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We have performed a first-principles investigation of the microscopic properties of random crystalline
Si-C alloys. An ab initio tight-binding molecular-dynamics method is used to determine the microscopic
atomic structure of the alloys. For small to moderate concentrations of C in Si, we find that the elec-
tronic structure shows a decrease of the band gap from that of pure Si. This result is unexpected since
both ordered SiC and pure carbon (diamond) have much larger band gaps than Si. Plane-wave calcula-
tions were also done on ordered structures to further check this result and to determine the effects of or-
dering. For the atomic sturcture, it is found that there are two different types of Si-C bonds. The first
type is the Si-C bond near 1.86 A as in bulk SiC, and the second type is a much shorter 1.65-A bond for a
carbon atom in a near-planar sp? configuration with its Si neighbors.

I. INTRODUCTION

The significant success of semiconductor electronics is
closely connected to the concept of band-gap engineering.
The band gap of a semiconductor can be significantly al-
tered by alloying, and this is routinely done in III-V semi-
conductor materials, such as Al Ga;_,As. In the Si-
based materials, the band gap has been successfully al-
tered by alloying with Ge and by forming strained layer
superlattices.! Low concentrations of Ge in Si;_,Ge, al-
loys provide a family of band structures similar to that of
Si, with the indirect gap near the X point of the Brillouin
zone. The band gap, however, decreases monotonically
as the Ge concentration increases. The entire band gap
range for Si;_,Ge, alloys varies between 1.17 eV (x =0)
and 0.62 eV (x =1). In many applications it is desirable
to have a band gap which is wider than that of pure Si.
Diamond with its very wide band gap of 5.5 eV is a possi-
ble candidate for making a wide band-gap Si-based ma-
terial which can be integrated with Si. However, dia-
mond has a much smaller lattice parameter than Si,
which makes the structural aspects of the Si-C alloy sys-
tem quite unlike those of Al ,Ga;_,As or Si;_,Ge, al-
loys.

The main obstacle to the realization of this program is
the extremely low solubility of C in Si. Even at the melt-
ing point of Si, it is only about 1076 at. %.? This problem
has been partially overcome recently. The first successful
attempt to grow Si;_,C, alloys was reported by Posthill
et al.> Using remote plasma-enhanced chemical-vapor
deposition this group fabricated a 7-um-thick layer with
a carbon concentration of about 3.5%. The lattice pa-
rameter perpendicular to the substrate was found to be
5.426 A. At this concentration, if all the carbon goes
substitutionally and the film is grown on Si, the lattice pa-
rameter perpendicular to the substrate should range from
5.37 (fully relaxed) to 5.24 A (fully strained). The ob-
served lattice parameter indicates that there may be some
precipitation of SiC in the film or that this material does
not obey Vegard’s rule. This work was followed by the
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work of Iyer et al.? who used solid source molecular-
beam epitaxy to grow pseudomorphic Si;_,C, layers
with x >0.002 and strained layered superlattices stable
up to 800° (for x =0.003). Their material also contained
about 1% Ge to compensate for strain effects.

The band gaps of Si;_,C, alloys and related alloys
have recently been theoretically investigated by Soref* us-
ing an interpolation technique. Indeed, he predicts that
the band gap of Si increases dramatically upon alloying
with C. The band gap of the ordered SiC compound,
which has a band gap of 2.39 eV, is predicted to be close
to that of the Sij sC; s random alloy. We are unaware of
any first-principles calculations of the electronic structure
of these alloys. This is partially attributed to the relative
complexity of the first-principles calculation involving
carbon and its compounds. Recently, several theoretical
studies of SiC have been reported. The ground-state
properties (equilibrium lattice constant and bulk
modulus) have been calculated by Denteneer and van
Haeringen.5 Churcher, Kunc, and Heine® also calculated
the pressure derivative of the bulk modulus and the
Gruneisen parameters. High-pressure properties of SiC
were discussed by Chang and Cohen.” Wang, Bernholc,
and Davis calculated formation energies, abundances,
and the electronic structure of native defects in cubic
SiC.® All this work has utilized the local density approxi-
mation within the density-functional theory and the pseu-
dopotential method. Calculations of the properties for
the related material, GeC, have just recently been per-
formed.’

