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Local density of states and level width for Wannier-Stark ladders
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The local density of states p(x, E) is calculated for a Bloch electron in an electric field. Depending on
the system size, we can see one or more sequences of Wannier-Stark ladders in p(x, E), with Lorentz-type
level widths and apparent spatial localization of the states. Our model is a chain of 6-function potential
barriers plus a steplike electric potential, with open boundary conditions at both ends of the system. Us-

ing a wave-tunneling picture, we find that the level widths shrink to zero as an inverse power of the sys-

tem size as the system size approaches infinity, confirming an earlier result. The level width will not ap-

proach zero if the 5-function barriers are replaced by the Kronig-Penney potential or smoother ones, as
is commonly believed.

I. INTRODUCTION

It is well known that an electron in an isolated Bloch
band will oscillate with frequency eFa/h in the Brillouin
zone when it is subject to a uniform and constant electric
field F, where a is the lattice constant. It was first point-
ed out by Wannier that such oscillatory motion is associ-
ated with a ladderlike spectrum, now commonly known
as Wannier-Stark ladders. Wannier further proposed
that sequences of such ladders exist even when the inter-
band coupling is taken into account. '

This proposal was immediately challenged by Zak, who
pointed out that sharp Wannier-Stark ladders cannot ex-
ist in a system with any reasonably continuous periodic
potential, because the spectrum is absolutely continuous.
A numerical study on the density of states p(E) for a sys-
tem with a cosine potential in an electric field also
showed no evidence of the ladder structure. Since the
existence of sharp Wannier-Stark ladders in the one-band
approximation was rigorously established, it was then
suggested that a correct account of the interband transi-
tions will smear out the discrete spectrum. Further-
more, it has also been proved that an isolated group of n

Bloch bands can give rise to n sequences of sharp ladders,
so one must consider an infinite number of coupled bands
in order to obtain a continuous spectrum. Recently, by
decomposing the linear electric potential into a sawtooth
part plus a step part, Emin and Hart claimed that the
bands may be effectively decoupled because the interband
matrix elements of the step potential are zero. This
would give proof of the existence of a sharp ladder spec-
trum, but the arguments leading to the vanishing of inter-
band matrix elements have been criticized.

On the other hand, experimental and theoretical evi-
dence in support of the existence of Wannier-Stark
ladders also increased during the same period of time.
Krieger and Iafrate clarified the controversies concerning
the use of periodic boundary conditions and the neglect
of interband transitions. Although they did not discuss
the energy spectrum at all, they can show that the transi-
tions of electrons induced by an incident electromagnetic

field are allowed only if hE =eFa, as if these levels exist.
In recent years, thanks to technological advancement on
superlattices, the existence of a ladder structure seems to
be firmly established.

A clear picture about the nature of the WS ladders
should have emerged from the many years of controver-
sial debates: the ladders are not infinitely sharp levels,
but they are resonant levels whose lifetimes can be long
under conditions of small interband couplings. In earlier
numerical works, such resonant levels are located by
searching for poles of the 5 matrix or the resolvant in the
complex energy plane, with the level widths given by the
imaginary part of the poles. In this paper, we reveal and
display the WS ladder structure in the local density of
states p(x, E), which can be calculated in a simple and
direct way. As we will show in the main text, the WS
ladders appear naturally and very clearly in a plot of
p(x, E) as sequences of mountains, whose widths in the E
direction represent the level widths, and whose widths in
the x direction represent the localization of the ladder
states. Such structures can be easily washed out in the
total density of states p(E).

In order to simplify the calculation, we use in our mod-
el a chain of 5-function barriers to simulate the periodic
potential, and use a step potential to simulate the external
field. There has been criticism concerning the use of the
step potential, arguing that it will lead to vanishing inter-
band transitions however, such criticism is invalid as
has been shown by Kleinman and others. Although our
model is used mainly for qualitative studies, it can also be
used to simulate real solids when the spatial extent of the
wave functions are large compared to the lattice constant
as has been demonstrated by Bentosela, Grecchi, and
Zironi in a similar situation.

