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We present a formal and numerical study of the solutions of the Schrédinger equation associated
with spatially bounded, but otherwise arbitrarily shaped potentials. We show that the scattering
matrix (t-matrix), is sufficient to represent the solution everywhere outside the cell, not just outside

a sphere bounding the cell.

We also show that the basis function in the interior of the cell is

independent of the potential surrounding the cell. We illustrate our formal results with the results
of numerical calculations and discuss the implications of these results to multiple-scattering theory
and to the calculation of the electronic structure of solids.

I. INTRODUCTION

The multiple-scattering theory (MST) method, which
was first applied to periodic solids by Korringa! and by
Kohn and Rostoker? (KKR), has been used extensively
to calculate the electronic structure of materials. Be-
cause of perceived technical and conceptual difficulties
associated with the use of general space-filling potentials
in MST, however, most of the numerical applications of
MST have been confined to potentials of the muffin-tin
(MT) form, i.e., potentials that are bounded by non-
overlapping spheres and that are also spherically sym-
metric. In spite of the fact that the MT approximation
has led to successful applications of the KKR method in
many cases,® it cannot describe properly a great number
of physical systems, e.g., open lattices, and surface and
interface regions. The atomic (cell) potentials in such
systems often deviate significantly from their spherical
average, and the contributions from regions outside the
inscribed spheres are often non-negligible. Thus, a proper
treatment of such systems within the KKR method re-
quires its extension to non-MT, space-filling cells.

The attempts to extend the MST method to general
potentials have generated controversies, and a large body
of work? 34 has been devoted to deciding the question of
the applicability of the KKR method to space-filling po-
tential cells. Originally, the question centered on the ex-
istence of “near-field corrections,” which were additional
terms suggested by Ziesche and Faulkner,”1 to be added
to the MST structure constants in order to correct for the
(presumed) fact that for full cell potentials the “scatter-
ing by one site does not end before the scattering from a
neighboring site begins.” Recently, it has become clear
that there is no need for these postulated corrections
to the structure constants.!6,18722,24727,30,34 We refer the
reader to the last of these references for the current state
of our understanding of full potential MST. It should
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also be emphasized that the formal and conceptual foun-
dations of MST for space-filling potentials are of more
than academic interest since work is proceeding at several
institutions3-35737 on full potential electronic-structure
calculations based on multiple-scattering theory.

Although the results of Ref. 34 are rigorous and are
supported by numerical tests and examples, some ques-
tions of a conceptual and intuitive nature remain unan-
swered. For example, one of the reasons that the need
for near-field corrections seemed so plausible was the per-
ception that the single-cell basis functions could not be
fully described at all points within the bounding sphere
of a cell by the ¢t matrix for that cell. The evidence for
this perception was the observation that the usual ex-
pression for the basis function (in terms of a sum over
angular momentum involving the cell ¢t matrix) which is
valid outside the bounding sphere actually diverges for
points inside the bounding sphere but outside the poten-
tial. We believe it is this observation which led to the
idea that near-field corrections are needed. One of the
objectives of this paper is to show that (this divergence
notwithstanding) the ¢t matrix does contain all of the in-
formation necessary to describe the basis function at any
point outside the cell.

In addition to the controversy over near-field correc-
tions, another controversy has arisen and has some-
times been confused with it. The question has been
raised!11432:33 a5 to whether the method proposed by
Williams and Morgan® for solving the Schrédinger equa-
tion associated with the potential of a single cell is valid.
Brown and Ciftan suggested that the method of Williams
and Morgan, which requires that the potential be trun-
cated at the cell boundary, leads to wrong or divergent
results, and that correct solutions can only be obtained
if one includes the potential in the “moon” region of a
cell, i.e., outside the cell but inside the (smallest) sphere
about a given center bounding the cell.
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In addressing this issue from a formal standpoint,
Nesbet?? argued that the two approaches were for-
mally equivalent. Subsequent calculations by Butler
and Nesbet?” for the two-dimensional square lattice
showed that the differences between the Brown-Ciftan
and Williams-Morgan prescriptions for calculating the
basis functions were small and decreased as the con-
vergence of the Williams and Morgan prescription was
improved by using more cylindrical harmonics in the
calculation of each basis function. Later calculations
by Butler, Brown, and Nesbet?® found a divergence in
the Williams-Morgan procedure for the two-dimensional
square lattice which only became apparent when ex-
tremely large numbers of cylindrical harmonics were used
to expand the basis functions.