The microscopic structure of the equimolar Si-C amor-
phous alloy has been studied by Finocchi et al.!° with ab
initio molecular dynamics. These authors find that the
system cannot be classified as chemically ordered since
40-50 % of the bonds are homonuclear, nor can it be
classified as random since a high degree of short- to
medium-range order exists. They also find the electronic
density of states is semiconductorlike, but is certainly
much smaller than the 2.39-eV experimental gap of or-
dered crystalline SiC.
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In this paper we have studied the electronic and
geometrical atomic structure of Si-C random alloys. We
have used ab initio tight-binding-like molecular dynamics
to obtain the geometrically relaxed atomic structure of
random 64-atom supercells for five Si;_,C, alloys with
carbon concentrations (x) of 1.6, 6.2, 10.9, 25, and 50%.
We also obtained the electronic structure of these alloys.
In addition, we have also studied smaller 8-atom ordered
cells using a pseudopotential plane-wave method to deter-
mine the effects of ordering, lattice relaxation, and basis
set. It is found that there is a large lattice relaxation
around the carbon atoms. We also find that the most
typical Si-C bond in our simulation is 1.86 A which is
close to the corresponding bond in the zinc-blende SiC.
Howq’ver, we also find another much shorter Si-C bond of
1.65 A. The carbon atom has a strong chemical effect on
the band structure which causes the band gap of Si to
sharply drop, and possibly become metallic at a concen-
tration of about 5—-10 %. This effect is not driven by the
geometrical relaxation or ordering, but by the atomic
properties of carbon itself.

The rest of the paper is organized as follows. A brief
theoretical background of the methods used in this study
is given in Sec. II. In Sec. III we describe results ob-
tained for the microscopic atomic arrangement of five Si-
C alloys in 64-atom cubic supercells. In Sec. IV we de-
scribe our results for the electronic structure. Discussion
and conclusions are found in Sec. V.

II. THEORETICAL BACKGROUND

We addressed two basic questions in this study of Si-C
alloys: (i) the local atomic geometry of the alloy, and (ii)
its electronic structure. Of particular interest here is the
basic trend in these as small amounts of carbon are added
to silicon.

To deal with the first of these questions we have chosen
the ab initio simplified tight-binding-like quantum
molecular-dynamics (QMD) method of Sankey and Nik-
lewski.!! In this method the total energy of the system is
calculated using localized slightly excited atomic orbitals
(fireballs) in the local density approximation and the
pseudopotential approximation. The forces acting on
every atom are determined using a variation of the
Hellman-Feynman theorem.'>'® Given the forces at any
configuration, atoms are geometrically relaxed by allow-
ing them to move according to Newton’s laws in the pres-
ence of a fictitious damping force. The system evolves
until an equilibrium (zero force) geometry is obtained and
the final atomic configuration is established.

We have used this technique to geometrically relax 64-
atom cells, and in addition obtain the electronic structure
of these cells. We start with atomic sites of perfect
tetrahedral symmetry in the zinc-blende lattice. The 64-
atom cell contains 8 cubes of the zinc-blende lattice of
lattice constant a (x). We use Vegard’s rule to determine
the lattice constant, a(x)=(1—x)ag +xac, where ag;
and a. are the cubic lattice constants of Si (5.43 A) and C
(3.57 A), respectively. A random number generator is
used to choose whether a site is occupied by Si or C at a
specific concentration. The system is then geometrically
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relaxed, and may form a highly distorted structure.

To check our results for the band structure, and to
determine the effect of ordering we have also performed
plane-wave psuedopotential calculation for a single 8-
atom cubic cell. These were done using the non-self-
consistent Harris approximation.!* One fully self-
consistent calculation was done to check that the Harris
approximation was giving the correct results. Due to the
strong p pseudopotential of carbon, we have used the soft
pseudopotentials of Kerker, and Trouillier and Martins.'’
The number of plane waves used in these calculations was
determined by an energy cutoff of 500 eV.

