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Raman scattering in germanium-silicon alloys under hydrostatic pressure
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The pressure dependence of vibrational Raman scattering in polycrystalline Ge& „Si, alloys is studied
up to —100 kbar across the compositional range, and the mode Griineisen parameters y for the Si-Si,
Ge-Ge, and Ge-Si optical phonons are determined from the Raman shifts. ys; si increases with the Ge
fraction of the alloy and yG, ~, increases with the Si fraction. The dependence of the Raman shift on x
and pressure is described by a modified cellular isodisplacement model of optical phonons. In particular,
the predicted dependence of the Ge-Si mode frequency on alloy composition at ambient pressure is
found to agree much better with experiment when the variation of the average Ge-Si bond length with
alloy composition is included in this model.

I. INTRODUCTION

Crystalline Ge& Si alloys have been the subject of
recent intensive study due to their importance in new
electronic and optical devices. ' Raman scattering has
been used to investigate the role of structural disorder on
the vibrational and electronic properties of these alloys
and the importance of strain in heterostructures com-
posed of Ge, Si, Si, and Ge. ' " However, the effect
of strain on phonons in these alloys and heterostructures
is still not well understood. To address this further, first-
order Raman scattering has been performed on polycrys-
talline Ge& Si„alloys that were subjected to hydrostatic
pressure up to —100 kbar in a diamond-anvil cell. The
magnitude of strains in these experiments is of the same
order as those in Si/Ge& „Si /Ge heterostructures
(0—4 %%uo).

The optical phonon frequencies in Ge& Si„decrease
with temperature, in part because of thermal expansion.
This effect depends on the mode Gruneisen parameters
y, = —d inn, . /d ln V, where cu; is the phonon frequency of
mode i and V is the volume. However, different depen-
dences of y; on alloy composition were found in the two
previous studies of the Gruneisen parameters for these al-
loys. ' One specific motivation for the current study is
to resolve these diff'erences and to examine a wider range
of alloy compositions than has been studied previously.

The first-order Raman spectrum of Ge& „Si„has three
dominant features, near 300, 400, and 500 cm ' at am-
bient pressure, which are due to the optical-phonon
modes associated with local Ge-Ge, Ge-Si, and Si-Si vi-
brations, respectively. Some additional weak features
between 400 and 500 cm, due to Si-Si motion in the
neighborhood of one or more Ge atoms, have been ob-
served by Alonso and Winer. Generally, the Si-Si
(Ge-Ge) optical-phonon frequency decreases nearly
linearly as the Ge (Si) concentration increases, while the
frequency of the Ge-Si mode has a maximum near
x =0.5. ' Recently, the Ge-Ge mode frequency has been
observed to increase with x for x (0.02, which is an ex-
ception to these trends. '

This dependence of phonon frequency on alloy compo-
sition can be attributed to the different effects of alloying
in this mixed crystal. The Si/Ge mass difference affects
the phonon density of states. The Si-Si (Ge-Ge) bonds
are stretched (compressed) in crystalline Ge, Si, rela-
tive to those in c-Si (c-Ge), and the force constant of
each bond is changed by this strain. This change causes a
decrease (increase) in the Si-Si (Ge-Ge) phonon mode fre-
quency, and also affects the Ge-Si mode frequency. Be-
cause the Si-Si, Ge-Si, and Ge-Ge bond lengths in c-Si,
Geo 5Sio ~, and c-Ge, respectively, are so different, there is
structural disorder in the alloy. Therefore there is a dis-
tribution of Si-Si, Ge-Si, and Ge-Ge bond lengths about
an average because of this disorder, which leads to inho-
mogeneity in the three local mode frequencies in the alloy
and broadening of the three Raman peaks. Finally, while
first-order Raman scattering in pure crystals is limited to
q=O phonons, the loss of translational symmetry that
occurs with alloying relaxes this constraint. Because of
this eff'ect, the alloy Raman spectrum may resemble
somewhat the density of states for optical phonons.

