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Theory of magnetic-field-dependent alloy broadening of exciton-photoluminescence linewidths
in semiconductor alloys
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A theory is developed for the inhomogeneous photoluminescence line shape and, in particular, the
linewidth of excitons due to alloy disorder in undoped semiconductor alloys in the presence of external
magnetic fields. In contrast to previous theories, we find that both the linewidth and its field dependence
depend not only on the exciton wave function for the electron-hole relative motion but also depend sen-
sitively on the localization length Ro of the center-of-mass wave function. In general, the line shape de-

pends on the nature of the exciton localization. The linewidths arise from the Auctuations of the
conduction- and valence-band edges in the localization region where there is significant amplitude of the
total exciton wave function. The wave function for the relative motion is calculated numerically by re-
ducing the Schrodinger equation to a difference equation at arbitrary fields, while the center-of-mass
wave function is treated phenomenologically. The linewidth is calculated as a function of the magnetic
field and the localization length Ro. The results yield good agreement with recent experimental data
from Ino. 486ao. s2P

I. INTRODUCTION

Semiconductor alloys have received increasing atten-
tion recently because their band gaps and lattice con-
stants can be tailored for useful applications in optoelect-
ronic and photonic devices. The low-temperature photo-
luminescence line shape reveals important information
about the effective band gap, the homogeneity of the sam-
ple, and possible order-disorder phase transitions. When
the laser power is low, photogenerated excitons in a
disordered system relax quickly to the band-tail states
and become localized. These low-energy excitons localize
in different regions of the sample and luminesce at
different photon energies due to spatially varying local
conduction- and valence-band edges caused by the ran-
dom alloy col.position. As a result, inhomogeneous pho-
toluminescence linewidths yield information about the
alloy-energy fluctuations occurring within the length
scale of the exciton wave function. In addition, they pro-
vide information about possible domain-energy Auctua-
tions, if present, over a much larger length scale. Mag-
netic fields are expected to affect mainly the size of the
exciton wave function and therefore yield additional in-
formation about the former contribution.

Several authors have studied alloy broadening experi-
mentally' and theoretically. ' The basic physics
behind alloy broadening is as follows. ' The alloy com-
position inside the volume occupied by one exciton is
different from that inside the volume of another exciton;
this yields an inhomogeneously broadened exciton energy
and thus an inhomogeneous photoluminescence
linewidth. The linewidth was obtained from the root-
mean-square deviation of the local band-gap Auctuation
inside the volume Q,„ofan exciton. The exciton volume
was equated to Q,„=4m/3 ( r ) where the expectation
value (designated by the angular brackets) is taken with

respect to the wave function P(r) of the electron-hole rel-
ative coordinate r=r, —rI, (i.e., the hydrogenic wave
function). ' The linewidth is then inversely proportional
to the square root of the number of the sites inside 0,„
and therefore proportional to 0,, ' . Realizing that such
a definition of the exciton volume is somewhat arbitrary,
Lee and Bajaj (LB) made significant progress toward a
microscopic approach by expressing the linewidth in
terms of the exciton wave function rather than the
volume Q„. They introduced a spatially dependent ran-
dom local band-gap fluctuation Es(r) and took an expec-
tation value of E (r) with respect to the wave function
tji(r ) for the local deviation of the exciton energy from the
mean value. As a result, the linewidth was shown to be
proportional to the square root of the expression

fg(r) d r An intere. sting idea of controlling the
linewidth by applying an external magnetic field was also
pioneered by Bajaj's group, who proposed that the field
shrinks the exciton volume and therefore increases the
linewidth. A field-dependent linewidth (which increases
approximately from 4.5 meV to 6 meV as the field in-
creases from zero to 13.6 T) was recently observed from
disordered Ino 48Gao &2P by Jones et al.

The theoretical treatments described above, however,
have two serious limitations. First, only the electron-hole
relative motion [e.g. , Q,„and f(r)] was explicitly con-
sidered. Second, the local exciton energy was determined
entirely by the local random band-gap energy fluctuation
Eg(r). As will be discussed qualitatively below and more
completely in the later sections, these approximations or
assumptions can lead to qualitatively incorrect results.
In a disordered medium, the resonant photon energy
from an exciton is determined not by the relative coordi-
nate but by the absolute positions of the electron and the
hole. Therefore, it is necessary to treat the electron and
hole coordinates independently from the beginning. Be-
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cause the electron and the hole are not at the same posi-
tion most of the time, the basic random parameter in our
treatment is the nonlocal band-gap energy fluctuation
Eg(r„ri, )=E,(r, )+Ei, (rh) which is the sum of the
separate local band-edge fluctuations of the electron
[E,(r, )] and the hole [Eh(ri, )] rather than E (r). In our
approach, the total exciton wave function
'P(r„ri, ) =4(R)g(r) is a product of the wave functions
of the center-of-mass coordinate (R) and the relative
coordinate (r). The center-of-mass wave function 4(R)
describes where and how the center of mass of the exci-
ton is localized and is insensitive to the magnetic field,
while the relative wave function f(r) is field dependent.
The true exciton volume 0,„ is then determined not only
by f(r) but also by C&(R).

