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Tight-binding potentials for transition metals and alloys
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The parameters of many-body potentials for fcc and hcp transition metals, based on the second-
mornent approximation of a tight-binding Hamiltonian, have been systematically evaluated. The poten-
tial scheme, cast in analytical form, allows us to reproduce correctly the thermal behavior of transition
metals making use of a small set of adjustable parameters. The large cutoff, which extends the range of
the interactions up to the fifth-neighbor distance, ensures good quantitative agreement with the experi-
mental data up to temperatures close to the melting point. The ability of the potentials to describe real
systems has been checked by calculating point-defect properties, lattice dynamics, and finite-temperature
behavior, and by comparing the results with other potential schemes. Application of this scheme to bcc
transition metals has proved unsuccessful. Examples of derivation of many-body potentials for a few
transition-metal alloys with cubic structure are also reported.

I. INTRODUCTION

It is widely recognized that empirical many-body po-
tentials can reproduce with good accuracy the thermo-
dynamic and structural properties of most transition met-
als. ' In the last years, these potentials have been exten-
sively used to analyze a variety of problems in materials
science by molecular-dynamics (MD) computer simula-
tions. The use of empirical potentials is, while waiting
for appropriate extensions of the more general Car-
Parrinello technique, the only practical way to approach
the simulation of point or extended defects (vacancies,
grain boundaries, or dislocations), interfaces, and surface
properties for transition metals and intermetallic al-
lo 5 —11

The main advantage of a many-body treatment over
the conceptually and practically simpler pair-potential
description is the ability to better reproduce some basic
features of metallic systems. First of all, the so-called
Cauchy discrepancy of the elastic constants, namely, the
experimental evidence that for most cubic crystals
C&2&C44, which cannot be accounted for by pair poten-
tials. Another serious drawback of the use of pair poten-
tials is represented by the incorrect estimates of the va-
cancy formation energies, whose values result very nearly
equal to the cohesive energies, whereas the experimental
results indicate that they range around —,

' of the cohesive
energy. Furthermore, stacking fault energies, surface
structure, and relaxation properties cannot be properly
accounted for by means of pair potentials. A many-body
potential scheme overcomes these difhculties by includ-
ing, even at a phenomenological level, the essential band
character of the metallic bond. A relatively simple
scheme for relating the atomic and electronic structure,
without resorting to the complex treatment of first-
principles calculations, is the tight-binding (TB)
method' ' in which the ion-ion interaction is described
as made up of an effective band term plus a short-range
repulsive pair potential. The second-moment approxima-
tion of the tight-binding scheme (TB-SMA) as proposed

by Tomanek, Aligia, and Balseiro' is based on a small set
of adjustable parameters and, at least in principle, is suit-
able for extension to higher-order approximation through
extension to higher moments of the electron density of
states (DOS). It was originally introduced with a very
short cutoff restricting the interaction to the first-
neighbors shell. Indeed, it has been shown by several au-
thors' ' that extensions of the scheme up to including a
sufhcient number of neighbors can considerably improve
the quality of the results. In particular, Willaime and
Massobrio' have reproduced the high-temperature hcp-
bcc transition in Zr, with a TB potential of the type dis-
cussed in the following, extended to include fifth neigh-
bors.

The aim of the present work is to fully exploit the
capabilities of the TB-SMA potential scheme by evaluat-
ing the set of adjustable parameters of the model for a
large number of transition metals and some alloys, and to
show its ability in reproducing experimental finite-
temperature results. The improved agreement is ob-
tained by including a suitable number of interacting
atoms per lattice site within the cutoff range of the poten-
tial (typically up to fifth neighbors), so as to produce a
class of potentials to be used in large-scale MD computer
simulations of pure transition metals and of their alloys.

The paper is organized as follows: in Sec. II, the fun-
damentals of the TB-SMA model, its relation with the
tight-binding scheme, and with the other commonly used
many-body models are recalled; in Sec. III, the TB-SMA
potential model is developed for fcc, hcp, and bcc struc-
tures of pure metals, and for fcc-based structures of in-
termetallic alloys; in Sec. IV, the obtained potentials are
tested against some static and finite-temperature experi-
mental quantities, also including phonon properties; final-

ly, in Sec. V, conclusions and comments are drawn.

II. THE TIGHT-BINDING SECOND-MOMENT MODEL

It is well known that the cohesive properties of transi-
tion metals and their alloys originate from the large d-

band density of states. Several thermodynamic and
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structural quantities have been shown to be insensitive to
the details of the electron DOS, n (E),' being mainly re-
lated to its average value and effective width.

The description of the electron DOS in terms of its mo-
ments is a natural tool to relate the electronic structure to
the lattice topology, since moments are obtained by cal-
culating products of matrix elements of the electron
Harniltonian associated with closed paths of definite
length. Each moment pk can then be interpreted as the
contribution to the DOS coming from all possible closed
electron paths of k steps. In particular, the first moment
p&, related to the band center energy, fixes the energy
scale and can be set to zero in pure systems. The experi-
rnental binding energies of transition metals appear, in
turn, to be roughly proportional to the average width of
the DOS, described by Qp2. ' A basic result of the TB
model for transition metals is that, under the constraint
of local charge neutrality, an analytic expression for the
first few moments can be written if the sums are restrict-
ed to first neighbors only in fcc or hcp, and to second
neighbors in bcc structures. Electron d bands can then
be described by a basis of two-center integrals (hopping or
"overlap" integrals, as the matrix elements describe the
overlapping of TB wave functions). The energy eigenval-
ues of the resulting matrix are classified, according to the
magnetic quantum number of the basic orbitals, as ddt,
ddt, and dd5 (the Slater-Koster parameters ), and the
moments are, accordingly, linear combinations of these
integrals. In particular, the second moment of the elec-
tron DOS can be written as a sum of squares of hopping
integrals

p2=z(dd o +Zdd sr +2dd o )

describing those matrix elements in the Hamiltonian with
electron paths starting from a given site, jumping to one
other and jumping back to the original one, z being the
coordination number (self-retracing paths do not appear
in the sum). Moments of higher order cannot be ex-
pressed in an analytic form, and more complex tech-
niques, like the recursion method, ' must be applied.