Renucci, Renucci, and Cardona suggested that the
Si-Si and Ge-Ge Raman peaks are due to phonons from
the zone boundary, where the density of states has a max-
imum, rather than q=O phonons. This was based on
their measurements of y, for different alloy compositions.
Lannin" compared the first-order spectrum of c-
Ge, Si, with the second-order Raman spectrum, which
reAects the density of states of overtone transitions. In
contrast to Ref. 5, he concluded that first-order spectra
reAect mainly q=O phonons, except at rather high alloy
concentrations. Ishidate et al. suggested that a bond
charge of about 0.5 e in the alloy could be responsible for
the decrease of the Si-Si and Ge-Ge frequencies; however,
this suggested bond charge is much larger than is reason-
able ( (0.1 e). ' '

Several calculations have sought to simulate the
Ge& Si Raman spectrum. In varying degrees they
have included the mass and force differences between Si
and Ge, and the various eff'ects of structural disorder.
Calculations based on the coherent-potential approxima-
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tion (CPA) (Ref. 14) account for the effects of mass de-
fects and result in spectral density functions at q=0 that
simulate the x dependence of the Si-Si and Ge-Ge modes
fairly well, but they do not account for the Ge-Si mode.
The importance of local clustering in lattice dynamics
was demonstrated in a calculation of the density of states
for amorphous Ge& „Si„,' which simulated all the major
features of the Raman spectra observed in crystalline al-
loys. Zinger, Ipatova, and Subashiev' used the cellular
isodisplacement (CI) model for q=0 phonons to fit the
frequencies of the three main alloy peaks at ambient pres-
sure. As presented in Ref. 16, this model accounts for
differences of the Si and Ge masses and force constants,
and simulates the Raman spectrum well across most of
the composition range, except near x =0 and 1 for the
Ge-Si mode. Alonso and Winer relaxed a 216-atom su-
percell using the Keating potential and then diagonalized
the dynamical matrix to obtain the first-order Raman
spectrum. This procedure predicts the three stronger Ra-
man features as well as the weaker ones, and demon-
strates the importance of inhomogeneities due to strain
relaxation and the local clustering of Si and Ge atoms. In
the current study, the cellular isodisplacement model
from Ref. 16 was modified and then used to study the
three main Raman features both at ambient pressure and
elevated pressure.

II. EXPERIMENTAL PROCEDURE AND RESULTS

Polycrystalline Ge, Si alloys, with an average grain
size of 10—20 pm as determined by scanning electron mi-
croscopy, were grown by the horizontal Bridgeman tech-
nique, as detailed in Ref. 3. Pressure (p) was applied with
a gasketed diamond-anvil cell. A 4:1 methanol-ethanol
mixture solution was used to maintain nearly hydrostatic
conditions, and the pressure was measured by the Auores-
cence from a small ruby chip placed near the sample.

Raman spectra were taken in backscattering geometry
at room temperature using the 488-nm line from an Ar-
ion laser. The scattered light was collected with a focus-
ing lens and was directed into a triple monochromator.
The dispersed light was detected by a cooled 1024-
channel photodiode array; the overall spectral resolution
was (0.6 cm

Figure 1 shows typical first-order Raman spectra of
polycrystalline Ge, Si„alloys at ambient pressure for
different compositions. Figure 2 shows the dependence of
the three Raman peak frequencies ~; on pressure for a
typical run (i =Si-Si, Ge-Si, Ge-Ge), where —20—30
spectra were collected for pressures up to -75—100 kbar.
The linear coefficient de;/dp for each mode was deter-
mined by fitting co;(p) with p and p terms. The Raman
linewidth remained essentially the same (within 1 cm ')
for each mode throughout the pressure range examined.