1. ATOMIC MICROSTRUCTURE

The microscopic structure of the Si-C alloys was ob-
tained using QMD. A 64-atom simple cubic unit cell was
used, with sites randomly occupied by Si and C atoms of
a given concentration. The size of the cell was chosen ac-
cording to Vegard’s rule. We quenched the structure by
molecular dynamics until the zero force configuration
was found. Only the I' point was used for the sampling
of the supercell Brillouin zone in all simulations except
the one for the 10.9% alloy where we used eight special k
points over entire zone. Studies of the convergence of the
force versus k-point sampling in amorphous Si supercells
have been performed'® using the present method, and for
the 64-atom supercells used here, the use of the I' point is
an acceptable approximation and is used here.

Let us begin with a single carbon atom in the 64-atom
supercell, which gives a carbon concentration of 1.6%.
The radial distribution functions (RDF) for the relaxed
structure are shown in Fig. 1. The radial distribution
function g 45 (7) represents the probability to find an atom
of type B at the distance r from the atom of type 4. We
replace the 8-function peaks by Gaussians of width of
0.025 A. The first peak in the C-Si RDF at 1.86 A can be
compared with the SiC nearest-neighbor (NN) distance of
1.89 A. Similarly, the second peak of g g; at 3.7 A lies
between the second-NN distance of bulk Si (3.84 A) and
of zinc-blende SiC (3.08 A). In the Si-Si RDF, we observe
the intense first peak at 2.33 A (compare to 2.35 A in

SigsCy (1.6 at.%C)

Si-Si A/\
C-Si
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FIG. 1. Computed radial distribution functions g4z
(A4,B=C,Si) for the 64-atom supercell Sig;C,. The S-function
peaks are replaced by Gaussians of width of 0.025 A.
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pure Si). One can also see a shoulder at approx1mate1y
2.42 A. The first-NN Si atoms have moved in by 0.49 A
along (111) directions and the second NN moved in by
0.144 A along (110) directions compared to their ideal di-
amond lattice positions. We conclude that large lattice
relaxation occurs around the C atom. From this analysis
we conclude that at very low concentration of C in Si, C
atoms recreate a SiC environment around them.

In order to test how well our method describes the ac-
tual structural relaxation, we have done the following
model calculation. We have studied the first-nearest-
neighbor relaxation around a single substitutional carbon
atom in an 8-atom silicon cubic cell. Only the first-
nearest-neighbor Si atoms around carbon were allowed to
move along (111) directions and the displacements were
measured from their ideal position in pure Si. The total
energy per cell as a function of displacement is shown in
Fig. 2. Three different methods were used in this calcula-
tion: our QMD technique, a plane-wave technique within
the Harris approximation (Harris PW), and a standard
self-consistent plane-wave method (SCPW). All three
computational techniques give very similar results for the
energy lowering and the amount of near-neighbor relaxa-
tion. The equilibrium positions differ in a few hun-
dredths of an angstrom and the energy spread is about
0.2 eV. The Harris approximation seems to be more im-
portant than the choice of the basis set: the two calcula-
tions using this approximation give almost identical re-
sults. We conclude that our molecular-dynamics method
gives an accurate description of the microscopic structure
for the Si-C system. It is perhaps worth mentioning that
the 8-atom cell does not give the same equilibrium posi-
tion of Si atoms which are C nearest neighbors as the 64-
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FIG. 2. Energy per cell vs displacement of carbon atom first
neighbors for the 8-atom cell Si;C, calculated by three different
methods: the tight-binding-like quantum molecular dynamics,
the plane-wave method using the Harris energy functional (la-
beled Harris PW), and the standard plane-wave self-consistent
technique (labeled SCPW). Only first neighbors were allowed to
move. The energy of zero corresponds to the zero displace-
ment. The lattice constant was taken to be that of bulk Si.
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FIG. 3. Computed radial distribution functions for the 64-
atom supercell Sig,C, g 45, 4,B =C,Si. The 8-function peaks
are replaced by Gaussians of width of 0.025 A.

atom cell because the second-nearest neighbors have not
been allowed to move in the 8-atom cell calculation.