As the hopping integrals are a function only of the ra-
dial distance between atoms i and j, the band energy, pro-
portional to the square root of p2, can be written for an
atomi as '

(2)

where r; represents the distance between atoms i and j
and r0~ is the first-neighbors distance in the aP lattice. g
is an effective hopping integral, and q describes its depen-
dence on the relative interatomic distance. The standard
dependence of the Slater-Koster parameters should rath-
er be r or r, but the exponential form, widely used
as well, better accounts for atomic relaxation near impur-
ities and surfaces, as suggested by Tomanek et al. ' Both
q and g are assumed to depend only on the interacting
atomic species a and P.

In order to ensure crystal stability, a repulsive interac-
tion term is needed aside of the bonding contribution of
Eq. (2). This is normally assumed to be pairwise and de-

scribed by a sum of Born-Mayer ion-ion repulsions

originating from the increase in kinetic energy of conduc-
tion electrons constrained within two approaching ions. '

Thus, the parameter p, still depending on the interacting
atomic species only, should be related to the compressi-
bility of the bulk metal. Indeed, this pair term should
contain all the energy after the one-electron sums explic-
itly included in the overlap integrals, i.e., pair electrostat-
ic interaction plus exchange and correlation terms,
which, in turn, can only be approximately represented by
a pairwise form. Moreover, it has been suggested that
the Born-Mayer term should also cumulate the sum over
local crystal-field terms that are subtracted in the con-
struction of the hopping integrals.

The total cohesive energy of the system is then

E, =g(E~+Eii ) (4)

with the band term, quantum mechanical in origin, incor-
porating a many-body summation.

The form (2) for the band term is generally equivalent
to a functional expression of the type —A g;F(p; ), with

p, =+.P(r," ) representing a sum over the local electronic
charge density P induced at site i from atoms at sites j.
In this sense the TB-SMA model is formally analogous,
even if originating from a different physical picture, to
the "embedded-atom method" (EAM) model by Daw and
Baskes, ' especially in its simplified version introduced by
Oh and Johnson' in which case the form of the electron
density function P is just set to a simple exponential. In
more details, Jacobsen, Ngfrskov, and Puska showed the
embedding function F(p) to be mainly related, in the case
of d-band metals, to the sum of occupied one-electron en-
ergies, which are described by the empirical many-body
term in the TB-SMA model. This result is even more
meaningful, when compared to the derivation of Daw in
which the EAM model is only related to local electron-
density properties, completely discarding band-structure
effects. The ingredients EAM uses are related to
ground-state free-atom electron densities, and transposi-
tion to bulk systems is done by empirical adjustment of
further free parameters, in a way completely similar to
TB and Finnis-Sinclair (FS) models.

The analogy of the TB-SMA scheme with the FS treat-
ment appears even more evident. In fact, in the FS model
the F functional "is set to a square root in order to mimic
the results of the tight-binding model. " The differences
reside in the analytical form of the local interatomic func-
tions that are casted as polynomials of third and fourth
degree in r," for the binding and pairwise terms, respec-
tively. In particular, this amounts to say that the spatial
dependence of the hopping integrals is linear rather than
exponential. It is worth noting that all the TB-SMA,
EAM of any kind, and FS schemes share the rectangular
approximation for the electron DOS, centered at p& and
of width V@2.

The free parameters A, g, p, q, and r0 of the SMA
scheme are fitted to the experimental values of cohesive
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TABLE I. Parameters of TB potentials for fcc transition
metals and for the two simple metals Al and Pb.

Ni
CU

Rh
Pd
Ag
Ir
pt
Au
Al
Pb

W (ev)

0.0376
0.0855
0.0629
0.1746
0.1028
0.1156
0.2975
0.2061
0.1221
0.0980

g (eV)

1.070
1.224
1.660
1.718
1 ~ 178
2.289
2.695
1.790
1.316
0.914

16.999
10.960
18.450
10.867
10.928
16.980
10.612
10.229
8.612
9.576

1.189
2.278
1.867
3.742
3.139
2.691
4.004
4.036
2.516
3.648

III. APPLICATIONS

energy, lattice parameters (by a constraint on the atomic
volume), and independent elastic constants for each pure
system and for alloys, in the appropriate crystal structure
at T=O K temperature, and by taking the equilibrium
conditions into account. The summation over j in Eqs.
(2) and (3) is extended up to the fifth neighbors for cubic
structures, and up to the ninth neighbors for the hcp
structure.

The second-moment approximation is supposed not to
be suited, in principle, for noble metals whose cohesive
energy, mainly related to s-d hybridization, claims for the
inclusion of higher moments of the electron DOS.
Failure of SMA is also generally expected when the rela-
tive fcc-hcp-bcc stability across the transition series is in-

vestigated. In fact, ' for close-packed structures, p3 p2
and the fourth moment can be roughly expressed as

p4=pz(2 —1/z); then, the coordination z for close-

packed structures being around 12—14, it is clear that p4
is not very sensitive to the lattice topology, and one has
to include at least p5 to clearly distinguish between the
diff'erent structures.