Figure 3 presents the measured de;/dp for the three
modes. deus;s;/dp increases from 0.52+0.03 cm '/kbar
for c-Si (x =1) to 0.80+0.03 cm '/kbar at x =0.37,
while des~, ~, /dp increases from 0.39+0.02 cm '/kbar
for c-Ge (x =0) to -0.428+0.02 cm '/kbar at x =0.55.
d co&, s; /dp decreases from 0.58+0.02 cm '/kbar at
x =0. 11 to 0.43+0.02 cm '/kbar at x =0.69.
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FIG. 1. The Raman spectra of c-Ge (x =0.0), Ge, Si„with
x =0.37 and 0.55, and c-Si (x=1.0) at ambient pressure and
room temperature. The peaks near 500, 400, and 300 cm ' cor-
respond to the local Si-Si, Ge-Si, and Ge-Ge modes, respective-
ly.
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FIG. 2. Raman frequencies as a function of pressure for
Geo 4,Sio». The solid lines are least-square fits including linear
and quadratic terms in pressure.
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III. THE ISODISPLACEMENT MODEL

The Hamiltonian of the lattice of a mixed crystal, in-
cluding anharmonic terms, has the form

H= —,'gm„[u (Is)]
als

0.8—

+ —,'g g4 p, u (I,s)up(l', s')
als Pl's'

0.7—

+lX X X +-py
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Xu (I,s)u/3(I', s') u(I",s"), (1)

where u (I,s) is the ath component of the vector
representing the displacement of the atom s from its equi-
librium position in the unit cell I; ml, is the mass of the
(I,s) atom, and the coupling coefficients are
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The displacement component u (I,s) is composed of
two terms. The first describes a homogeneous deforma-
tion of the crystal, caused by external hydrostatic pres-
sure or thermal expansion, and the second describes arbi-
trary displacements of the atoms from their new positions
in the deformed crystal w

u (I,s)=QE ~&(l,s)+w (I,s) .
p

FIG. 3. d~;/dp as a function of the Si fraction x for the
Si-Si (circles), Ge-Si (squares), and Ge-Ge {diamonds) modes.
The solid lines are calculated by using the CI model with

dZ/dp =0 for the Ge-Si mode. The dashed curve for the Ge-Si
mode is a fit to the CI model with dZ/dp = —180 cm /kbar,
and the dotted curve for the Ge-Si mode is fit by using the sim-

ple model of Eq. (11).

The vector x(l, s) is the position vector of the (I,s) atom
in the undeformed crystal. The parameters c p are the
elements of the deformation tensor, which are functions
of hydrostatic pressure and temperature.

Substituting Eq. (4) into Eq. (1) gives

H= —,'gm„[w (I,s)] + —,'g g g4 p, E „x„(l,s)Ep~x~(l's')
als als Pl's' pA,

+g g g@p, E „x (l, s)wp(l', s')+ —,'g g@p, w (I,&)wp(I', s')
als Pl's' p als Pl's'

I I' I"
+ —,'g g g gN &z, „w (I,s)w&(l', s')E~„x„(1",s")+O(E )+O(wE )+(Ow ) .

als Pl's yl"s" p

The terms linear in w&(I', s') vanish because there is no
net force when all the atoms are at their equilibrium posi-
tions in the homogeneously deformed crystal. The
second term in Eq. (5) is the static energy, which does not
contribute to the dynamics.

After excluding the static contributions and higher-
order terms, the Hamiltonian can be rewritten as

H' =
—,
' pm„[ w (l,s) ]

+ —,'g gQ p, w (I,s)wp(1', ~'),
als Pl's'

where
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l l'
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+ g g4 &, „Er„x„(l",s") .
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(7)

This Hamiltonian is quasiharmonic. Hydrostatic pres-
sure affects the force constants through the anharmonic
contributions in Eq. (7), and the changes in strain Ez are
usually proportional to p in the low-pressure limit.