The role of the function @(R) is clearly seen in the fol-
lowing extreme limits. If the exciton is in a free motion
[i.e., N(R) is a plane wave] or is localized in an infinitely
large volume, the fluctuation inside Q,„becomes zero,
yielding a vanishing linewidth. Therefore, a large inho-
mogeneous linewidth is expected only from a reasonably
small localization radius (Ro) of the center of mass. In
the opposite limit of sharp pinning of the exciton (i.e., Ro
is of the order of the lattice constant), we recover the re-
sults of LB, only if the valence-band-edge fluctuation
[i e Ea(rh)] is zero

In general, the inhomogeneous linewidth has two
sources of contributions, namely ( I) the field-independent
part which arises from the alloy fluctuation seen by the
center of mass and (2) the field-dependent part which
originates from the alloy fluctuation inside the region
where ~f(r) ~

is significant. The latter contribution de-
creases with increasing Ro. It is then essential to look for
the source and the nature of the exciton localization in
order to explain field-dependent linewidths observed in
the group III-V (or II-VI) semiconductor alloys, as
exemplified by disordered Ino 48Gao 52P.

In this paper two possibilities of the exciton localiza-
tion are examined, namely pinning by defect centers and
localization by alloy disorder. We show that the inhomo-
geneous linewidth (and its field-dependence) is sensitive to
the exciton center-of-mass localization length Ro as well
as to the exciton radius. The linewidth is found to de-
pend significantly on the magnetic field only if the quanti-
ty Ro is smaller than the exciton radius. If Ro is large,
the field-dependent as well as the field-independent
line width arising from microscopic alloy disorder is
small. However, there can be macroscopic inhornogenei-
ty or domains of varying alloy compositions, yielding
field-independent inhomogeneous linewidths. These re-
sults are consistent with recent data which show that
only a small number of systems display field-dependent
linewidths (corresponding to small Ro), while a large
number of systems show broad field-independent
line widths.

The main emphasis of this paper is the field-dependent
linewidth arising from the exciton localization. In this
case, the linewidth depends on the overlap integrals of
powers of the center-of-mass and relative wave functions.
The function g(r) is calculated by employing a rigorous

II. FORMALISM

In this section we study two different models for the
exciton localization. We first consider a simple case
where excitons are localized by pinning centers. Second,
we consider a more complicated case where the excitons
are localized inside potential wells created by spatial fluc-
tuations of the band-edge potentials introduced by the
density fluctuation of the composite atoms such as In
atoms in In„Ga& „Palloys.

It is convenient to describe the motion of an electron
and a hole interacting through a Coulomb potential in an
external magnetic field B in terms of the relative (r) and
center-of-mass (R) coordinates. The wave function for
the relative coordinate satisfies

H, f(r) =e,„(B)P(r),
where

g2
H, = — V'—2

2p
e 1

2c Pl~

1 e8 L+ e lvr . —
Plp, 2pc

Here V=8/Br, L=rXp, p=h'V/i, A= —,'BXr, and

m„mz, p are the electron mass, hole mass, and the re-
duced mass, respectively. The quantities e, c, and A

represent the electronic charge, speed of light, and
Planck's constant divided by 2m. The dielectric constant
~ is assumed to be uniform in the sample. The total en-
velope wave function %' of an exciton in a disordered al-
loy is given by

ie%(r„rh)=exp — A R @(r„r„)f(r),
Ac

and satisfies

H@(r„r& )P(r) =E@(r„r&)g(r),
where

H =H, +Ha+ H,a+ V, (r, )+ V~(rh ) .

numerical method at arbitrary fields by converting the
Schrodinger equation to a five-point difference equation
in magnetic fields. Our numerical approach is expected
to yield more reliable results for P(r) than a variational
method, because variational methods give more accurate
results for the binding energy than for the wave function.
The linewidth is calculated as a function of the magnetic
field and Ro. The calculated linewidth and line shape
yield reasonable agreement with recent magnetolumines-
cence data from disordered Ino 486ao 52P.