However, it will be shown in the following that the
simple extension of the TB-SMA model to a sufficiently

longer range gives in most cases a quite good agreement
with experimental anisotropy constants, for both transi-
tion and noble metals. These results, together with the
similarities between transition and noble metals in the
cohesive and surface energies and bulk moduli, empirical-

ly support the use of this same model with no need for
the introduction of further free parameters.

fitting procedure are reported in Table II, together with a
comparison to experimental data and to the results from
other models, whenever available. Application of the
tight-binding model to sp metals is done by identifying
the many-body summation in Eq. (2) with the volume-

—EC ao C,| C|2 C44 (B ) C' C/C'

Ni 4 435 1.55
1.51
1.65
1.54
1.78

3.523 2.57
(a) 2.61
(b) 2.57
(c) 2.33
(d) 2.31

1.36 1.89 0.51 2.67
1.32 1.88 0.55 2.40
0.93 1.96 0.46 2.00
1.28 1.80 0.40 3.24
0.80 1.95 0.27 2.96

3.544 3.615 1.76
(a) 1.76
(b) 1.82
(c) 1.67
(d) 1.70

1.25
1.25
1 ~ 14
1.24
1.30

0.82 1.42 0.26 3.15
0.82 1.42 0.26 3.15
0.68 1.37 0.34 2.00
0.76 1.38 0.22 3.45
0.58 1.43 0.20 2.90

5.752 3.803 3.92
(a) 4.22
(b) 3.84
(d) 3.40

2.37 1.99 2.89 0.77 2.58
1.92 1.94 2.69 1.15 1.69
2.20 1.65 2.74 0.83 2.00
2.32 1.43 2.69 0.54 2.65

Pd 3.936 3.887 2.32 1.78 0.73 2.81
(a) 2.34 1.76 0.71 2.45
(b) 2.36 1.66 0.69 2.00
(c) 2.18 1.84 0 65 3.82
(d) 2.48 1.76 0.93 2.58

1.96 0.26
1.95 0.29
1.90 0.34
1.95 0.17
2.00 0.36

Ag 2.960 4.085
(a)
(b)
(c)
(d)

1.32 0.97
1.31 0.97
1.32 0.92
1.29 0.91
1.41 0.96

0.51
0.51
0.40
0.57
0.59

1.08 0.18
1.08 0.17
1.05 0.20
1.04 0.19
1.11 0.23

2.83
3.00
2.00
3.00
2.57

Ir 6.928 3.839 5.54 1.04 2.51
(a) 5.99 1.72 1.56
(b) 5.05 1.04 2.00
(d) 4.76 0.83 2.54

3.41 2.73
3.58 2.54
3.29 2.27
3.03 2.73
3.14 2.58

Pt 5.853 3.924 2.68
(a) 1.48
(b) 2.00
(c) 4.53
(d) 2.64

TABLE II. Values of the fitted quantities for fcc metals.
First lines contain the calculated values. (a) experimental
values: ao (A) and E, (eV) from Kittel (Ref. 60), elastic con-
stants (Mbar) from Simmons and Wang (Ref. 61); (b) results of
this same model, with cutoff limited to first neighbors; (c) third-
neighbor EAM model (Ref. 9); (d) long-range FS model (Ref. 7).

A. Close-packed structure metals

In fcc metals the equilibrium conditions result in only
one equation for any of the equivalent [100] directions.
Three further relations are obtained equating the second
derivative of the cohesive energy Eq. (4) to the three in-
dependent elastic constants C&&, C,2, and C44 in Voigt's
notation. The first-neighbor distance ro =ao/&2 is kept
fixed at the experimental value of the fcc lattice parame-
ter giving the correct atomic volume Qo=ao/4. The re-
sulting sets of potential parameters for all the fcc transi-
tion metals and noble metals, plus the two s,p-bonded
metals Al and Pb, are listed in Table I; the results of the

3.779 4.079
(a)
(b)
(c)
(d)

1.87
1.87
1.92
1.83
1.79

1.54 0.45
1.55 0.45
1.66 0.39
1.59 0.45
1.47 0.42

1.65 0.17
1.66 0.16
1.66 0.20
1.67 0.12
1.59 0.16

Al 3.339 4.050 0.95 0.74 0.37 0.81 0.11
(a) 1.07 0.61 0.29 0.76 0.23
(d) 0.82 0.72 0.16 0.75 0.05

Pb 2.043 4.951 0.47 0.37 0.14 0.41 0.05
(a) 0.46 0.38 0.14 0.41 0.04
(cI) 0.50 0.38 0.16 0.42 0.06

2.65
2.81
2.00
3.75
2.63

3.36
1.26
3.20

2.80
3.40
2.67
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dependent term needed in the usual theory of simple met-
als."

The agreement reached on the fitted quantities is re-
markably good, except for Rh, Ir, and Pt, and Al among
the sp-bonded metals, for which an average discrepancy
of the order of 10%%uo is obtained on the experimental elas-
tic constants. The higher quality of the results is essen-
tially related to the extension to a longer range of the
model scheme, by comparison with the issues of this same
model when restricted to first neighbors [data labeled (b)
in Table II].

The anisotropy ratio C/C' gives an order of magnitude
for the variation of the shear response with orientation,
and it is generally a difficult quantity to reproduce, due to
the fact that, as the fitting uncertainty on C44 has oppo-
site sign than that on C', their ratio tends to amplify the
errors (however, it could happen that for larger errors
made on C» an artificious error compensation occurs).
It must be noted that, for interactions restricted to first
neighbors only, the TB-SMA model gives the anisotropy
constant C44/C'=2 whatever the values of p and q, and
that the relations g=pE, /(p —q)&z and
3 =qE, /(p —q)z hold, so that the model actually
reduces to a two-parameter scheme. The present extend-
ed model provides accurate results, which rather improve
those of the long-range FS model of Sutton and Chen.