If 4 &and N & were known, then Eq. (6) would give a
good description of the system; however, the calculation
would still be very complex. Several simplifying assump-
tions lead to the cellular isodisplacement (CI) approxima-
tion, as applied to Ge& Si at ambient pressure by
Zinger, Ipatova, and Subashiev, ' which involves only a
few parameters to be determined by experiment. This

model assumes the following. (i) There are only harmon-
ic contributions to the Hamiltonian. (ii) There are three
distinguishable types of cells or clusters of two atoms:
Si-Si, Ge-Si, and Ge-Ge. (iii) The Hamiltonian is ex-
pressed in terms of the centers of gravity of the cells and
the relative displacements of the atoms in the cells of the
same kind, with intercell and intracell interactions treat-
ed as model parameters. (iv) Configurational ensemble
averages of the Hamiltonian are made, which are ex-
pressed in terms of x. (v) Only long-wavelength vibrations
in an isotropic medium are considered. This simplifies
the Hamiltonian and leads to six independent equations
of motion corresponding to three acoustic models and
three optical modes. (vi) Acoustic modes are ignored, and
the coupling of acoustic and optics modes is neglected
since the intracell force constants far exceed those for in-

tercell interactions.
Then the three long-wavelength optical-mode frequen-

cies co =co; are determined by'

co —co&+x ( 2 —x ) T
—(1—x) A2

—(1—x) A~

—x

co —co, +(I—x )S

—x A6

—2x(1 —x)A3
—2x(1 —x)A5

z (1—2x)
CO 603+

=0, (8)

where u, and co& correspond to the phonon frequencies of
c-Si and c-Ge, respectively, and co3 is approximately co&, s;
for Ge05Sio 5. These three parameters are set equal to
520.5, 301.3, and 406.0 cm ', respectively (ambient pres-
sure, Er„=O). The other three independent parameters T,
S and 8 describe intercell interactions, which are related
to 2 )

—A6 by'

T+ S (9a)

T+ 2 2
3 2

V2 +e Pal +e
(9b)

~ =-,' s+ 2 2
5 ~si ~s (9c)

where @=ms;mo, /(ms;+mo, ) is the reduced mass of
the Ge-Si cell.

In the limit of x =0, the solutions of Eq. (8) are
co~;s;(0)=co, —5, coo, o,(0)=co2, and coo, s;(0)=co3
—W/2, while in the limit of x =1, the solutions are
~s -s;(1)=co„co&,z,(1)=co& —T, and cur -s (1)
=co3 —W/2. Zinger, Ipatova, and Subashiev fit the ob-
served dependence of cps;s; and cot-, &, on x by setting
T=O. llcoz, S=0.20co&, and W=(T+S)/2, which gives
coo, s;(x =0)=coo, s;(x =1)=387 cm '. However, ex-
perimentally co&, s;(0)=387 cm ', while co&, s;(1)=400
cm

This asymmetry could be due to the different Ge-Si
bond lengths at the two composition limits. As pointed
out in Refs. 10 and 17, the average Ge-Si bond length (r)

is —1% larger in the Ge-rich alloy (x -0) than in the Si-
rich alloy (x —1). ~ith b, cooe-si 37'oe stcooe s;(b, r/r-)
and y&, &;=1.3, which is extrapolated from the data
presented here, co~, s; would be expected to be —15 cm
higher in the Si-rich region than in the Ge-rich region.
This agrees with experiment. To include this effect in the
CI model, the term (0.5 —x )Z=6yz, s;coo, s;(0.5
—x)/100 is added to the third diagonal element in the
determinant of Eq. (8). This assumes a linear variation of
the average bond length from the Ge- to Si-rich alloy,
with Ar/r=(0. 5 —x)/100, as was suggested by Refs. 10
and 17. Because the variation of y~, s; and co~, s; with x
is relatively small, Z is determined by using data for
x -0.5.

Similarly, since the average Si-Si and Ge-Ge bond
lengths in the alloy depend on x, ' ' these bond-length
variations will also affect these modes. However, it was
found that a similar modification to Eq. (8) gave almost
the same compositional dependence of the Raman fre-
quencies, though with different S and T. This strain-
modified CI model deviated from the original fit only
slightly when x &0.2 for the Si-Si mode and x )0.7 for
the Ge-Ge mode. Therefore, over most of the composi-
tional range the corrections due to Si-Si and Ge-Ge bond
stretching and compression can be included within the
parameters S and T, and the strain-modified CI model ex-
plicitly includes only the effect of composition-dependent
Ge-Si bond lengths.