Now let us examine the structure of the 6.3% alloy
which contains four C atoms and 60 Si atoms. As we can
see from the C-C RDF in Fig. 3 there are no C-C bonds
in this randomly generated sample. The first peak occurs
at about 2.9 A and clearly corresponds to the second-
nearest-neighbor distance intermediate between a bulk C
second-nearest-neighbor distance of 2.52 A and a bulk Si
second-nearest-neighbor distance of 3.84 A. The most in-
teresting structure in this sample is revealed by the C-Si
RDF. We find a prominent peak at 1.88 A with a small

FIG. 4. A schematic picture of a fragment of the structure of
a 6.3% C concentration in Si (Sig,C,4 supercell). Three of the
four carbon atoms in the supercell were randomly selected to be
second neighbors of each other. (a) The local geometry before
relaxation of the atomic coordinates. (b) The zero force final
configuration of the fragment. Notice formation of a CSi; gra-
phitic structure with the atom C, in the center.
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shoulder at a larger distance. The prominent peak corre-
sponds closely to the single carbon surrounded by perfect
silicon tetrahedral configuration found in the single car-
bon sample.

A new feature of the C-Si RDF is a peak at 1.65 A. To
understand its nature we must examine the actual
configuration in the sample. A fragment of the structure
relevant to the 1.65-A peak is schematically reproduced
in Fig. 4. In Fig. 4(a) we show the initial (nonrelaxed)
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FIG. 5. (a) Computed radial distribution functions for the
64-atom supercell Sis;C,;. (b) Computed radial distribution
functions for the 64-atom supercell Sig;sCig. (c) Computed radial
distribution functions for the 64-atom supercell Si3;,Cs,. The §-
function peaks are replaced by Gaussians of width of 0.025 A.
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tetrahedral configuration. By chance, three carbon atoms
happened to be second-nearest neighbors of each other.
The atoms are allowed to relax according to their forces
and each carbon atoms tries to form SiC tetrahedrons
around it. The average bond length of 2.13 A is far from
that of the SiC bond length of 1.89 A. Not all three car-
bon atoms can successfully form the SiC tetrahedron.
The two shown silicon atoms surrounding C, cannot get
close to both its neighboring carbon atoms, so C, must
sacrifice one of its bonds with Si. The carbon atom C,
moves along a (111) direction where it finds itself in a
nearly flat triple coordination very much like the one in
graphite [see Fig. 4(b)]. This “graphitic” SiC bond is
found to be 1.65 A considerably shorter than the zinc-
blende tetrahedral SiC bond length. The final relaxed
configuration is somewhat close to that proposed for the
EL?2 defect in GaAs (sp? coordinated As interstitial and
Ga vacancy).!’

The radial distribution function for the 10.9% alloy is
shown in Fig. 5(a). The C-C RDF still has no C-C bonds,
but we see a peak at 2.75 Aanda family of peaks in the
range from 3.2 to 3.5 A (the second-nearest-neighbor dis-
tance is 2.52 A in diamond, 3.18 A in SiC, and 3.65 A ac-
cording to Vegard’s rule for this concentration). In the

C-Si RDF we see two groups of peaks corresponding to
two different kinds of nearest neighbors. One group is
centered near 1.9 A which is typical for the tetrahedral
SiC-type configuration, and another group is centered
about 1.65 A suggesting the sp conﬁguratlon of carbon,
similar to one discussed in the previous example. In the
Si-Si RDF, we find a promment peak at 2.35 A and a
whole family of peaks in the second-nearest-neighbor re-
gion. The feature of this RDF is the presence of “noise”
between the first- and second-nearest-neighbor peaks.