The paper is organized as follows. A formalism is
developed for the inhomogeneous linewidth in Sec. II. A
numerical evaluation of the exciton wave function and
overlap parameters in magnetic fields is given in Sec. III.
The linewidth and the line shape are studied as a function
of the magnetic field in Sec. IV and compared with recent
data. Comparison of our results with those of LB (Ref.
4) is given. The paper is summarized in Sec. V.
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Here the first term was already defined in (2) and the
second term describes the center-of-mass motion

(xj =0) when the cell is occupied (vacant),

E (i)=(1 x—)(dE /dx)n, x—(dE /dx)(1 —n, ), (Sb)

HR = — 7'R+ U(r„rh ),
2M

where VR =B/BR, M =m, + mh, and U(r„rh ) denotes
the potential energy of pinning centers, respectively. We
assume that the separation between the pinning centers is
much larger than the Bohr radius. The third term in (5)
is defined as

2ieA
H,R

— A.VR .
Mc

(7)

The last two terms [i.e., V, (r, ) and Vi, (rh)] in (5)
represent the random alloy fluctuations from the mean
band-edge energies for the conduction and valence bands
given by

V (r )=gE (i)b(r —R;), a=e, h, (Sa)

where the unit step function b, (r —R;) equals unity in-
side a cell of volume b, V around the lattice site R; and
vanishes outside this cell. The cell dimension is much
smaller than the sizes of the wave functions @ and P.
The energy fiuctuation E (i) (assumed to be positive
above the bottom of the conduction band and below the
top of the valence band) is random from cell to cell with a
vanishing spatial average (i.e., (E ) =0).

The alloy potential V (r ) yields different local average
energies for different excitons. For an exciton occupying
a volume Q, the local deviation of the band-edge energy
from the sample-wide mean value is expected to be
EJ =(dE /dx)(xJ —x ), where x is the average concentra-
tion of, for example, In atoms (over the sample), x is the
local concentration of In atoms inside Q. , and dE /dx is
the first derivative of the band-edge energy for the con-
duction (a=c) and valence (a =v) bands with respect to
the concentration x. The quantity E. can be written as
the sum of the band-edge fluctuation E (i) [defined in
(Sa)] over all the cells in 0 divided by the total number
of the cells inside 0 . The quantity E (i) has an expres-
sion similar to that of E defined above except that x = 1

where n; =1,0 is the occupation number of the ith cell,
say, by an In atom.

A. Exciton localization due to pinning centers

5E=Q f f [E,(i)b, (r, —R, )+Eh(i)b, (rh —R, )]

Xp(r)g(R)d r d R, (10)

where p(r)=g(r) and g(R)=C&(R) . Using
(E (i)E,(i')) =(E E ~ )5;;, where 5, ,' is Kronecker's
delta, the mean-square fluctuation is given from (10) by

An exciton can be localized by a pinning potential
U(r„rl, ) due to defect centers, isoelectronic impurities,
and acceptor or donor centers. The wave function
4(r„rh ) depends on the nature of the pinning centers
and in general is not known. However, it is sufhcient for
our purpose to characterize the wave function by the ra-
dius of localization Ro and study how the quantity Ro
affects the exciton-photoluminescence linewidth. Thus,
for the purpose of a numerical estimate, the center-of-
mass ground-state exciton eigenfunction for (6) is as-
sumed to be given by a Gaussian form

4(R) =(&~Ro) ~ exp( —R /2R o ) .

The last three terms in (5) [i.e., H,R, V, (r, ), and
Vh(rl, ) ] are treated as a perturbation. In this approxima-
tion, the H,R term in (7) does not contribute to the ener-
gy to the first order because of the parity but does yield a
small second-order contribution. However, this term is
independent of the disorder and thus does not contribute
to the linewidth. Therefore, this term in (7) will be
neglected.

The first-order correction for the alloy-fluctuation en-
ergy is given by the expectation value of the
V, (r, )+ Vh(rh) terms of (5) with respect to the ground
state

(5E ) =
3 f (g[(E, )pk +(Eh &pk +2(E,EI, )pq pq ]d k, kh= k, k, = k .

gk= f g(r)e p(xi rk)d r (12b)

are dimensionless.
In the special ease m, =mi„Eq. (11) becomes propor

Here the angular brackets denote the intracell average
and the cell indices are dropped from E (i) The quan. ti-
ties

p„=fp(r)exp(ik. r)d'r

and

tional to the gap fluctuation

(5E~) = (, (E, +Eh ) ) f (2~gd k, m, =mg

In the limit of extreme localization (i.e., (2&=1), this ex-
pression is similar to the result obtained by LB but with a
very diferent coe%cient.