Figure 4 plots m, vs x from Refs. 7 and 8, along with
fits using the original CI model (solid lines) for the three
modes and the CI model modified for Ge-Si bond-length
variations (dashed line). All model parameters are listed
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FIG. 4. The Raman frequencies co; vs Si fraction x, showing
the Si-Si (circles), Ge-Si (squares), and Ge-Ge (diamonds)
modes. The experimental data are taken from Ref. 7 (solid sym-
bols) and Ref. 8 (open symbols). The solid curves are fits using
the original CI model. The dashed curve for the Ge-Si mode
uses the CI model modified for average bond-length variations.

in Table I. The original model describes the Si-Si and
Ge-Ge modes quite well. Including the effect of local
strain clearly improves the description of the Ge-Si mode.

The quasiharmonic form of the Hamiltonian [Eqs. (6)
and (7)] is used to model de, (x)/dp (Fig. 3), once again
by employing the CI approximation. Hydrostatic pres-
sure changes the force constants in Eq. (7) because of
anharmonic effects. To first order, this causes the six pa-
rameters in the original CI model co„co2, co3, T, S, and 8'
to vary linearly with p, such as co&(p) =co&+(den&/dp)p,
and leads to six new parameters den&/dp, etc. den; /dp for
the three modes are obtained as a function of composi-
tion by taking the derivative of Eq. (8) with respect to p.
des&/dp and dcoz/dp are set equal to 0.52 cm '/kbar
(Ref. 18) and 0.385 cm '/kbar, ' the values for c-Si and
c-Ge, respectively. d co3/dp is taken to be 0.44
cm '/kbar. The other three pressure derivatives are

treated as model parameters to be determined by the ex-
perimental data. Fits of dao;/dp with this modified CI
model are shown in Fig. 3.

dcos; s;/dp is sensitive to dS/dp, and the curve for the
Si-Si mode in Fig. 3 is best fit with dS/dp= —280
cm /kbar. In the Ge-rich regime (x ~0),
deus; s;/dp —+0.88 cm '/kbar. This is roughly equal to
d cps; s;/dp in amorphous Si, which is 1.0+0.3
cm '/kbar, suggesting that structural disorder is simi-
lar in both materials.

The Ge-Ge mode is sensitive to dT/dp, and the curve
for the Ge-Ge mode in Fig. 3 is fit with dT jdp =0. In
the Si-rich region (x —+1), demo, o, /dp ~0.42
cm '/kbar. Lannin" suggested that the slower depen-
dence of cuz, 0, with composition relative to that for ms; s;
means that the Ge-Ge mode is more extended than the
Si-Si mode. Similarly dcoG, G.,/dp varies with composi-
tion much slower than does dcos; s;/dp, which may rein-
force this conclusion. The CI model accounts for these
differences between the Si-Si and Ge-Ge modes.

For the Ge-Si mode, the pressure derivative
of the third diagonal element in Eq. (8), modified
for local strain, gives 2'(dcojdp ) —2co3(dco3/dp )

+ [(1—2x )2/2]d W/dp+(0. 5 —x )dZ ldp, where d W/
dp = (d T /dp +dS /dp ) /2. Ignoring the strain
term, which is the last term, gives the solid curve for
dcoo, s;/dp in Fig. 3. The fit is not very good.