In the 25% and 50% carbon alloys, the radial distribu-
tion functions become quite complex [Figs. 5(b) and 5(c)].
We see C-C bonds starting near 1.5 A. In the 50% alloy
[Fig. 5(c)] there is a small peak in the C-C RDF at 1.4 A
(compare with 1.42 Ain graphite) and a prominent peak
at 1.55 A (compare with 1.55 A in diamond). In the C- Si
RDF’s, we can see that the “tetrahedral” peak at 1.89 A
has decreased, while the peak at 1.65 A has increased.
This suggests the disintegration of the tetrahedral net-
work similar to one found in amorphous Si-C alloys.!°

IV. ELECTRONIC STRUCTURE

The electronic structure of random semiconductor al-
loys is commonly described in terms of a mean-field or
“virtual crystal” theory in which each atom is replaced
by an average atom and the electronic properties are in-
terpreted in terms of a perfect crystal of these average
atoms. Such a description leads to a near linear depen-
dence of the band gap with composition, but also predicts
some bowing of the band edges to occur. For example,
such a description well describes the band gaps of
Si;_,Ge, random alloys.'®! We now show that such a
mean-field picture is totally inappropriate for Si;_,C,
alloys—the band gaps that we find cannot be understood
as being generated by an average atom, and that interpo-
lation of the band gap for the alloy from pure crystalline
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FIG. 6. The first Brillouin zone of the simple cubic lattice.

Si to pure carbon diamond gives qualitatively incorrect
results.

We have studied the electronic structure of the random
Si-C alloy structures in supercells containing 64 atoms
with an average bond length determined by Vegard’s law.
The QMD relaxation procedure determines the atomic
configuration of the cell as was described in Sec. III.
Since the 64-atom cell is cubic, the first Brillouin zone is
cubic and is shown in Fig. 6.

The band structure of pure silicon in a 64-atom cell is
shown in Fig. 7(a). The top of the valence band is defined
to have energy equal to zero, and the main band gap in
this sp3-orbital model is 1.75 eV. The conduction-band
minimum is along the line T to X in the supercell, as it is
in the 2-atom primitive Brillouin zone. The band gap is
larger than the experimental band gap of 1.17 eV due to
the fact that we use a localized orbital sp® basis. The sp>
basis is a minimal basis, which gives its largest error in

Energy (eV)

-10.0

-12.0

-14.0
R

L0
20
=
20 =
,40 =
402
4.0
NS
0.0
14,0

—
o
=

Energy (eV)

R T X M T

FIG. 7. The electronic structure for the 64-atom cell comput-
ed using our sp’-orbital model. (a) Pure silicon Sig. (b)
Sig,984Co.016 alloy Sig;C; geometrically relaxed by QMD.

the conduction bands. The bands of Si are opened by
about 1 eV compared to the exact local-density-
approximation results, with the major effect being due to
the lack of d states.?° Since we are interested in how the
gap changes with alloy composition, this adds some un-
certainty to the results. The trends with alloy composi-
tion ought to be adequately described, however. The
trends we obtain with this basis are in fact well repro-
duced by the plane-wave calculations discussed later,
which do not suffer from this restriction.

We next substitute a C atom for a Si atom in the 64-
atom cell giving an effective concentration of carbon of
1.6%. The band structure of this system after geometri-
cal relaxation is shown in Fig. 7(b). Note that the lowest
conduction bands have dropped down to a lower energy
reducing the band gap to 1.3 eV at both the I" and the R
points of the Brillouin zone. Thus the effect of a single
substitutional carbon atom in a 64-atom Si supercell is to
form a state near the perfect Si conduction-band
minimum which tends to lower the gap. This is very
similar to the behavior expected for a single substitution-
al impurity in bulk Si, which theoretically is expected to
form a ‘“deep level” almost degenerate with the
conduction-band edge.?!

We show the lowest conduction-band eigenenergies at
the I" (000), X (100), and R (111) Brillouin-zone points for
relaxed random alloys of 0.0, 1.6, 6.3, 10.9, and 25% car-
bon. The valence-band maximum is always at k =(0,0,0)
and is defined to have energy zero. The results are shown
in Fig. 8. The trend that the band decreases for small
carbon concentration is evident at each Brillouin-zone
point. The system reaches a minimum band gap near
12.5%, and in fact is predicted to be metallic. To put this
result in perspective, the same sp3-orbital-based model
predicts the minimum band gap of perfect crystalline Si,
SiC, and C to be 1.75, 4.3, and 5.9 eV. Thus it is quite

(ev)

Conduction-Band Energy
N

0 5 10 15 20 25
Carbon concentration (at.%)

FIG. 8. Conduction-band eigenenergies at the T, R, and X
points of the Brillouin zone vs carbon concentration computed
for 64-atom cells geometrically relaxed by QMD.
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evident that band-gap behavior for the random alloy
shown in Fig. 8 is quite unlike a mean-field result.