The organization of this paper is as follows. In Sec. II
we describe our model and derive a formula for the local
density of states. In Sec. III we present the numerical re-
sults for the local and total density of states with a
variety of parameter values. In Sec. IV, the behavior of
the level width as a function of system size and other pa-
rameters is explained in a picture of wave tunneling
through the potential barriers.
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II. THE MODEL

where V,„, is a step potential, simulating an external elec-
tric field. Reference of energy is chosen such that

V,„,= —jb, for ja (x ((j+1)a, jEZ . (2)

We will take }}I m /2ma as the unit of energy, therefore
6=0.2 corresponds to an electric field of F=7X10

We wi11 study the wave-function solution of a one-
dimensional model with Hamiltonian, as

Q2 d2 + Voa g 5(x —ja)+ V,„, ,
2m

Nl

V/cm for a =200 A and m =0.067m, .
We will choose our boundary such that the potential

beyond both ends of our crystal levels off, as shown in
Fig. 1. The cells are numbered by the integer j in (2).
The wave function in cell j is

f (x)=a e' . +bje

where k =(rrla)&E +jb, (new unit). The coeKcients of
cell j + 1 and cell j are related by a transfer matrix M as

aJ+1 aj
b

=M (4)
j+ 1 j

where

M-= 1

—i{@.+ )
—k. }{j + 1 }a

J J+1 iK e
—i{k +&+k.}{j+l}ae.j j+1

and x =~ V0/a. The above formula remains valid
when E & —j6, in which case we take
k = i, (rr/a)v'j —6+Et Notice that detl, =k /k +„.
which is not equal to the usual value of unity, because the
velocities corresponding to a given energy in neighboring
cells are different.

In our study we will take E & %&A, and drop off the ex-
ponentially large solution at the left edge by letting

1k~ X lk~ X

b N, =0. The two solutions aN e ",bN e
I r

beyond the right edge correspond to incoming and outgo-
ing waves. The normalization of wave functions is set by
taking la~ l

=1. Furthermore, in the actual calculation,
r

the number of cells on the negative x axis is limited to 10
for convenience. The error involved is negligible as long
as we are considering energy only a few 6's large.

The quantity we are after is the local density of states
defined by

p(x, E)=f ltr'jk(x)l 5(E Ek)—
0 27T

1 m

2rrA 2(E + jV„&)

1/2

leak (xl)E„=E +x„a (6)

where Ek=(ka/~) . Unlike the total density of states,
p(E) = f dx p(x, E), which is usually calculated, the local

density of states also contains information about the 1oca-
tion of states, and is more appropriate for the purpose of
revealing the nature of the WS ladders.
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FICx. 1. The potential of the system described in Eqs. (1) and
(2). It corresponds to the case N, =Nt =5.
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FIG. 2. Plot of p(x, E) [in units of I/(ah)] when the electric

field is zero ( VO, A, N„)=(0.2, 0,40). NI in this and in all of the
following figures is fixed to be 10.
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III. RESULTS

The coefiicients a , b . Lj .= —(X&+1)-N„] are calculat-
ed starting from b ~,=0, and a» is chosen such

I I

that !a~!= 1. We can get p(X, E) for some fixed value of
r

energy E. The energy is then changed to a different value
and the calculation is done all over again. The result is
double checked by calculating a, b starting from a&

r

and b&.
r

When the electric field is zero, we should see an
energy-band structure, as shown in Fig. 2. There are 50
cells (N& = 10, N„=40) in this system. Only the first band
and the lower half of the second band are plotted. The
band edges coincide very well with a simple theoretical
calculation.

Figure 3 is a plot ofp(x, E) after we turn on the electric
field. The lattice is composed of 50 cells (labeled—10—39). Only 12 cells (

—1 —10) are plotted here. The
energy range covered is 3 b's wide. Two sequences of
states can be seen. The first sequence lies at energies
equal to (0.34+n)b, where n is the integer and is equal
to 0, 1, and 2 in the energy range of the figure. The
ladder at E=0.346 has a primary peak in cells 1 and 2,
with smaller peaks in the cells to the right. The second
sequence is weaker and broader, but is still discernible,
and lies at energies equal to (0.65+ n)A with n =0, 1,2 in
the figure. The ladder at E =0.656 is primarily peaked
in cell 8, with the heights of the peaks slowly decreasing

a
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0
0

FIG. 3. (a) and (b). Local density of states p(x, E) plotted as
a function of x and E. (Vo, h, N, )=(0.2, 0.2,40) 12 cells are
plotted ( —1 —10). Range of energy covered is 3A, spatial reso-
lution is a/5, energy resolution is 6/100. The curves will be
smoother with higher resolution.
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FIG. 4. (a) —(d). A series of plots of p(E) for a system with ( Vo, h) =(0.2,0.2), N„=40,60, 100, 160, respectively. (a) is for the sys-

tem plotted in Fig. 3. Also note the difference between (a) and Fig. 2.
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(a)

21
I I

0

to the left and right. It is evident that p(x, E) is invariant
under changes x~x+0,E~E—6 as it should be. Each
state in both sequences spans many lattice sites, and will
not "feeI" much difference whether the electric potential
is linear or steplike.