Two factors in Z, which describes the effect of the vari-
ation of average bond length with x, depend on pressure:
co&, s; and b, r jr. coo, s;(p) increases with pressure as
co&, s;(1 bar)[1+2pyz, s;(x)/38(x)], where 8 is the bulk
modulus. Because Bs; )B&„ the difFerence in Si-Si and
Ge-Ge bond lengths in c-Si and c-Ge decreases with pres-
sure. At low pressures, this decrease is linear with p. So
«/i ~ (1 —p /p, ), where p, —330 kbar. (b,r/r never
reaches 0 because the pressure/volume equation of state
is nonlinear and because of phase transitions. ) Since
B(x =0.5)-850 kbar, these two effects partially cancel,
and this dZ/dp term does not aff'ect the Ge-Si curve in
Fig. 3 very much. Treating dZ/dp as a free parameter
gives the dashed Ge-Si curve in Fig. 3 with
dZ/dp = —180 cm /kbar. However, this value is much
too large to be accounted for by strain.

Though the modified CI model fits dcos; s;/dp and
dcoo, o, /dp well (Fig. 3), the demo, z;/dp fit is poor,
perhaps because of the assumption connecting W with S
and T. A better fit is obtained for the Ge-Si mode using
the following simple model. If only intracell interactions
are considered, with the same force constant k for the
three local vibrations, then cos; s; =+2k /m s;,
coo, z, =+2k/mo„and coo, s;=&kjp. They are relat-
ed by

TABLE I. The parameters in the CI model.
2

Ge-Si +~si-Si~Ge-Ge ~ (10)

co, (cm ')
co, (cm ')
a, (cm ')
S (cm-')
T (cm )

Z (crn )

521
301
412

0.20 co,
0.11 co~

0.078 co3

den, /dp (cm '/kbar)
d co&/dp (cm '/kbar)
d co3/dp (cm '/kbar)
dS/dp (cm /kbar
dT/dp (cm /kbar)
dZ/dp (cm /kbar)

0.52
0.385
0.44
—280
0.0

0.0,—180

where a=(ms;+mo, )/2+ms;m&, =1.11. If it is as-
sumed that Eq. (10) is still valid when cos;s;(x) and
co&, o,(x) are used from the CI model, then yz, s;(x) is
obtained. The fit to the data in Fig. 4 is fairly good but
not as good as the original and modified CI models. In
particular, this simple model does not reproduce the
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d cooe-si(x

dp

1/2
cooe o (x) dcosi s;(x)
~„„(x) dp

1/2
cos; s;(x) dcoo, o,(x)

~re-re(x ) dp

This is plotted as the dotted line in Fig. 3 by using
dcos; s;(x)/dp and dcoo, o,(x)/dp from the CI model.
This fit of dcoo, s;(x)/dp is good, and is better than that
directly from the CI model.

downward curvature in the CI model fits. Now,
differentiating Eq. (10) with respect to p leads to
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IV. DISCUSSION

The mode Griineisen parameter y; = —d lnco, . /
d 1nV~ vi& b„i=[8(x)/co;](dco;/dp)z»„, where V is
the volume. Though both relations should give the same
y;, use of the pressure relation is usually less precise be-
cause of the nonlinear relation of p and V. The co;(p)
data are converted to co;( V) by using Murnaghan's equa-
tion of state, '
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where b, V= V(p) —V(1 bar) and 8'(x) =dB(x)/dp. y;
is determined by a least-squares linear fit of co; vs 6V/V.

This procedure is sensitive to the dependence of B and
B' on x; unfortunately, there are limited experimental
data describing this dependence. The bulk moduli of
Ge02Sio 8, as determined by the thermoelastic stress, '

and Geo 5&Sio 49 as determined by Brillouin scattering,
seem to obey Vegard's law of linear interpolation between
Bs; and B~,. Reference 23, however, reported a bulk
modulus for a polycrystalline Ge& Si alloy
(x =0.28, 0.54, 0.64) that is much higher than expected
by linear interpolation. 8'(x) has been reported to obey
Vegard's law with only a slight deviation. Linear inter-
polation of the bulk modulus 8 (x) and 8'(x) between the
values for c-Ge [8 =751 kbar and 8'=4. 75 (Ref. 19)]
and those for c-Si [8=979 kbar and 8' =4.2 (Ref. 19)] is
assumed here. The resulting mode Gruneisen parameters
are plotted in Fig. 5.