To evaluate (11), we approximate pz =1 for the last
e

term on the right-hand side of (11). This approximation
is justified for m, && rn& because a significant contribution
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+2rih (E,Eh )F,~(gh )], (13a)

which in the two limits of R o /aii ))m, /M and
R 0 /a& « m, /M reduces to

& &E'& =(~V/aB)[nh &E,'&F22(nh )+ &Eh &F02

+29h (EeEh )Fi2( )h )]

to the integration arises only from the region kh az & 1

where p& is significantly large. In this region, however,

we have k, as =(m, /mh )khaki «1, and thus pi, =1.
Here aii =hR /pe is the Bohr radius. Equation (11) is
then rewritten without any other approximation as

&&E'&=(~V/aa)[n'h«, '&F22(9h)+n! «h &F22(9

B. Exciton localization due to alloy disorder

g (e) ~ (e/eo) exp( QF/e—o), (16a)

where the energy e & 0 is measured from the mean band
edge (i.e., mobility edge at e =0) into the gap and'

We now examine the localization of excitons and its
effect on the luminescence linewidth in the absence of
pinning centers [i.e., U(r„rh ) =0]. Localization of
noninteracting electrons and holes through band-edge
fluctuations introduced by the composition fluctuations
in alloys has been studied previously in the absence of
magnetic fields. ' '" The following analysis is based on
the treatment of Baranovski and Efros (BE).' The densi-
ty of the localized states are proportional to' '"

Ro/aii ))m, /M (13b) eo=m~ (1—x) (dE /dx) b, V /(178iri ) . (16b)

and

(5E ) =(AV/ )[jg (E, )+g, (E„)]F
+2'y4 (E,Eh )Fio]

Here iih =M/mh, r), =M/m„and

nm( ) =( ) 'aa fpox~
'

and

(13c)

(14a)

The exponent v in (16a) equals v= —,
' for Gaussian poten-

tials" employed for the present analysis. The localiza-
tion radius is given by

Ro=A'/(2m e)' (17)

The density of localized states g(e) has a long tail, and
as a result, a representative exciton energy e is much
larger than ep except for the v=0 case; the average ener-

gy and the root-mean-square deviation are given for v= —',
by (e) =30eo, and (6e )' =27.9eo, while the full width
at half maximum (FWHM) equals

F„=F„(1)=(2m) aii fpeak d k . (14b) ~~FWHM 28 7~0 ' (18a)

In our model, gh is a function of kRo [cf. Eq. (9)]. There-
fore F„(x)can be obtained from F„by the replacement
R 0 ~xR0. It is then sufticient to study F„as a function
of Rp and the magnetic field.

The overlap parameters F„and F„(x)represent the
degree of overlap between the density functions p(r) and
g(R) in a real-coordinate representation. These overlap
factors increase with the magnetic field for nAO, because
the field shrinks the exciton density function p(r). In the
limit Ro/as ~0, one has gh ~1 and thus

The FWHM is much smaller for v=O (considered by BE)

~~FWHM 0- 48~0 (18b)

The center-of-mass motion of an exciton becomes lo-
calized by fluctuating band-edge potentials. The Hamil-
tonian for the center-of-mass motion is thus found by
taking the expectation value of (5) with respect to the
wave function P(r) for the relative motion. The net re-
sult is to absorb the last two terms of (5) into (6) by re-
placing the quantity U(r„rh ) with their expectation
values:

and

Fi2 ~Fio aa p(0) (15a) HR4(R) =(E —e,„)4(R),
where

(19)

F22 F20 aB fp(r) d (15b)

The second term of (13b) arises from the valence-
band-edge fluctuation over the volume inside the center-
of-mass wave function and equals (Eh )6 V/[(2m. )

~ R o ]
for the Gaussian wave function in (9). This contribution
is independent of the magnetic field and can be
significantly large for small Rp. Note that, apart from
the special case m, =m&, the basic random quantities in
(11) and (13) are the individual fluctuations of the
conduction-band and valence-band edges E, (i) and
Eh (i '

), not the net gap fluctuation Eg (i ) =E, (i ) +Eh ( i ),
in contradistinction with the results of LB. This result
arises from the fact that the electron and hole are most of
the time separated at difFerent positions.

aIld

HR= — VR+ Vh(R)+ V, (R),R 2~ R

V, (R)=f V, (rh+r)p(r)d r,

V„(R)=f Vh(r„)p(r)d'r .

(20)

(21)

(22)

and

Vh(R)= Vh(R)

V, (R)=f V, (R+r)p(r)d r .

(23a)

(23b)

We approximate rh =R in (21) and (22) in the limit
m, «mh, obtaining
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In the limit Ro [=iii/(2M@)'~ ]))az, namely in the
regime [eii =p, e /(2v fi ) is the exciton binding energy]

(24)

radius of the center-of-mass wave function: The linewidth
vanishes, naturally, in the limit of a very large localiza-
tion radius (i.e., Ro ))aii ), because the fiuctuation in an
infinitely large volume is zero.

Eq. (23b) reduces to

V, (R)= V, (R) . (23b')

III. EXCITON WAVE FUNCTION AND OVERLAP
PARAMETERS

The last two terms in (20) then correspond to the band-
gap (E ) fiuctuation, yielding for (16a) (Ref. 10)

eo=M'x (1 x) (d—Egldx) 6, V /(178A' ) . (25)

In this case, the width of the exciton energy smearing is
independent of the magnetic field. In
In& 48G-ao 52P/GaAs, we use m& =0.44, m, =0.091,
b, V=a /4, where a =S.66 A is the lattice constant,
dEg/dx =1.1S eV, ' ' obtaining so=0. 36 meV.