In hcp metals the same four-potential free parameters
have to be fitted by taking into account two separate
equilibrium conditions, in the xy plane and along the z
axis, and two further independent elastic constants C&3

and C33 Moreover, as the system is noncubic, the con-
stant C44 must be redefined. The partially noncentral
character of the potential in the hcp structure is reAected
in the P=c/a ratio: for Pc=&8/3 the hcp crystal is cu-
bic, and coincides with an fcc structure observed along
the [111] direction. However, it is to be expected that
metallic systems with P strongly different from the ideal
value Po will be hardly reproduced by our model, which is
based on functionals of central interactions. Then, if

40-

necessary, P can also be allowed to vary and a constraint
on the atomic volume, defined by

Qo= a P,V3
4

(5)

has to be imposed. Table III reports the values of the
TB-SMA potential parameters for the hcp metals Ti, Co,
Sc, Cd, Zr, and Mg, and in Table IV the results for the
quantities in the fitting procedure are compared to the ex-
perimental data. These show a reasonable agreement for
Co and Mg, which have a value of 13 very close to Pp,
whereas the agreement is progressively worsened as P
moves away from the ideal value. Few applications of
many-body potentials to hcp metals have been attempted
up to now: Oh and Johnson, ' who computed a potential
for Ti, Zr, and Mg with a simplified version of the EAM
model, and Willaime and Massobrio, who computed a
potential for pure Zr with the TB-SMA scheme' and
used it in the calculation of the hcp-bcc transition. All
these authors used variable values of P, in the impossibili-
ty of reaching a good agreement with the experimental
data using the experimental P value. The stability of the
hcp structure with respect to the cubic fcc and bcc in the
TB-SMA model is not ensured in a general way. In Fig. 1

we display the differences in cohesive energy at T=O K
between bcc and hcp (solid line), and between fcc and hcp
(dashed line), obtained at constant pressure for different
sets of potential parameters corresponding to increasing
cutoff radius. The case reported is cobalt, but the same
behavior is typical for all the metals we treated in our
study. At small values of the cutoff, the bcc structure is
preferentially stable (though the equilibrium lattice pa-
rameter is twice as large than ro), whereas at larger cutoff
the energies of the hcp and fcc phases become very close
to one another, the fcc and hcp structures being alter-
nately stable. For all hcp metals we treated, the stability
is better ensured with cutoff values ranging between
&11/3ro and &Sro, that corresponds to including seven
or eight shells or neighbors. However, the energy barrier
for structural transitions is generally very high, and po-
tentials including any number of neighbor shells greater
than five or six can be reasonably used. The fact that a
potential based on functionals of central interactions may

20-

—20-

—40-

TABLE III. Parameters of TB potentials for hcp transition
metals. First lines contain potential parameters obtained with P
equal to the experimental value, second lines (Ti, Zr, and Cd)
with variable P in the fitting.

—60- Metal 2 (eV) g' (eV)

—
8040

'

.80 1.20 1.60 2.00 2.40 2.80

'cut/'O

FIG. 1. Cohesive energy differences between bcc and hcp
(solid line) and between fcc and hcp (dashed line) structures for
cobalt. Data refer to potentials with increasing cutoff ranges.
The set of parameters for each potential results from a difterent
fitting run, and cohesive energy is statically minimized with
respect to the independent variation of a and c/a ratio.

Zl

Co
Cd

Zn
Mg

0.1519
0.0741
0.1934
0.0523
0.0950
0.1420
0.0416
0.1477
0.0290

1.8112
1.4163
2.2792
1.4489
1.4880
0.8117
0.4720
0.8900
0.4992

8.620
11.418
8.250

13.940
11.604
10.612
13.639
9.689

12.820

2.390
1.643
2.249
1.071
2.286
5.206
3.908
4.602
2.257

1.5874
1.6354
1.5925
1.6409
1.6232
1.8856
1.6511
1.8562
1.6235
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TABLE IV. Values of the fitted quantities for hcp transition metals and the simple metal Mg. First
lines: results obtained with P equal to the experimental value; (a): results with variable P; (b) experi-
mental values (see Table II); (c) third-neighbor EAM model (Ref. 9).

ZI

Co

Cd

Zn

Mg

—EC

4.853

6.167

4.386

1.166

1.359

1.519

2.492
(a)
(b)
(c)

3.232
(a)
(b)
(c)

2.507
(b)

2.959
(a)
(b)

2.653
(b)

3.176
(b)
(c)

1.473
1.796
1.761
1.835

1.301
1.644
1.544
1.589

3.142
3.195

0.886
0.971
1.292

1.177
1.791

0.605
0.635
0.65

Cl2

0.785
0.747
0.868
0.78

0.690
0.621
0.672
0.703

1.408
1.661

0.834
0.492
0.400

0.018
0.375

0.261
0.263
0.25

0.764
0.596
0.683
0.67

0.657
0.473
0.646
0.61

1.223
1.021

0.397
0.402
0.409

0.568
0.554

0.223
0.216
0.202

C33

1.980
2.178
1.891
1.992

1.744
1.898
1.725
1.73

3.991
3.736

0.208
0.948
0.567

0.404
0.688

0.731
0.657
0.703

C44

0.305
0.375
0.508
0.409

0.261
0.368
0.363
0.344

0.667
0.824

0.005
0.157
0.242

0.010
0.459

0.134
0.184
0.152

1.066
1.105
1.098
1 ~ 100

0.936
0.958
0.971
0.973

2.039
1.948

0.697
0.629
0.621

0.885
0.804

0.381
0.369
0.368

0.368
0.531
0.504
0.505

0.326
0.510
0.422
0.425

0.893
0.911

0.087
0.229
0.314

0.119
0.625

0.175
0.193
0.191

succeed in stabilizing noncubic structures should not be
surprising, as this is related to the inhomogeneity of func-
tionals containing various functions depending only on a,
only on /3, and both on a and P, as a function of the cutoff
radius. The capability of stabilizing a noncubic structure
appears then essentially re1ated to the extension of the in-
teraction to a longer range than first neighbors.