In this paper we focus on the solution to the
Schrédinger equation for a single nonspherical cell. We
believe that our results give additional insight into the
issue of near-field corrections and resolve the issue of
whether one should use truncated or nontruncated poten-
tials.- The objectives of this paper are as follows: (1) to
show how basis functions for nonspherical potentials can
be defined and calculated. Different authors use differ-
ent definitions for the basis functions and there are subtle
differences in their properties and physical significance;
(2) to demonstrate that the Williams-Morgan basis func-
tions at points within the scatterer depend only on the
value of the potential within the scatterer; (3) to demon-
strate that the ¢t matrix for a single scatterer contains all
of the information necessary to construct the scattered
wave function at all points outside the potential; (4) to
show how MST for space-filling potentials can be derived
by means of an analytic continuation of the (divergent)
expression for the ¢ matrix in the moon regions.

A brief plan of the paper may be helpful to the reader.
Section II contains a description of two types of ba-
sis functions that are commonly used in full-potential
multiple-scattering theory. This section also discusses
the calculation of the ¢t matrix for a nonspherical scat-
terer. Finally, it is shown in this section that for points
inside a cell, the basis functions introduced by Williams
and Morgan depend only on the potential within that
cell. Section III shows how the t matrix can (at least in
principle) be used to compute the basis function (or scat-
tered wave function) at all points outside the potential
including those within the circumscribing sphere. This
section also contains a derivation of full-potential MST
in terms of an analytic continuation of the divergent ex-
pression for the basis functions in the moon region. In
Sec. IV most of the formal results are illustrated with nu-
merical examples calculated for a two-dimensional square
cell. In Sec. V we summarize the conclusions and discuss
some of their implications.

II. BASIS FUNCTIONS AND WAVE FUNCTIONS
FOR NONSPHERICAL POTENTIALS

A. Basis functions and ¢t matrix

In this section,
Schrodinger equation, or (equivalently) the Lippmann-

we discuss the solutions of the
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Schwinger equation, for the case of a single, spatially
bounded potential cell. It is important to make a dis-
tinction at the outset between basis functions and wave
functions. We shall use the term basis function to mean a
function which satisfies the Schrédinger equation within
a finite region of space containing the origin. A basis
function, as we use the term, is the analog for nonspher-
ical scatterers of what is informally called the “radial
wave function” in MST for spherical scatterers. A basis
function may not be a physically meaningful wave func-
tion, but a set of basis functions can be used to expand
a wave function as will be shown below. Keeping this
distinction between basis functions and wave functions
in mind may make some properties of basis functions,
such as Nesbet’s result that the Williams-Morgan basis
functions for points within a cell are independent of the
value of the potential for points outside the cell, seem
more reasonable.

We also caution the reader who is familiar with other
electronic-structure techniques that the basis functions
used in MST differ from those used in most other meth-
ods in that they are energy dependent and that each basis
function is an exact solution to the Schrodinger equation
in a local region of space.

Functions that satisfy the Schrodinger equation for a
single potential

[V2+ E — vn(r)]éf(r) =0

can be obtained from the Lippmann-Schwinger equation

67.(r) = Jo(r) + / dr'Go(r, X)on () SR (). (2.2)

(2.1)

Here Jp(r) is a solution to the Helmholtz equation which
is regular at the origin. It is expressed as a prod-
uct of a spherical Bessel function and a spherical har-
monic Jr(r) = j¢(vEr)Yy(#). The subscript L rep-
resents both orbital and azimuthal quantum numbers,
ie.,, L = (¢4,m). We shall also use solutions to the
Helmholtz equation which are irregular at the origin,
Hi(r) = —iv/Ehe(VEr)YL(#). The Green function for
the Helmholtz equation can, for example, be represented
by the multipolar expansion

ei\/EIr—r'|

4w — 1|
Z Jp(r)Hp(r') forr' >r
L

B Z Hp(r)Jo(x') forr' <r.
L

Go(r,v'; E) =

(2.3)

Equation(2.2) is a Fredholm equation of the second
kind3%4% and is known to have a unique solution which
can be obtained by iteration,

ﬁmzhm+/wamw%wmﬁq

+/dr'G0(r, r’)vn(r’)/dr"Go(r’,r")vn(r")
X Jp(@") 4+ (2.4)
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The conditions under which this series converges have
been discussed by Newton.*! Expanding the Green func-
tion Gy in Eq. (2.2), we have

R,
2(r) = Jo(r) + ) Ju(r) dr' Hp: (r")vn (r') 97 (r)
L’ T

+5° Hy(x) / " ()o@ (1), (2.5)
7 0

where we assume that the potential vanishes for » > R,,.
For values of r outside the range of the potential we
have

AL(r)|r>R.