On the other hand, in the regime R o
[=iri/(2M@)'~ ] ((aii, namely for

e))e, , (26)

the quantity V, (R) becomes slowly varying in R because
of the integration in r over a large volume ~ a& in (23b).
In this case we can employ a mean-field approximation
and replace V, (R) by its average with respect to g(R),

E=e,„+@i,+ f f V, (R+r)p(r)g(R)d r d R, (27)

where eh and 4(R) [with g(R)=C&(R) ] denote the ei-
genvalue and the eigenfunction of the first two terms in
(20) (i.e., with only the valence-band-edge fiuctuation
present). The last term in (27) may also be interpreted as
a first-order perturbation, since the r integration in (23b)
makes V, (R) smaller than V, (R) because of the random
cancellation effect. The density of states for e& in (27) is
given by (16a) with

In this section we evaluate the exciton wave function
and the overlap parameters F„and F„(x)as a function
of the magnetic field. The basic ingredient for F„ is the
exciton density function p(r), which is solved numerical-
ly.

A. Exciton wave function

It is convenient to use az for the length unit, and the
exciton binding energy e~ for the energy unit. The Ham-
iltonian H, in (2) is rotationally invariant around the z
axis parallel to B. Therefore the z component of the an-
gular momentum m is a good quantum number with
respect to the operator I, . Since only the ground state
with m =0 has a finite oscillator strength proportional to
p(0), we focus on the eigenfunction with m =0 and drop
the second term in (2),

(31)

where 0 is the polar angle, y =%co, /2ez, and co, =eB/pc.
This Hamiltonian has been studied by many authors in
the past. We solve for the eigenvalues and the eigenfunc-
tions of H, by following the method of Cabib, Fabri, and
Fiorio (CFF) closely. A general outline of the method is
summarized below, since our new method, presented
here, deviates from the variational method of CFF at the
last stage.

We transform

eo=M x (1 x) (dE, /dx) —b, V /(178fi ) . (28)

where Fz2 is defined in (14).
Low-temperature luminescence data show no tempera-

ture dependence for the linewidth. Therefore, we as-
sume that the localized states are equally populated. The
localization radius for g(R) in the expression of F~i in
(29) is given by (17) with m =M and @=ed, . The quanti-
ty F22 depends on the magnetic field and, as mill be
shown later in Sec. III, is significantly large only in the
limit of Ro «a~, namely when the most of the localized
states lie in the region e&)e, . In this case, Eq. (29)
reduces to

o =oF (30)

It is clear from the analysis in this section that the
linewidth depends not only on the wave function of the
electron-hole relative motion but also on the localization

The last term in (27) is given by a CJaussian distribution
with the mean-square deviation

(29)

where a ( =1 for our numerical analysis presented at the
end of this section) is a constant for adjusting the length
scale and 0 ~ g ~ 1. This transform allows us to use a fine
grading for small values of r and a coarse grading for
large values. The eigenfunction is then expanded in
spherical harmonics Yi o(0, P),

(33)

where I is summed over zero and even integers (indicated
by the prime on g) up to l,„. Only the even angular-
momentum states are coupled to the hydrogenic ground
state by the last term in (31), which yields nonvanishing
matrix elements only for l'=l and l'=l+2. The expres-
sion in (33) is then inserted in (1) and the Y&0 component
is projected out through a dot product.

The resulting second-order diAerential equation of
ui(g') in g is converted to a five-point difference equation
by evenly dividing 0 + g ~ 1 into small intervals of
i) = 1/n, „((I with g„=n i) ( n = 1,2, . . . , n,„). ' We
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find that a sufficient accuracy is achieved with l,„=10
and n,„=100 in the range of y studied. By using the
Schrodinger equation, one obtains the analytic continua-
tion at the boundary

0.6

and

u, = —u, [1+2ail(1+ail)]+O(il )

u', = —u', +O(g ) (l&0),

(34a)

(34b)

0.4 - 'I

all directions

p=1.5, OWO

y=1.5, 0=0

where u„'=u&(g„). The quantity u„' vanishes at the end
points n =0 and n =n,„. In view of the relationships in
(34), the five-point difference equations involve u„'s where

The difference equation is then in the form of
A [u]=e[u], where [u] is a column vector with elements
u„'. However, the matrix 3 is non-Hermitian. The ma-
trix equation can be rewritten in the form of a
Schrodinger equation with a Hermitian Hamiltonian (H )

by transforming

0.2

0.0
0

FICx. 1. Exciton probability density function as a function of
the radial distance parallel and the polar angle.

u„' =u„'/(1 —g„)
The final eigenvalue equation is then given by

H [v„' ]=e,„(8)[u„' ],

(35)