B. bcc structure metals

The equations expressing cohesive energy, equilibrium
conditions, and elastic constants for bcc metals are the
same for the fcc lattice, with different distances between
neighbors and number of neighbors per shell. We have
actually tried to fit TB-SMA potential parameters also for
bcc metals with some success: for example, in the case of
vanandium we obtained a perfectly equilibrated system at
T =0 K with the correct experimental values of
ao=3.034 A and E, = —5.316 eV, also reproducing the
elastic constants with an average discrepancy of 20%%uo and
the bulk modulus within 4%, with the following values of
the parameters: A =0.6124 eV, /=2. 441 eV, p =5.206,
q = 1.22. A similar situation was met with molybdenum.

The potential produces a stable bcc configuration for V
at T =0 K, the energy of any fcc and hcp structure being
higher. The lowest-energy differences, obtained by MD
relaxation at constant zero pressure and zero tempera-
ture, were between the bcc at a0=3.034 A and a fcc with
an=3. 877 A (b.E=+0.148 eV), and between the same
bcc and an hcp with a o

=2.774 A and P= 1.544
(DE=+0.069 eV). However, at any finite temperature
the crystal becomes unstable with respect to transition to
a fcc structure. The transition proceeds with spontane-
ous stretching of the system along the bcc [001] direction
by a factor of t 2, the [100] and [010] directions, respec-

tively, transforming into the [110] and [110] fcc direc-
tions.

Some relevant features of the metallic bonding should
make the TB-SMA inadequate in the case of bcc struc-
ture. From the electronic point of view, the close-packed
structure elements at the extremes of the transition-metal
series have an almost empty or almost full d band,
whereas in the middle of the series there is a large bond-
ing energy arising from the unbalance between filled
bonding states (above the band center) and unfilled anti-
bonding states (below the band center). The cohesive en-
ergy is correspondingly larger for bcc structures than for
close-packed structures with higher coordination. Con-
cerning elastics properties, it is perhaps relevant that bcc
metals have anisotropy ratios generally smaller than uni-
ty and the so-called "Cauchy pressure" P, =

—,'(C, z
—C44)

is comprised between 0.25 and 0.5 Mbar, whereas close-
packed structure transition metals have C/C' always
much larger than unity and P, values typically comprised
between 0, and 0.2 Mbar. On this basis, it is felt that the
requirements for a bcc transition-metal TB potential are
mutually exclusive in our four-parameter scheme
(2)-(4).

It has to be recalled, however, that former treatments
of bcc transition metals with potentials based on SMA or
similar approximation schemes, like FS or EAM, are far
from being completely successful: even if a stable body-
centered phase is observed, negative values for the
thermal expansion and a generally unsatisfactory com-
parison with phonon dispersion curves ' are found,
even if larger sets of free parameters and longer interac-
tion ranges are adopted. As mentioned in Sec. II above,
structural stability and elastic properties of non-close-
packed structures require a more detailed description of
the electron DOS with inclusion of at least five moments
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of the distribution. ' ' Indeed, from the calculated elec-
tron DOS (Ref. 31) it is apparent that, whereas close-
packed structures have quite flat distributions, bcc struc-
tures are in turn characterized by a pronounced dip (the
"pseudogap") near the band center, the two branches at
the left, and at the right of the band center being asym-
metric. In the moments' language, this corresponds to a
bimodal behavior which is reflected in the higher-order
moments, the asymmetry being related to the odd mo-
ments of the distribution, whereas a description limited
to p2 is equivalent to consider a rectangular approxima-
tion for the d-band DOS. This latter is evidently ade-
quate for close-packed structures, whereas it is complete-
ly unreliable for treating bcc structures.

C. fcc-based alloys

E, =wE, +(1—w)E, +ALII (6)

Several binary intermetallic compounds of technologi-
cal interest crystallize in the cubic structures Llo and
Ll& (AB-type alloys), and Llz (A3B-type alloys). These
structures are fcc-based, the first two being fcc crystals
with alternating A and B layers in the (002) and (222)
planes, respectively, and the latter being a fcc crystal
with atoms A placed on the faces and atoms B on the
corners of the basic cube. Other structures, only slightly
more exotic, may be classified under the category of fcc-
based phases, as for example, 3022 and the so called
"MoPt2." Such structures have a bcc basic cell resulting
by multiplicating the period of the underlying fcc lattice
along the [010] and the [110]directions, respectively, and
give rise to ordered systems with A 3B and A2B
stoichiometry. With the exception of L12, whose cell is
simple cubic, all the above structures can exhibit tetrago-
nal (Llo and D022), orthorhombic (Moptz), and rhom-
bohedral (L 1,) distorsions.

Cubic alloys have been formerly modeled in terms of
pair potentials, to study planar faults in A 3B compounds
as a function of the heat of mixing; more recently, the
EAM model has been used to predict the surface segrega-
tion properties for some AB compounds (single impuri-
ties in host metal matrices), and to model elastic and de-
fect properties of bulk Ni3A1. The potentials for binary
intermetallic alloys with fcc-based structure are easily de-
rived in the TB-SMA model, starting from the potentials
already calculated for the pure elements and under the
further assumption that the A-A and B-B interactions in
the compound system are the same as in the respective
pure systems. The cohesive energy equation is recasted
in the form

TABLE V. TB potential parameters for the 1.12 alloys
Cu3Au and Ni3A1.