The total density of states p(E) is obtained by integrat-
ing p(x, E) with respect to x up to the right edge of the
lattice. The result is shown in Fig. 4(a) (note the
difference from the result in the absence of the field
shown in Fig. 2). The two peaks within each 6 in energy
correspond to the two sequences that can be observed in
the local density of states. As we enlarge the system, the
number of peaks increases [see Figs. 4(b) —4(d)], corre-
sponding to the increased number of observable se-
quences. One can imagine that as the system becomes
infinite, there will be infinite number of peaks covering up
the whole energy axis, making the ladder structure un-
recognizable in p(E). Figure 5 is a plot for an electric
field that is five times larger than in Fig. 4, with more
peaks showing up in p(E) corresponding to more se-
quences of observable ladders in the system.

For a system with ( V, b„X„)= (1,0.2, 40), two se-
quences are observed, as in Fig. 3, but with much nar-
rower level widths. In Fig. 6, the spatial extent of the
states in these two sequences are plotted. One is at
E=0.346, the other is at E=0.676. The state in Fig.
6(b) is essentially confined within 3 —5 cells, which is more
localized than the states in the first "band" in Fig. 3. A
cross section of it at x =3.Sa is plotted in Fig. 7. It is so
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x/a

FIG. 6. Plots of the states at E, =0.3390636, (a), and
E,=0.675 746 851 9h, (b), in a system with ( V, 4,X„)
= (1,0.2, 40).

sharp that energy resolution as high as b, /10" has to be
used. A nice Lorentz curve appears after such an im-
mense blow up. The width of the state in Fig. 6(a) is
about l0

Figure 8 is for another setup: the lattice has 14 cells
(
—10—3), with a higher barrier Vo. It is a cross section

of the lowest peak of cell 0. This peak is essentially
confined within one cell. It is almost as sharp as the peak
in Fig. 7(b) even though we are considering a relatively
small system —there are only four cells on the positive x
axis, because the barriers are much higher. Its width will
be calculated by wave tunneling in Sec. IV.

The level width will decrease as X increases, because it
is more difFicult for these resonant states to tunnel out.
An interesting question is the following: when our sys-
tem becomes macroscopically large, will the width shrink
to zero or to a finite value? This is answered in the next
section.
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FIG. 5. (a) and (b). Two plots of p(E) for a system with
( Vo, h) =(0.2, 1), 1V„=40,160, respectively. The electric field of
the systems in this figure is 5 times larger than those in Fig. 4.

FIG. 7. A cross section of the peak in ceB 3 {x=3.5a) in Fig.
6(b). The range of energy covered is extremely small.
F., =0.675 746 851 906, halfwidth 5E =6X 10





2220 M. C. CHANG AND Q. NIU 48

T=T'= g ~(2) (13)
N N

j&J j&J

It is interesting to note that the above formula is even
valid in the opposite limit of small t s, because then only
the i =j +1 term survives. This result is identical to the
approximate formula that we derived before for the
strong barrier case.

B. 5-function barriers

N N
=C exp g In~t

~
exp g o

j&J j&J

a Nh+E=CJexp — ln
2h Jh+E

1/2

We are now ready to calculate the energy level width
of a 6 potential chain subjected to electric field. When
k ))~, which is true for a large j such that jh+E ))Vp,

1

+1+(~V0/2) [1/(E+jb, )]

nVO

&E+ a

(14)

o'"= ——(J +Ejs)i'-'
J

N„
1 gi3/2 g

3/2

i=j (I+E/b, )~

where g—= (4m. /3)&h, 13—:—,'+a/6, a—= (m. VO/2) . This
expression is correct as Iong as XA is larger than, or of
the same order of magnitude as E.

The problem now is how to sum up this series? If
is not too small, the diff'erence 5(gl )

=(—', )gl'/ =2m&id))2~. In this case, gl / mod2m can
be considered random. Therefore (cr' ' is simply written
as crJ, and N„ is written as X in the following equations),

If we are considering the limit b, ~0, (14) and (15) remain
valid if E))Vp.