Figures 3 and 5 show that dcos; s;/dp and ys; s; both in-
crease with Ge fraction. dcuo, z, /dp shows perhaps a
weak increase with Si fraction x, but yz, ~, shows a
definite increase with x because of the dependence of B
on x. dcoo, s;/dp definitely decreases with x, but yo, s;
seems to reach a minimum near x =0.5.

The change of y; with composition for each mode is
similar to that obtained in Ref. 5, where Gruneisen pa-
rameters were measured only up to 8 kbar and over a
narrower compositional range. However, the current re-
sults differ with those in Ref. 4, where dence, z, /dp was
found to decrease strongly with increasing x. This is
definitely not seen here. Reference 4 examined polycrys-
talline films made by annealing amorphous films, whereas
Ref. 5 and this study examined bulk polycrystalline al-
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FIG. 5. The Gruneisen parameters y; as a function of the Si
fraction x for the three modes.

loys. However, this difference in sample preparation is
not expected to be significant. In Ref. 4 measurements at
only approximately four pressures were used to deter-
mine dco, /dp (including p = 1 bar), in contrast to
-20—30 different pressure measurements per run here.
It is quite possible that there is significant error in the
determination of de;/dp in Ref. 4.

Because of the relaxation of momentum conservation
in this disordered alloy, phonons with a range of "wave
vectors" could be involved in first-order Raman scatter-
ing. Renucci, Renucci, and Cardona argued that the in-
crease of ys; s; (yo, o, ) with Ge (Si) fraction indicates
that zone-boundary phonons, where the density of states
is large, are important because y is usually larger at the
zone boundaries than at the zone center in c-Si (c-Cxe).
This conclusion was apparently negated by the second-
order Raman study by Lannin. " Still, it is possible that
further insight could be gained by analyzing the expected
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dependence of the Raman linewidth on p.
Consider the Si-Si mode. In c-Si, coLQ TQ is 521 cm

at I and decreases to 411 cm ' at X and 420 cm ' at L
for the LO mode, and to 463 cm ' at X and 493 cm ' at
L for the TO mode. Based on measurements' and
ab initio calculations for c-Si, yLQ TQ is 0.98 at I, de-
creases to 0.82 at X, and increases to 1.3 at L for the LO
mode, and increases to 1.5 at X and 1.3 at L for the TO
mode. Because the examined samples are polycrystalline,
it is not clear which branches are most important in Ra-
man backscattering. (Unlike c-Si, the polarized and
depolarized Raman spectra of these polycrystalline alloys
are the same. ) If TO phonons with a range of wave vec-
tors along X or 6, or LO phonons along 6 were most im-
portant, the Si-Si mode would narrow with increasing
pressure, while if LO phonons along X were important,
the Si-Si peak would broaden with p. (Such a broadening
would have been experimentally observable for p )20
kbar. However, such an observation would also imply
that ys; s; decreases with Ge fraction, which would con-
tradict the results presented in Fig. 5.) Since neither a
narrowing nor a broadening is seen here for the Si-Si
mode (or the other two modes), no definitive conclusions
can be drawn.

V. CONCLUDING REMARKS

The Raman spectra of polycrystalline Ge& Si alloys
were measured across much of the compositional range
for hydrostatic pressures up to —100 kbar. There is a
clear linear increase in ys;s; with Ge content and of
yz, G, with Si content. The dependence of cos;s; and

co&, 0, on alloy concentration and pressure can be suc-
cessfully modeled with the cellular isodisplacement mod-
el. coo, s;(x) at ambient pressure is very well fit by the CI
model when the variation of the average Ge-Si bond
length with x is included. yz, s; has a quadratic depen-
dence on x, with a minimum near x =0.5. The general
decrease of dcoo, s;/dp with x is moderately well fit by us-

ing the CI model predictions for the Si-Si and Ge-Ge
modes. The determination of y; from experiments is sen-

sitive to the dependence of the bulk modulus and its pres-
sure derivative on alloy concentration.
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