Cu3Au
Ni, A1

~ (eV)

0.1539
0.0563

g (eV)

1.5605
1.2349

11.05
14.997

3.0475
1.2823

tial parameters are reported in Table V, and the quanti-
ties resulting from the fitting procedure in Table VI. In
both cases, the reproduction of the T =0 K fitted data is
again very good. The TB second-moment potential here-
by derived is able to predict with surprising precision the
occurrence of the structural order-disorder transition in
Cu3Au, also elucidating some interesting features of the
phenomenon, like the persistence of short-range order
above T„and the role of vibrational entropy, derived
from the phonon spectra in the quasiharmonic approxi-
mation, in determining the first-order character of the
transition. Also the structural changes occurring in
Ni3A1 upon introduction of chemical disorder have been
successfully reproduced.

IV. VERIFICATION OF THE LONG-RANGE TB-SMA
POTENTIALS ON EXPERIMENTAL DATA

A. Static properties

All the experimental values for point-defect properties
reported in this subsection have been taken from the re-
view paper by Wollenberger. In particular, vacancy
enthalpy of formation AH ' and volume of formation
b Vf', interstitial volume of formation b, Vf' (either self-
interstitial or Frenkel pairs), and formation enthalpy
hH '. To estimate these quantities we have adopted a
quasidynamical relaxation procedure, in order to mini-
mize the local strain related to the abrupt insertion, or re-
moval, of an atom from an equilibrated system. A MD
simulation at a very low temperature (of the order of 0.1

K) is carried out on a system made up of 256 atoms ar-
ranged in the fcc structure, or 250 atoms arranged in the
hcp structure, and an atom is added at, or removed from,
a lattice site by progressively "inflating, " or "deflating, "
it. Such a procedure is performed by scaling the com-
ponents of the energy and of the force constants relative
to that atom by a factor proportional to the logarithm of
the simulation time. When the atom has fully appeared,
or disappeared, the system continues to relax at the same
low temperature for some time, before being definitely
quenched down to T=0 K, with a steepest-descent gra-

with w= —,
' for AB, —,

' for A2B, and 4 for A3B alloys, E,
the cohesive energy of pure a, and AH;„ the alloy's ex-
perimental heat of mixing at that particular
stoichiometry. Then, the eight interaction parameters for
the like atoms being fixed, only the four cross-interaction
parameters A„~, g„~, p~~, and q„~ are left free for the
minimization.

We summarize the results obtained for two alloys
Cu3Au and Ni3A1, both with L12 structure. The poten-

ao C44 (& )

Cu3Au 3.545 3.615 1.92 1.37 0.80
3.545 3.615 1.89 1.32 0.74
4.54 3.567 2.43 1.48 1.26
4.54 3.567 2.30 1.50 1.31

Ni3A1

1.55
1.51
1.79
1.77

0.27
0.28
0.48
0.40

TABLE VI. Values of the fitted quantities for the L12 alloys
Cu3Au and Ni3A1. First lines, calculated data; second lines, ex-
perimental data from Kittel and Simmons-Wang (see Table II).
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Frenkel
Vacancy

(100) split
(100) split
(111) split
Octahedral
Tetrahedral

Average
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy

aIIf (eV)

1.25(1.0—1.3)
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3.28( —

)
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FICx. 4. Phonon density of states for fcc copper at 80 K.

ing both elastic properties at the center (the elastic con-
stants) and at the borders of the Brillouin zone, without

aving been explicitly fitted on the phonon dispersion
curves. The case of Au, for which the disagreement is
particularly evident, deserves, however, some comments.
It has been noted experimentally ' that Au has a different

ble me
e astic behavior at finite temperatures from th the o er no-

e metals Cu and Ag. This is generally ascribed to a
strong contribution from noncentral many-body forces,
that appear to be of increasing importance along the no-
ble metal series. As we adopt a spherically symmetric
model, without particular prescriptions for angular
forces, the larger error in elastic properties of Au should
not be surprising.

In the same quasiharmonic approximation, the phonon
requency spectra have been computed; examples for fcc

copper and hcp cobalt are shown in Figs. 4 and 5. Pho-
non dispersion curves and frequency spectra for ordered
and disordered Cu3Au have been reported elsewhere.
In Figs. 6 and 7, co(k) and g(co) for Ni&A1 are displayed;

FIG. 5. Phonon density of states for hcp cobalt at room tem-
perature.

we note that these results are in striking agreement with
those obtained by Foiles and Daw with an EAM t
tial thi

an poten-
ia, t is latter giving a 3%%uo smaller cutoff frequency than

the TB result.

B. Finite-temperature properties

All the following calculations of thermodynamic prop-
erties of metals at finite temperatures were obtained by
MD simulations in the canonical ensemble (NVT) or in
the NPT isoenthalpic-isobaric ensemble with the N
An" 44 —46ndersen technique. The equations on motion for
systems of 500 particles for cubic structures, and of 432
particles for hexagonal systems (correspondin to
5X5X5 and 6 X 6 X 6 basic cells, respectively) are in-
tegrated using a fifth-order Gear predictor-corrector algo-
rithm with a time step of 10 ' s, and imposing usual

toroidal boundary conditions. An example of the tem-
perature behavior of system enthalpy and volume is re-
ported in Fig. 8 for Cu3Au; the two discontinuities in the

CU

Ag

Au

Ni

Pd

Pt

v~(L)

