is Ze for the elec-
tron gas and —Ze for the hole gas. If

&
l

=
l @,l:p E2i /4o' the kernel K (k, k') will be singu-

lar. It follows then that by taking 6' sufficiently close to
8, a bound-state solution will be found at an arbitrary
density. This situation differs qualitatively from the
bulk case for which a solution exists only for densities
below a cutoff at some low value.

10—

)
CO 5-

CU

LLI

0
particle-hole continuum

LWA

-10
0.0 0 4

kL
0.8

FIG. 4. Dispersion relations of the free intersubband
0

plasmons in a QW. The system parameters here are L =100 A,
c =10.9, I=0.2mo, and the volume density is n, =1X10'
cm . Exact RPA is given by the solid curve, LWA is given by
the dashed curve. The region for which there are single-particle
intersubband excitations is indicated.

IV. SOLUTION OF THE INTEGRAL EQUATION
FOR THE BOUND STATE

In our previous work we used a sep-
arable approximation for the kernel Ko(k, k') so as to
reduce an integral equation to a simple transcendental
equation. That required use of a cutoff in momentum
space. That treatment of Eq. (3.40) would be adequate
only at high density where binding is weak. Here, we will
not use this separable approximation and instead we will
solve Eq. (3.40) numerically "exactly" retaining the full
QW screening in Eq. (3.38).

We define the eigenvalues A. of the integral equation
(3.40) in a conventional way,

P(k)=A, f dk K(k, k')P(k') (4.1)
0

so that k ' is an eigenvalue of the integral operator.
Discretizing the momentum space turns this equation
into a matrix equation. We define the binding energy as
the difference between the minimum of the free plasmon
energy ni &(k) and the energy of the bound state,
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(4.6)A/~=—

f dk fo(k) (k, co)

evaluated at the eigenfrequency of the bound S state. In
this equation we use the diagonal dielectric function for
the QW evaluated in Ref. 4. For the parameter range in-
dicated in Fig. 6 we find that the inverse lifetime is com-
parable to the binding energy cob. Therefore co2 «cu, and
the bound plasmon is relatively stable against decay into
single-particle excitations. Because co&-co&, however, the
linewidth of the bound state is comparable to the binding
energy.

V. DISCUSSION

Let us summarize the results presented in previous sec-
tions. We have generalized the equations for plasma exci-
tations ' to the case of an inhomogeneous electron gas in
a quantum well. By extending the RPA to this inhomo-
geneous case we obtained an integral equation given by
(2.23) for the intersubband plasmons. By evaluating to
leading order an infinite sequence of sum rules we have
derived an explicit expression for the long-wavelength ap-
proximation for the kernel of the integral equation for
the quantum well gas of charged carriers interacting with
a charged center, and the result is given in Eq. (3.34).
This equation has both scattering solutions and bound-
state solutions. The latter exist only when impurity has a
charge the same sign as the carriers. For such a case we
have derived an equation for the 5 state of the localized
intersubband plasmon, which is given by Eq. (3.37).

In the corresponding bulk case ' it was found that
bound states exist only for densities below a certain
threshold. As shown in Appendix A this threshold densi-
ty is so low for bulk semiconductors that the plasmon it-
self will not be observable. The situation in a quantum
well is qualitatively different in that the solution of the
bound-state equation (3.37) exists in principle at arbitrary
densities as indicated in Fig. 6(a). To understand this
behavior qualitatively, let us neglect the linear term in k
in the long-wavelength approximation of the interaction
matrix element. Let M be a plasmon "mass" defined by
the inverse curvature of the plasmon dispersion at k =0
in Eq. (C7). Then, the integral equation to leading order
is similar to Schrodinger's equation for a particle of mass
M in an attractive 2D screened Coulomb potential with
an effective charge,

cxZ E2) @le

2+Mn o.

and this potential has a bound state at arbitrary e*.
The results obtained here, which are illustrated in Fig.

6, suggest that bound plasmons below the intersubband
transition energy in semiconductor quantum-well systems
are of physical interest and may be directly observable
depending on the parameters of the system. We find that
the binding enregy is larger for larger carrier masses and

nal part of the dielectric function for an estimate of co2

and obtain an inverse lifetime from A/~=co2. In terms of
the function fo(k) in Eq. (4.4), we obtain

f dk fo(k)E,(k, co)