(36)

r&5i (+2(l + 1 )(I +2)
4[(2I +1)(2l+5)]' (Pl+3)

Other nonvanishing matrix elements diagonal in the
angular-momentum quantum number (i.e., l'=l) are

~l l ~ l l
n, n+1 n+1, n 2 2 I n, n+1

3'g A
(37b)

l, l l, l~n n+2 ~n+2 n 2 2I n n+2 &

12'g o!
(37c)

29(1—g, )
H1'1 =

12' a
(1—

g) )
(1+rja)— +wo o,6qo. T1

(37d)

29(1 —
g) ) 1(l + 1)~1,1 +

12' o,' r,
+w,",' (lAO),

r1

where [v„'] is a (n,„—1)(l,„+1)-dimensional column
vector. In (36), the matrix elements (l, n ~H~l', n') are
given by

(37a)

( I'W 1 ) . (38b)

The Hamiltonian defined by Eqs. (36) and (37) is diago-
nalized on a Cray-YMP computer using a 594X594 ma-
trix (corresponding to n,„=100 and 1,„=10). The
ground-state energies coincide with those obtained by Ca-
bib, Fabri, and Fiorio (CFF) to three to four significant
digits for y ~ 5. The accuracy can be improved by in-
creasing n „and l „.The normalized density function
p(r) so obtained is displayed in Fig. 1 at zero field and at
y = 1.5. At zero field, the density decays exponentially at
large r, while it decays much faster in a Gaussian form at
y=1.5. Also, it is clearly seen that the wave function is
squeezed in a plane perpendicular to the magnetic field
(long-dashed curve) while this effect is much smaller in
the parallel direction (short-dashed curve). In order to
relate y to the actual field, we use y =(a~/l), where l is
the classical magnetic length. For Ino48Gao 52P lattice
matched to GaAs, we use a=11.6 and p=0.075, ' ob-
taining a~ =81 A, ez =7.7 meV, and y =0.10B, where B
is in units of tesla. Therefore y=1.5 in Fig. 1 corre-
sponds to 15.0 T for Ino 4()Gao 5zP/GaAs.

B. Overlap parameters F„and F„
and

4
kn I(I +1) 2 + („)

( )2)
2~2~2 ~ 2 P

Wl l

The numerical evaluation of the overlap functions in
(14) can be simplified if the axial symmetry is utilized in
the k space. Carrying out the Fourier transform for pk in
the polar coordinate, we find

(„), ~ 2 l(l+1)
(2l —1)(2l +3) (38a)

pk
= g' (2l + 1)i'g&(k)P&(cos8k),

l

where

g&(k)= I fp(r)P&(cos8)f&(kr)r dr sin8d8 .

(39a)

(39b)

and In (39a), 8), is the polar angle in k space, P&(z) is the
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Legendre function, and fi(x) is related to the Bessel func-
tion of a half-odd-integer order J&+,&2(x):
fi(x) =(~x/2)' Ji+,&2(x). Equation (39a) yields a sim-

ple result for F,

(40)

0.6

0.4 —,)

0.08—

y= l.6

which yields for a Gaussian wave function (i.e.,
@&=exp[—(kRO) /4]) 0.2

0.04

2Qg
F1

m (~m )' Ro 0.0
0 1

R

0.00
0 1

R

X prexp
m Ro

r dr sin8d8 . (41)

We also find in general

F22=2aii fNi, g'(21+1)gi(k) dk .
l

(42)

Note that the right-hand side of (42) reduces to F20 [cf.
Eq. (15b)] in the limit @&=1. /he overlap parameters
Fi (x) and F22(x) are obtained from (41) and (42) by re-

placing Ro with xRO.
Since the function F„(x) can be obtained from F„

we consider only F„ in the following qualitative discus-
sion. The field dependences of F&2 and F22 are calculated
from Eqs. (41) and (42) and are displayed in Fig. 2 for
R, /aii =0 and Ro/aii =1. They agree with the analyti-
cal results Fiz= 1/m and F2@=1/8m for RO=O and y=0.
As discussed in the Introduction, the quantities F„and
therefore the field-dependent part of the linewidths [cf.
Eqs. (13), (29), and (30)] depend sensitively on the locali-
zation length Ro. This effect is clearly seen in Fig. 3,
where the Ro dependences of F„are plotted at zero field

and at y = 1.6. In the limit Ro »az, however, it should
be noted that the linewidth is not given by (29) or (30) but
by (18a) with eo given by (25) and is independent of the
magnetic field, when the localization is induced by the al-
loy disorder. The overlap factors F&2 and F22 are essen-

tially inversely proportional to the exciton volume Q,„for

FIG. 3. Overlap parameters F„asa function of the localiza-
tion length Ro (in units of a~ ) for zero field and for y = 1.6. The
function F„(x) is obtained from F„by the replacement
R0 ~xR0.