The band gaps that we find for the 64-atom unit cell
are a result of both the chemistry of the Si-C system and
the distorted geometries and strains we obtain in the ran-
dom alloy. To investigate the effect of strain and the pos-
sible role of ordering within the alloys, we have per-
formed similar calculations on a much smaller cell of 8
atoms. Such a cell is small enough that ordering effects
will be greatly enhanced. The band structure of pure sil-
icon in an 8-atom cell is shown in Fig. 9(a). The main en-
ergy gap lies along I" to X and is again 1.75 eV as it must
be. When a single C atom is substituted for Si we obtain
an ordered cell with an effective concentration of 12.5%.
The lattice parameter for this cell was varied according
to Vegard’s rule. The band structures obtained for this
Si,C, cell are shown in Figs. 9(b) and 9(c). In Fig. 9(b) we
keep the atoms at their perfect tetrahedral (unrelaxed)
positions, while in Fig. 9(c) we show the band structure
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FIG. 9. The electronic structure for the 8-atom cell comput-
ed using our spl-orbital model. (a) Pure silicon Sig. (b)
Sig 75Co.125 alloy Si;,C, in the perfect tetrahedral geometry. (c)
The same alloy as in (b) but geometrically relaxed by QMD.
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obtained when the atoms are allowed to relax (using
QMD) to their equilibrium positions. In either case (un-
relaxed or relaxed) we see that the band gap has been
greatly reduced compared to pure Si [Fig. 9(a)]. In this
example, the effect of the relaxation of the Si toward the
C to form a SiC-like bond is to further shrink the gap.
The most sensitive band edge to relaxation is seen to be
the R (111) k point. The relaxed structure in fact turns
out to be a semimetal.

Comparing Figs. 9(b) and 9(c) shows that the effect of
relaxation also has an important effect deep in the
valence band. As the Si atoms move toward C, they
strengthen their bonds and the “hyper-deep” carbonlike
level near-14—15 eV has peeled further away from the
rest of the valence band.
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FIG. 10. Conduction-band eigenenergies at the I', R, and X
points of the Brillouin zone vs carbon concentration computed
for 8-atom cells using our sp3-orbital model. (a) Perfect
tetrahedral geometry. (b) After being geometrically relaxed by
QMD.
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We have repeated these 8-atom cell calculations for
two carbon atoms (25% carbon). We choose to put the
two carbon atoms so that they are second neighbors. The
conduction-band levels at ', X, and R at 0.0, 12.5, and
25% carbon concentration in the 8-atom cells which are
perfectly tetrahedral (labeled unrelaxed) or QMD relaxed
(labeled relaxed) are shown in Figs. 10(a) and 10(b), re-
spectively. Again we see that the band gap for all carbon
concentrations is reduced compared to pure Si. The band
gap is large for 25% C in the unrelaxed 8-atom cell, but
relaxation of the atoms again causes the band gap to be
reduced.

From these 8-atom calculations we make two impor-
tant conclusions. The first is that the band-gap shrinkage
as carbon is added to Si is not just due to the randomness
of the alloy system, but occurs even for small ordered
cells such as Si;C,; and SizC,. The second conclusion is
that the effect of lattice relaxation from all equal bond
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FIG. 11. The electronic structure for the 8-atom cell comput-
ed using the plane-wave method and the Harris energy function-
al. (a) Pure silicon Sig. (b) Sig 75Co.125 alloy Si,;C, in the perfect
tetrahedral geometry. (c) The same alloy as in (b) relaxed by
QMD.
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lengths and perfectly tetrahedral bonds in these small
cells is to further reduce the gap, and not to open it up
again. Thus shrinkage of the Si band gap as carbon is
added is a result of the large chemical difference between
carbon and Si and not a geometrical effect.