for wider wells. Thus, for example, the binding will be
small for the electron gas in a GaAs quantum well with
its relatively small carrier mass but will be larger for
holes in GaAs wells with their greater mass. The binding
in some II-VI materials with their larger electron masses
and smaller dielectric constants also will be greater. The
binding energy is greater for larger impurity charge Z
and smaller background dielectric constant c . We find
that for Z/E. on the order of unity the binding enregy
can be a few meV. Thus we expect that for semiconduc-
tors, which typically have dielectric constants in the
range of five to ten, the binding energy of the plasmons at
impurity charges of one or two units will be too small to
be observed. On the other hand, clusters of defects hav-
ing charges on the order of 10 can give rise to bound
plasmons states with observable binding energies. In all
cases there will also be scattering states of the plasmons.
We might note that the carriers in compound semicon-
ductors also interact with the longitudinal-optical-
phonon modes, and thus the elementary excitations in
these systems are couled plasmon-phonon modes. The
problem of bound states of coupled plasmon-phonon
modes interacting with an impurity will be addressed in a
future publication.
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APPENDIX A: BULK PLASMONS IN THE PRESENCE
OF CHARGED IMPURITY

f dco co o'(co) 0 (A3)

where n (k) is a Fourier transform of the 3D density, and,
as in Eq. (3.24), we write

n (k) =n05k 0+ on (k ), (A4)

where 6n is a change of the electron gas density due to

The possibility of plasmon localization by a Coulomb
center in 3D bulk systems was investigated by Sziklas
and Sham. Sziklas used the first Born approximation for
impurity scattering in order to obtain the lowest-order
term in the expansion of the dielectric matrix E(k, k';co)
in powers of k and k'. We prefer to use Sham's approach
which consists of an expansion of the spectral representa-
tion in powers of frequency and an evaluation of the re-
sulting integ rais by using Heisenberg's equation of
motion for the density operator. This approach allows us
to obtain terms to higher orders in the impurity charge.
The equations for the inhomogeneous electron gas in 3D
can be obtained, in fact, from the equations of Secs. II
and III by considering the intrasubband case n =m and
changing 2D momenta to 3D momenta. The first three
sum rules are much simpler than in the QW case:

f d co o'(co) —0 (Al)

(2') ' f den coo.(k, k';co) =(R /m )k k'n(k —k'),
(A2)
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the presence of an impurity. These first three sum rules
are exact and are the only ones derived in Ref. 3. In the
limit of infinite volume A~ ~ and in units where A=1
we obtain the next sum rule

(2m) ' f dcoco cr(k, k', co)

=(Z/m )0 ' g V(k)(k q)(k' q)5n(k —k' —q)
q

—(3/m )(k k')0 ' g (k q) f~+O(k ),
q

(A5)
where V(k)=4me /E„k and fi, is the momentum prob-
ability distribution

fk ~ckck ~ fk +5f~ (A6)

At zero temperature, fl, =8(k —k~), and 5f& includes
effects of the impurity on the one-electron levels. Apply-
ing Heisenberg's equation of motion and defining

S„(k,k')=(2m) ' f dv v"o(k, k', v),
we find that for even n, this S„doesnot contribute to
O(k ) while for odd n it contributes to the polarization
II(k, k', co) in second order of k and k', a term that is
O[(ZV)'" "~ 5n/co"+'j. By retaining terms of fourth
order in k that are proportional to the homogeneous den-
sity n0 and terms of second order in k for the rest, we ob-
tain the following expansion for the real part of the polar-
ization (in units of A'= 1):

ReII(k, k', co) = n0 J
mco k

3nOk +F k g' Z
5i, i,.+ 5n(k —k')+ 0 'g V(q)(k q)(k' q)5n(k —k' —q)

5m 4 k~k
m 2 m'co4

2

+ 0 g V(q)V(q')(k'. q)(k q')(q q')5n(k —k' —q —q')+
m CO qq~

(A7)

where for 5n (k) we will use the Thomas-Fermi formula

Z*
5n(k)=

1 Jk /kTF
(A8)

(t (k) =k5pr(k),

5 CO CO

2 2
—1 k TF ~

CO0 CO0

5 CO TFA=—
9 coo (2m. ) no

(A9)

where coo is the plasma frequency at k =0. The function p
then satisfies the following integral equation:

(k' —6)P(k)= —A fd'O'E(,k 'k)P( k)

with the kernel given by the expression

K(k,k')=, 5n(k —k') .
k k'

(A10)

This is the equation studied by Sziklas. The solutions
with the continuous spectrum are the scattering states.
The investigation of the solutions was facilitated greatly
by the fact that the dispersion of the bulk plasmons is
quadratic, so that Eq. (A10) can be cast in the form of the
Lippman-Schwinger equation for a particle of definite
mass. If the impurity's charge Ze is negative for an elec-
tron gas (positive for a hole gas), Eq. (A10) may also have

where Z*=Z/c
Let us define 5p (k, co) as the change of the total elec-

tron density in the presence of a weak external perturba-
tion. Application of the linear-response theory then gives
an integral equation for this function. The derivations in
Refs. 2 and 3 neglect the terms of order O(Z/co ) and
higher in Eq. (A7). We will do likewise here and com-
ment on the effect of the neglected terms at the end of
this section. We define the function P and the energy pa-
rameters 8 and A as follows:

I

discrete spectrum solutions with 6 &0. If the impurity is
at the origin of real space, the system is rotationally in-
variant, and decomposition into spherical harmonics
yields an integral equation with orbital momentum A1.
For each value of 1, Eq. (A10) reduces to a one-
dimensional integral equation with a kernel that is finite
even for ~6'~ =0. Therefore, there is a threshold in Z/n
for the existence of a bound state. We confine the follow-
ing remarks to the I =0 solutions. If A is viewed as an ei-
genvalue and 6' as a parameter, A(@) is a monotonically
increasing function, and the largest binding energy will
be found from the lowest eigenvalue A. The interparticle
spacing parameter is defined as

I /3

4m.a n0
3

Here, the effective Bohr radius for an electron with an
effective mass m is related to the vacuum Bohr radius a0
by

a =aoc mo/m .

For a given value of ~Z*~ the binding energy is
nonzero only when r, exceeds a certain value r,'. Using
the numerical results in Ref. 2 we obtain for ~Z*~ =1 a
value r,'=5.5. Taking, for example, bulk GaAs we set
the material parameters to be m, =0.06'7m 0,
m& =0.5m0, and c =10.9. Then, at the threshold densi-
ty, the plasma energy A'co0 is 0.5 X 10 meV for electron
gas and 3.7X10 meV for hole gas. These values are
too small for the plasmon itself to be observable.

In the derivation of Eq. (A10) an infinite sequence of
terms of the order of O(Z/co ) and higher in Eq. (A7)
was neglected. It is easy to see that the cumulative effect
of these terms will be to reduce the binding of the puta-
tive bound state, thus reducing the threshold value of the
density even further.
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APPENDIX B: INTERACTION MATRIX ELEMENTS AND FORM FACTORS

The Coulomb matrix elements defined in Eqs. (2.10) and (2.11) are easily evaluated for a QW with infinite potential
barriers and are given by

2e L 1 1

1+k'L'/~' 9+k'L'/~'
128kL 1+ —kL

(1+k L /~ ) (9+k zL z/n z) z

Sez kL 2m(1 —e " ~
)

2 2 2
+E„k(4+kL /vr ) kL

z( 1
—kl. /z

)
Vzz(k) =

k L(4+k L /4~ )

The form factors defined in Eqs. (3.28) and (3.30) are given for an infinite QW by

2(1 — "~~
) 2kL(1+e "~~

)S(k)= +
kL kL +4~

F(k) =kL +2 1

k 2L 2 k 2L 2+4~2
32vr (1 —e "

)

k 2L 2( k 2L 2+ 4~2 )2

APPENDIX C: LONG-WAVELENGTH APPROXIMATION
FOR THE FRKK INTKRSUBBAND PLASMONS

The parameter o. that appears in the integral equation
(3.34) is related to c (co)

In the absence of scattering centers the free intersub-
band plasmons are given by

o (co) =ac(co)+ yh'Qz, . (C5)

1 Viz iz(k)g(k|co) =0 (Cl)

which is, in fact, the diagonal part of Eq. (2.23). The ex-
pansion of V in powers of k can be obtained from the ex-
pression in Appendix 8 and is given by

V,z,z(k)=(2~e / e)(a pk+yk )+—O(k ), (C2)

To obtain the plasmon dispersion co i(k) from Eq. (Cl)
to the order O(k ), one needs c [co(k)] only to order
0 (1).Denoting this as co we obtain

fi c. 2 2
2 AQ

2m 4~ne2AAO21 4 m

where the coefticients are

10a= L,
9~

uFA Q2, E.
2 3 2

+
(4mne a)

(C6)

256p= 4L
81m

Then we obtain the LWA for the free plasmon dispersion
co,(k) to O(k ),

46 L 3

81~

The expansion for y(k ) is

y(k, co)= [A'Qz, +c(co)k ]+O(k ),
A' (co —Qz, )

(C3)

4~ne 0;Q2&
2

63 (
—Q2i+

Ac.

4~ne 002

k
Ac

4~ne Q2&p
k

Ac,

(C7)

where Q2& is the intersubband frequency E2, /A, n is a 20
carrier density, and c(co) is given by

where

O.o=aCO+yAQ2& . (C8)

c (co)= + —43u~h'Qzi+
2m ~ @21

uFfiQ2,+
(co —Q )

(C4)

Equations (C6)—(CS) were used to determine the bot-
tom of the plasmon dispersion in Eq. (4.2) and also to
compare the LWA with the exact RPA (Ref. 4) for the
free plasmon dispersion in Fig. 4. Equations (C4) and
(C5) were used to determine the coefficients in Eq. (3.34).
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