R0 =0. At high fields, we have Q,„o- l l, where l ~ B
is the classical magnetic length and l, is the exciton size
in the direction of the field. Because l, is insensitive to
the magnetic field, ' the overlap factors are expected to
become nearly linear in 8 (i.e., y) for Ro =0 in the high-
field limit as seen in Fig. 2.

IV. INHOMOGENEOUS LINEWIDTH
AND LINE SHAPE

In this section we apply the present theoretical results
to recent magnetoluminescence data from disordered
In048Ga052P which show a strong field dependence for
the linewidth. Based on the analysis of the FWHM and
the line shape presented below, we conclude that the
field-dependent linewidth of the cited data arises from
the exciton localization at pinning centers.

A. Exciton localization due to pinning centers

In this case, the (normalized) density of states of the
exciton energy and therefore the photoluminescence line
shape is gaussian

0.04 0.6 0.03
i

0.10
1

2

G(e)= exp
(2~a2)1/2 2a2

(43)

0.5

0.02—

0.08
where the mean-square fluctuation energy is given from
(13), (8b), and (9) by

0.4 0.06
0 =og[r)/, a F22(7)i, )+7],(1 a) F22(7/, )—

+2gi, a(1 a)Fi2(sly, )], — (44a)

0.02
0.0

0.3
0 5 1.0 1.5

Reduced Field (y)

0.01 ~ 0.04
00 05 10 15

Reduced Field (y)

with the following limiting behaviors:

=ag['qua F ('g22)+h(1 a) (&ii I+2~RQ)

+2ilh a(1 —a)Fiz(gh )], Ro Ia~ ))m, IM (44b)
FIG. 2. Overlap parameters F» and F» as a function of the

reduced field for Ro =0 and 1 (in units of a& ). and
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o =os'f 'lh a Fio+ 1 (1 a) Fio

+21ha(l a—)Fio(gI )], Ro/aii «m, /M .

(44c)

In (44), o is given by

erg =(dEg /dx) x(1—x)(b, V/aii ) .

The quantity a is defined by dE, /dx=adE /dx and
dEh Idx =(1 a)d—Es/dx. The result in (44a) follows
from (11) without any approximation except for the fac-
tor F&2 which is accurate in the limit m, (&m& . The
Gaussian line shape is in approximate agreement with the
data. Because Fi2 is much larger than F2@ (see Fig. 2),
the last term of (44a) is as important as the first term
therein unless 0! is very close to unity.

The first, second, and third term in (44) represents, re-
spectively, the contribution from the spatial Auctuations
of the conduction, valence, and combined local
conduction- and valence-band-edge potential as discussed
in the Introduction. In particular, it is transparent that
the second term in (44b) describes the mean-square
valence-band-edge fiuctuation over the volume (aRO) in-
side the center-of-mass wave function. In order to em-
phasize the physical meaning of this term (which is a
consequence of treating the relative and the center-of-
mass coordinates on an equal footing), we consider an ex-
treme case of very small localization length and extreme-
ly heavy-hole mass: Ro =a and Ro/a~ )&m, /M' where
a is the lattice constant. In this case, the contribution of
the second term to o in (44a) is of the order (Eh ). This
can be understood in the following way: a hole is local-
ized on a lattice site with an electron bound to it through
the Coulomb potential. Because the Bohr radius is much
larger than the lattice constant, the mean-square Auctua-
tion of the exciton energy is basically determined by the
site-to-site fluctuation of the hole energy Ez(rh ) and is of
the order of (Eh ).

In Fig. 4 we display the FWHM AeFwHM =2.3550. ob-
tained from (43) and (44) for dEg /dx = l. 15 eV. ' In view
of the uncertainty in the parameters (Ro/a~, a) as well as
the wide scatter of the data, we plot the FWHM for three
different sets of the parameters (Ro/as, a), namely (0,
0.96) in the solid curve, (0.22, 0.89) in the long-dashed
curve, and finally (0.34, 0.78) in the short-dashed curve
and compare them with the data (open circles) from
In04soao 5zP. Equation (44a) is employed for the long-
and short-dashed curves in Fig. 4 and Eq. (44c) for the
solid curve. For these plots, Ro/az is not large enough
for the limiting expression in Eq. (44b) to be valid. For
the long-dashed curve, for example, the first, second, and
third term in (44a) yields, respectively, 39%, 20%, and
4 1 % of the contribution to o. at zero field and 46%,
16%, and 38% at 15 T. The fitting is sensitive to the
choice of the parameters. It is seen in Fig. 4 that smaller
localization radius yields a steeper slope for the curve.
The results of LB correspond to the first term of (44c)
with a=1 (i.e., dE&Idx =0) and with a somewhat
different coefficient.