As a final test of our conclusion that a small concentra-
tion of carbon in silicon reduces the Si band gap, we have
performed plane-wave pseudopotential calculations on
small 8-atom cubic cells for 0, 12.5, 25, 50, 75, and 100%
carbon concentrations. The pseudopotentials are of the
Troullier and Martins form> and we use the energy cutoff
of 300 eV for Si and 500 eV for the alloys and diamond.
We have used the approximate Harris local density ener-
gy functional,'* which does not require self-consistency.
We have repeated the calculations using the standard
self-consistent local-density-approximation energy func-
tional for 12.5% carbon and find no significant change in
the trends. For pure Si we obtain an energy gap of 1.05
eV (experimental, 1.17 eV), and for pure C an energy gap
of 4.88 eV (experimental, 5.5 eV).

The band structures for the 8-atom cells using plane
waves for 0% and 12.5% C are shown in Figs. 11(a),
11(b), and 11(c). Figure 11(a) is for pure Si in an 8-atom
cell (Sig) while Figs. 11(b) and 11(c) are for one carbon
atom in an 8-atom cell (Si;C,). Again we see that the
band gap has closed in Si;C, compared to that for Sig.
The effect of lattice relaxation is indicated by comparing
Figs. 11(b) and 11(c) which correspond to unrelaxed and
relaxed structures, respectively. The relaxed coordinates
are those obtained using our sp-orbital-based QMD tech-
nique and are the same coordinates as were used to create
Fig. 9(c). Relaxation of the atoms toward their zero force
bond lengths and angles further reduces the band gap in
agreement with the previous calculations. Again, as in
the sp® QMD technique, 12.5% C is found to be metallic.

(eV)
[ee)
e}

Conduction-Band Energy
P

0. a 1 L
0 20 40 60 80 1C
Carbon concentration (at.$%)

FIG. 12. Conduction-band eigenenergies at the I', R, and X
points of the Brillouin zone vs carbon concentration computed
for 8-atom cells using the plane-wave method and the Harris en-
ergy functional. All cells are unrelaxed (perfect tetrahedral
bonding) with a lattice constant determined by Vegard’s rule.
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The conduction-band edges at T', X, and R for the 8-
atom cell computed using plane waves are shown in Fig.
12. To produce this figure, we have arranged the atoms
so that minority atoms are never nearest neighbors, and
the geometry is an ideal zinc-blende lattice (i.e., no relax-
ation). We find an unusual “double well” shape for the
minimum band gap versus composition. The band gap
apparently gets smaller for both larger and smaller car-
bon concentrations away from that of bulk zinc-blende
SiC (i.e., 50% carbon).

V. CONCLUSION

We have presented results from an ab initio study of
the random crystalline Si;_ C, alloys. We have used a
simplified first-principles molecular-dynamics method to
investigate the atomic structure of the alloys using 64-
atom cubic supercells with an average bond length scaled
according to Vegard’s rule. Ideal cells were geometrical-
ly relaxed to the minimum energy configuration, and
atomic radial distribution functions were obtained for the
relaxed geometry. It is found that the random alloy
forms a minimum energy geometry in which silicon
nearest-neighbor bonds are close to those of pure Si, and
Si-C bonds are close to those of bulk SiC. Carbon-carbon
bonds are found representing both diamond and graphite
types bonds. We also find for larger carbon concentra-
tions the appearance of CSi; planar (graphiticlike) struc-
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tures of bond length of about 0.2 A less than that of the
tetrahedral SiC bond length.

Concerning the electronic structure, it is found that for
small concentrations of carbon in Si, the band gap
shrinks compared to that of pure Si. The gap reaches a
minimum value which is likely negative (a metal) around
10% carbon. The origin of this effect is due to the large
chemistry difference of carbon compared to Si. Lattice
distortion of the alloy compared to a perfect tetrahedral
zinc-blende-like lattice tends to make the minimum gap
even smaller. Randomness is also not a dominant factor
in the result that the Si band gap closes as carbon is add-
ed, since the same effect occurs with small ordered 8-
atom cubic cells. The alloy dependence of the band gap
of Si;_,C, alloys is quite unlike that of Si;_, Ge, alloys
and for that matter all other semiconductor systems. We
hope these results will stimulate experimental interest in
this unexplored, but probably metastable, material.
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