Using these approximations, we will find the following
(phase factors are included):

Nh+E
2b, JA+E cos(8„„d ) . (19)

C. The Kronig-Penney-type barriers

The same principle can be applied to the Kronig-
Penney-type barriers. Assume that the width and height
of the barriers are a, and Vp, respectively, that the dis-
tance between barriers is a2, that a =a1+a2 is the size of
unit cell, and that the potential drops one 6 over distance
a. Then, a straightforward calculation shows that, when

j is much larger than one,

in which CJ is a finite number. We can see that T will

approach zero as N —+ ~.
T' is a good approximation to correct T, at least up to

the first order of approximation. It is improbable that
higher-order corrections will lead to a nonzero T since
that would require the correction of the part of
Q(1 —cr )

' to diverge at least as fast as

exp [(a/2b, )ln(N/J)]. Notice that the dominant term
—(a/26)ln(Xb, +E)j(Jb, +E) comes solely from the
zeroth-order contribution. The wave function
f(x)-X ' ' is power-law localized, which is a mar-
ginal case between extended and exponentially localized
cases. Similar studies of localization in the energy space
also showed marginal behavior. "

g ~ O

1/2

(j+Ejb) (17)
4k,'yk,

(1+k'/k. )
—(1—k'/k. ) eJ J J J

(20)

where ( ) means taking the average with respect to the
angle of the complex number. We assumed N is so large
that the term [1V+(Ejb,)] '/ is negligible.

The quantity ~o~ ~
is small since we are consideringj)J. The infinite product II(1 o) in (13) can the—n

be approximated by eg o when the index j is larger
than J. The phase of o. is, again, a random number.
Therefore, we get

where

k' =&2m (E +jb ) jA,

k =+2m (E +jb —Vo ) /fi .

When E+j4))Vp,

k,
'

) Vp+
2 E+jA (21)

1/2

with a random phase factor e' .
Finally, we get

1/2 Equation (20) can be further simplified as
2

Vp
[1—cos(2k a, )] .

4 E+jb,
Therefore,
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2
Vp 1

z [1—cos(2k~a
& )] ~ .

J=J (jb, +E) (23)

The exponent is a finite quantity. Therefore, up to zeroth
order, the level width is finite as X~~. This is true as
long as the height of barriers is finite.

The summation in the exponent of (23) can be approxi-
mated by an integral. It turns out that

2
Vo

(24)
1

b.(Jh+E)I t, I
-exp

j=1
where a is a number of order 1. We can see that, as b, be-
comes very small (but not smaller than E/N), the level
width shrinks to zero with a rate -exp( —I/b, ). In the
b, ~0 limit, (24) is no longer valid. In this case,
jA+E=E, and the tunneling coeKcient turns out to be
=exp[ —a( Vo /4) (N/E )], which is finite as long as the
system is finite.

We can also reproduce the leading term in the ex-
ponent of (19) for the case of the Kronig-Penney model in
the limit that al ~0 Vp~ ~ and at the same time keep
a

& Vp a constant.

V. CONCLUSION

We have calculated the local density of states p(x, E)
for a one-dimensional (1D) model using 6-function poten-
tial barriers to simulate a periodic potential and a step
potential to simulate an external electric field. The WS
ladders are revealed most clearly as peaks of the local
density of states in 3D plots of p(x, E). We have demon-
strated that the ladder structures can be easily washed
out in the total density of states.

We have also ofFered an approach, based on the calcu-
lation of leakage current in a graded array of potential
barriers, to evaluate the level width. ' This complements
the usual method based on the picture of Zener tunneling
between Bloch bands. ' It is shown that, when the sys-
tem size % is very large, the level width is 6E-X'
in the case of 6 barriers. We choose 6 potential barriers
to simplify the derivation of the transfer matrices as well
as transmission and refIection coe%cients. The same ap-

r
proach can be applied to nonsingular potentials. We
found that, when the potential barriers are rectangular,
the reAection coe%cient vanishes like 1/x for large x, and
that the energy level width will not shrink to zero as the
size of the system becomes infinite. When the potential is
smoother, the reAection coefFicient vanishes even faster.
The electron wave function can be localized only in the
case of a 5 potential chain, but even then the localization
is found to be only marginal; that is, it obeys a power law.

Some of the general properties of the WS ladders are
summarized below, and these should also be valid in a
real solid. First, the number of sequences presented in a
finite system can be estimated from a tilted-band dia-
gram. It can be controlled either by changing the size of
the system, or, more conveniently, by changing the elec-
tric field. Second, among these sequences, there is one
that is most pronounced. This is best illustrated in Fig.
3(d). The states of the sequence that are closest to the
step are sharper and more localized spatially. This can
be explained by the theory in Sec. IV. The states in this
sequence have initial barriers which are dificult to tunnel
through. The states in the other sequences are more re-
mote from the origin, and therefore have higher energy
with respect to the ground. This makes them easier to
tunnel through. Third, within the same sequence, the
states in cell —1 are narrower than those in cell 0, and
those in cell 0 are narrower than those in cell 1. . . , etc.
This is because the state in cell —1 has to go through
more barriers in order to tunnel out. A similar kind of
asymmetry leads to the asymmetrical absorption spectra
in the experiment that was done by Agullo-Rueda, Men-
dez, and Hong.
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