7.75
7.38
4.80
4.96
3.20
4.61
9.88
8.51
5.77
6.72
4.95
5.80

5.21
5.16
3.31
3.37
1.51
2.75
6.78
6.21
4.02
4.64
3.94
3.84

v, (L)

7.71
7.44
4.75
5.13
3.24
4.70
9.80
8.84
5.72
7.02
4.87
5.85

vt. (T)

3.34
3.41
2.17
2.27
2.27
1.86
4.49
4.26,
2.67
3.34
2.25
2.90

TABLE VIII. Comparison between calculated and experi-
mental longitudinal (L) and transverse (T) phonon frequen

'
requencies

a e Bn.llouin zone boundaries X and L for some fcc metals.
First lines, calculated data; second lines experimental data [Cu
at 80 K (Ref. 39), Ag (Ref. 41), Au (Ref. 42), Ni (Ref. 62), and
Pd (Ref. 63) at room temperature, and Pt at 90 K (Ref. 64)].
Frequencies are expressed in Thz.
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FIG. 7. Phonon density of states for L12 Ni3Al at 0 K.

plots correspond to the disordering transition at T, =635
K and to melting at T =1420 K. The results obtained
for various thermal properties of the fcc metals Ni, Ag,
and Cu, for hcp Co and for the L12 alloy Cu3Au are re-
ported in Table IX.

From the low-temperature behavior of the system
enthalpy, the value of the constant-pressure specific heat
can be deduced by drawing a curve for c (T; ). The linear
coefficients of the best fit to these curves are reported in
Table IX, and compare quite well with the experimental
values for Ni and Ag, whereas for Cu and hcp Co it lies
within about 20%%uo.

Correspondingly, from the low-temperature behavior
of the system volume we deduce the thermal expansion
coefficient and we compare the linear coefficient of the
best fit to the curve a =a( T, ) with the experimental
values of linear thermal expansion. In most cases we
find a reasonable agreement with experimental data, the
errors being within 10—15%, though all the results but
Ni tend to be overestimated.

From the height of the jumps in the system enthalpy
and volume, the latent heat and volume of melting hH
and kV can be estimated. All the results, reported in
Table IX, compare very well with the experimental
data, the errors being within a few percent, with the

only exception of the 6V value for Ag, which is overes-
timated by about 40%. Comparison of the equation of
state at finite temperatures with experimental results re-
quires the vibrational free-energy contribution to be add-
ed to the zero-temperature term, simply related to the
static properties of the model. This vibrational contribu-
tion can be shown to be related to the thermal Gruneisen
constant y,h, under the hypothesis that all the constants

y,- for each eigenfrequency ~; of the system are equal.
The constant y,h can then be defined

380,V
7th

C~

Inserting in the above equation the calculated values of
lattice thermal expansion a, average bulk modulus B, and
atomic volume V, and taking c„—=3'~ at room tempera-
ture for the systems considered, the corresponding values
of the thermal Griineisen constant can be calculated from
our model. Except for Ni, the resulting values are more
or less overestimated, and this fact, coupled to the ten-
dency to slightly overestimate the thermal expansion
coefficients, indicates a too large anharmonicity of the TB
potentials.

The melting temperature in Table IX is identified by
monitoring the jump in the system enthalpy and volume,
and the vanishing of the structure factor S (k) defined as

S(k)=—g e
N, .~ .

for some k=(k, k, k, ) in the reciprocal space. The re-
sults obtained for the various model systems are rather
satisfactory, when considering that they correspond to
perfect infinite systems that are driven to melting without
any vacancy buildup. The slight overestimate (around
10%) of T s is thus not surprising being, in turn, an in-
direct confirmation of the reliability of the potential mod-
el. A remarkable exception to this trend is Au, for which
the melting point is considerably underestimated by the
TB potential. This has to be coupled with the previous
observation of a calculated phonon cutoff frequency
much lower than the experimental one (see Table VIII),

TABLE IX. Miscellaneous finite-temperature properties for Ni, Ag, Cu, Co, and Cu3Au calculated
with the potentials of the present work: melting temperature T (K), latent heat of fusion AH
{Kcal/mol), latent volume of fusion hV (a.u. ), constant-pressure specific heat C~ (cal/K/mol) and
linear expansion coeScient o. (10 ' K ') between 0 and 600 K, thermal Gruneisen constant y, h, enthal-

py of the liquid at the melting point H minus the STP value Ho (Kcal/mol), density of the liquid at
the melting point p' (g/crn'). Experimental data in parentheses are taken from the compilation by
Hultgren et al. (Ref. 48).

T
hH
hV
Cp
a
7th
H' —Ho

1
pm

Ni

1880( 1726)
4.08(4. 17)
1.14( 1.07)
8.71(8.60)
1.42( 1.50)
1.92( 1.90)

17.3( 15.4)
6.86(7.84)

Ag

1330(1234)
2.77(2.70)
1.46( 1.03 )

7.05(6.87)
2.47(2. 14)
2.96(2.40)
9.45( 8.99)
8.60(9.34)

Cu

1490( 1356)
3.07(3. 11)
0.86(0.84)
8.30(6.59)
2.10{1.83)
2.30( 1.96)

14.4(10.1)
7.09(7.98 )

Co

1950( 1768)
3.52(3.87)
0.70(0.85 )

7.87{6.52)
1.71( 1.38)
2.51( 1.94)

14.8(16.8)
7.49(7.67)

Cu3Au

1420( 1233 )

2.08( 2.76)
0.91(—)

5.94( 5.89)
5.43(4.89)

8.13( —)

11~ 11(—)
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FIG. 8. Temperature behavior of system enthalpy (solid
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right scale in A) for Cu3Au. The structure is ordered L12 below
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FIG. 10. Atomic MSD curve for fcc copper. Experimental
points:, from Owen and Williams (Ref. 55), t, from Flinn
et al. (Ref. 56), , from Martin and O' Connor (Ref. 57).

which is a clear signature of a too large lattice dilation at
high temperatures, and results in an anticipated melting
of the model system. The location of the melting temper-
ature undoubtedly is among the quantities that appear to
be most sensible to the range of the interaction. This
point will be discussed in more detail below.