The second derivatives of the functions F22 and F&2 in

0

I

io

Magnetic Field (T)

20

FIG. 4. FWHM as a function of the magnetic field calculated
from (44c) (solid curve) and from (44a) (dashed curves) using the
defect pinning model. The parameters used for the fitting are
given in the text. The data are from Ref. 6.

(44) as a function of the field are positive, vanishin~ at
high fields. The FWHM behaves as b, e„wHM

"v'B at
high fields according to the scaling argument presented at
the end of Sec. III. As a result, the FWHM has a positive
curvature at low fields and a negative curvature at high
fields. The inAection points occur near 12 T for the
theoretical curves in Fig. 4. A preliminary evidence of
this behavior was observed recently by Jones et al. in a
high-field experiment in Ino 48Gao 5zP.

'

f(e)=j g(x)G(e —x)dx,
0

(45)

where the parameters eo and cr defined in (28) and (29)
are to be used for g(x) and G(e), respectively. In Fig. 5
we display the normalized line-shape function for
co=0. 14 meV and o, =4.2 meV at zero field (solid curve)
and for B =10 T (dashed curve). Since the energy x in

g (x) in (45) is measured from the bottom of the conduc-
tion band into the gap, higher energies in Fig. 5 corre-
spond to lower photon energies. The line shape is asym-
metric with a long tail toward the low-photon-energy
side, in disagreement with the apparent Gaussian line
shape of the data. The FWHM determined from the line
shape is plotted in Fig. 6 as a function of the magnetic
field (solid curve). The quantity eo determines the major
part of the zero-field line width and o., the field-induced
increase of the linewidth. The quantity F22 in (29) is ap-
proximated by F20 in order to estimate the upper bound

B. Exciton localization due to alloy disorder

When the exciton localization is caused by alloy disor-
der, the line shape is given by
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0.2

0.3

0.0
4

Energy (mev)

FIG. 5. Normalized line shapes resulting from alloy disorder
[Eq. (45)] at 0 and 10 T. Higher energy here corresponds to
lower photon energy.

asymmetric with a long tail on the low-photon-energy
side and the calculated linewidth is much narrower than
the experimental data in the presence of alloy disorder
only. More suitable systems for observing this kind of
field-dependent linewidth with an asymmetric line shape
in the absence of pinning centers are the II-VI alloys be-
cause of their large band offsets and exciton binding ener-
gies.

In the preceding analysis, we have ignored the possibil-
ity of domain fluctuations in the sample. Domain fluc-
tuations of the energy are independent of the field and are
Gaussian. The contribution from domain fluctuations
can be included by adding the mean-square domain Auc-

tuation to o in (44) as well as in (29). We have also as-
sumed that cations are distributed at random microscopi-
cally and assumed one cation per hV. It is possible or
even probable that cations may cluster during the growth
process, yielding a larger effective volume for AV and
thus a larger linewidth; a large cluster size will decrease
the number of the independent uncorrelated cells inside
the exciton volume and thereby increase the Auctuation.

V. SUMMARY

for the FWHM, although the exciton energy does not
quite satisfy the condition in (26): e))e, . The value
o., =4.2 meV corresponds to dE, /dx =0.9 eV, while
op=0. 14 meV requires dE&/dx =0.87 eV. Recent data'
indicate that the valence-band offset between GaP and
InP is about 0.36 meV. We expect dE&/dx to be less
than 0.36 meV for Inp 48Gap 5zP because of the bowing
effect. Since the quantity eo is proportional to
(dEh /(dx), a more realistic eo is too small to explain the
data. For small ep, the linewidth is independent of the
field as discussed earlier. To summarize, the line shape is

l n 0 48Ga0 52P/G aAs

(Disordered)

Q)
C:

We have developed a theory for the field-dependent in-
homogeneous photoluminescence linewidth and the line
shape of excitons due to alloy disorder in undoped semi-
conductor alloys. The linewidth was found to depend not
only on the exciton wave function for the electron-hole
relative motion but also sensitively on the localization
length Rp of the center-of-Inass wave function. The
linewidth as well as the strength of its field dependence is
larger for smaller Rp. The central results are given by
Eqs. (11), (13), (27), (29), (44), and (45) and differ from
previous results. '

The linewidths arise from the

fluctuations

of the
conduction- and valence-band edges in the region with
significant amplitude of the total exciton wave function.
The wave function for the relative motion was calculated
numerically by reducing the Schrodinger equation to a
difference equation at arbitrary fields, while the center-
of-mass wave function was treated phenomenologically.

Two types of exciton localization have been con-
sidered: pinning by defect centers and localization by al-
loy disorder. The former leads to a symmetric Gaussian
line shape and a strongly field-dependent FWHM in good
agreement with the recent data from Inp 4~Gap ~2P. The
latter yields an asymmetric line shape and smaller
linewidths in disagreement with the Ino 4gGap 52P data.
The effects of clustering of the cations and the domain
fluctuation on the linewidth were discussed.
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