From the absolute values of system enthalpy and
volume immediately above the melting point, an estimate
can be given for the enthalpy and density of the liquid at
melting. The results, presented in Table IX as well, are in
rather good agreement with the experimental data.

Atomic mean-square displacement (MSD) is among the
most difficult finite-temperature quantities to compare
with experimental data. As for the location of melting
temperatures, this is not only related to the intrinsic ex-
cess of anharmonicity that can affect many-body poten-
tials, but also to the fact that a too short cutoff of the in-
teraction entails a technical difficulty in MD simulations.
In fact, with increasing temperature and lattice dilation,
some particles can "escape" such a short cutoff, so that
the average coordination in the system is strongly re-

duced. This implies that each atom experiences a drasti-
cally reduced restoring force and then the MSD tends to
be more and more amplified. Indeed, following
I.indemann's law ' the melting point can be empirically
related to the temperature dependence of MSD, so that
this also explains why a short-range cutoff always leads to
anticipated melting. In our calculations, MSD are direct-
ly estimated by recording the displacements of the parti-
cles from their equilibrium position and averaging the
square of this quantity over a sufficiently long equilibrium
trajectory. In Figs. 9—11 we compare our calculated
MSD's (solid curves) with experimental data for Ni,
Cu, and Ag. ' It is evident that, as for the melting
temperature T, extension of the interaction to long
range as the fifth-neighbor distance is successful in re-
moving both the problems of excessive anharmonicity
and the technical limitation of particle escape. The resid-
ual anharmonicity that manifests in the errors on the
Gruneisen constants is not eliminable by a simple exten-
sion of the potential cutoff, but appears to be inherent to
the model.

0.06
Ni

0.12
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FIG. 9. Atomic MSD curve for fcc nickel. Experimental
points:, from Simerska (Ref. 53), 0, from Wilson et al. (Ref.
54).

FIG. 11. Atomic MSD curve for fcc silver. Experimental
points: Cl, from Haworth (Ref. 58), $, from Simerska (Ref. 59).
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V. CONCLUSIONS AND COMMENTS
We have presented a family of many-body potentials

for fcc and hcp transition metals and fcc-based alloys,
developed on the basis of a second-moment approxima-
tion of the tight-binding, or linear combination of atomic
orbitals (LCAO), scheme employed by Tomanek, Aligia,
and Balseiro. ' This is a very "chemical" point of view,
as it is related in a natural way to the metallic character
of the cohesive energy. The range of the interaction has
been extended up to the fifth-neighbor shell. The poten-
tial parameters have been adjusted so as to reproduce
cohesive energy, atomic volume, and elastic constants of
the corresponding real systems at T =0 K, though ensur-
ing stability of the appropriate crystal structure. These
potentials have proved to satisfactorily reproduce experi-
mental quantities, like formation energies and formation
volumes of simple point defects as vacancy, self-
interstitials of different types (tetrahedral, octahedral,
dumbbell along various directions), and dissociated
Frenkel pair. Concerning lattice dynamical properties, it
is worth noting that calculated phonon dispersion curves
compare well with experimental measurements for both
fcc and hcp metals and, in particular, the frequencies at
the edge of the Brillouin zone are reproduced in most
cases.

Extension of the interaction to a longer range as the
fifth-neighbor distance has been attempted in order to
reproduce high-temperature properties of real systems
that are usually beyond the capability of short-range po-
tentials. Indeed, this extended potential scheme gives
correct estimates for various thermodynamic quantities
up to the melting point, like specific heat, average linear
thermal expansion coefficient, thermal Griineisen con-
stant, latent heat, and volume of melting, enthalpy, and
density of the liquid at the melting point. The tempera-

ture behavior of the mean-square displacements is also
quite accurately reproduced. This fact is rejected in the
rather good agreement between calculated and experi-
mental melting temperatures which, as for the mean-
square displacements, usually frustrates any effort of
quantitative reproduction.

We have often recalled, throughout this paper, that the
second-moment, or p2, approximation to the electron
density of states suffers intrinsic limitations that make it
unsuitable to describe (a) the relative stability of the
face-centered, hexagonal, and body-centered structures
along the transition series, (b) the possibility of obtaining
P ratios for hexagonal crystals different from the "ideal"
value of &8/3, (c) the reconstruction of some surfaces,
especially in the case of bcc crystals, and (d) the physical
properties of noble metals Cu, Au, and Au. Nevertheless,
apart from point (c), that was not treated in the present
work, we have shown that with long-ranged p2 approxi-
mation, point (d) is well resolved, except for some
features of Au, point (b) can be solved at least in those
cases having "nonpathological" values of P, and point (a)
can be reasonably demonstrated, at least for the relative
stability of close-packed structures, with a suitable choice
of the cutoff length of the interactions. This implies that
metals like Cd or Zn are not suitable for a TB treatment
of the type displayed here. We stress that, in particular,
for points (a) and (b), the success of the model is essential-
ly due to the extension of the range of the interaction
beyond first-neighbor distance. If we disregard the possi-
bility of a fortuitous agreement, we can argue that the
hopping integrals being defined between first-neighboring
atoms, the extension to nextcoming shells of neighbors
should begin to collect in the effective interaction some
contributions from the moments of higher order.
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