= Jp@) + L Ho @) [ dTn @ a)6E6),  (26)
-

which can be written in terms of the ¢ matrix,

GO = Jo() + 3 Hu (0)Eh (2.7)

Ll

Here the t matrix is given by
= [ ' ()on@) R () (2.8)

which can, by use of the Lippmann-Schwinger equation,
be shown to be equivalent to the well-known expression

tn,, = / dr / dr' Ty (£)¢" (x, ) T2 (v)
where
t"(r, 1) = va(r)6(x — ') + va(r)Go(r, r’)v, (r)
+n(r) / dr"Go (e, ¥ Yo (£")Go(x", ' Yun (r')
+ e (2.10)

(2.9)

Near the origin, the basis function can be written as a
linear combination of regular solid harmonics,

$E(X)lrmo = Y J(r)BEy (2.11)
LI
where the coefficients B7, | are given by
Bl = 6L+ / A Hy (2o ()2 (). (2.12)

Note that the basis functions ¢ (r) are proper wave func-
tions for the case of a scattering problem involving a sin-
gle potential in vacuum at positive energy with a single
incident spherical wave of unit amplitude and boundary
conditions specifying outgoing scattered waves at large
distances.

B. The Williams-Morgan form of the basis functions

The basis functions defined above are closely related
to basis functions introduced by Williams and Morgan.
The Williams-Morgan basis functions are defined by a
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Lippmann-Schwinger equation with a different inhomo-
geneous term

¢rME) = Ju(x)CF.
Ll

+/ dr'Go(r, r')un (r')p P M(r'), (2.13)
Q

where the matrix C7,; is determined uniquely by first
setting W M(r) = Jr(r) for 7 < o and then taking the
limit 79 — 0. This implies that C},,, is given by

CPp = 6101 — / dr' Hy (v )on ()W M (). (2.14)
Q

In these equations €2 is the volume occupied by the cell.
The relation between the basis functions ¢7 and those of
Williams and Morgan can be determined by comparing
them near the origin where we have

o1 M (1) |r—0 = JL(r),

(2.15)
$2(X)lr—0 =Y Ju(r)BEL.
LI
Generally, we have
SrM(r) =) 6L (r)CLy (2.16)
LI
and
$2(r) =D $PM(r)BE - (2.17)
L/

The advantage of the Williams-Morgan basis functions
is that they can be obtained by integrating a pair of cou-
pled differential equations starting from a simple bound-
ary condition near the origin, ¢}'"M(r) = Jr(r). From
Eq. (2.13) we have

PPM(r) = [ Ju(t)ewn(r) + Ho(r)spo(r)]  (2.18)
o
where
R,
crn(r)=Chip+ [ ' Hu a0 ()
=6p1 — /OT dr'Hp, (v ) o, (r') ¢ VM (x') (2.19)

and

spn(r) = /T dr' Jp: (v ()T M(x'). (2.20)

0

The functions ¢} are sometimes more convenient for
formal manipulations while the Williams-Morgan basis
functions ¢‘£VM, may be easier to calculate numerically.
In contrast to the basis functions ¢7, the Williams-
Morgan basis functions are generally not wave functions
since they only satisfy a single boundary condition at the
origin.

For the basis functions ¢}, the boundary conditions
are determined by the choice of the irregular functions
that are used to expand the Green function. For the
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Williams-Morgan basis functions, on the other hand, a
choice can be made concerning the irregular functions
to be used. If 7'M were a physical wave function, the
irregular function occurring in the Green function would
be determined by the boundary condition at r — oo or
on some bounding surface. However, since no external
boundary condition is applied, there is an arbitrariness
in the choice of irregular function.

Thus the Williams-Morgan basis functions, for exam-
ple, can also be obtained starting from Eq. (2.13) but
with the Green function expansion (2.3) replaced by

cos VE|r — 1|

4d7|r — r'|
Z JL(r)Np(x') forr’ >r
L

- Z Np(r)Jp(r') forr' <7,
L

Go(r,v'; E) = —
(2.21)

where Np(r) = VEn vEr)Yp(r). 1In this case
Egs. (2.18)—(2.20), are unchanged except that H, is re-
placed by Np. This latter form is most closely related to
the sine and cosine of the phase shift that can be defined
for muffin-tin potentials. For muffin-tin potentials, we
have, using Ny, for the irregular function,

crn(r)=ép1 [1 - /0" r*VEny(VEr)v, (r) ¢ (r)dr

=611, Ae(r) cosme(r) (2.22)
and
spp(r) =6t /OT r25e(VEr)un (r) ¢} (r)dr
= =61, L. E~Y2 Ay(r) sinmp(r). (2.23)

Finally, we comment on a point that may have trou-
bled a careful reader. In deriving the second line of
Eq. (2.19) we appear to be using a “wrong order Green-
function expansion” in the sense that the first term in
Eq. (2.18) seems to contain a divergent sum over L/,
> Ju(r)Hp (r') where 7 > r’. The sum in Eq. (2.18)
is conditionally convergent. The integral must be per-
formed first. The integral cr/1(r) can be shown by use
of Green’s theorem to be equivalent to a surface integral,

cpr(r) = '/S dS-[Hy (v')V'=V'Hy (r')]g) M(r'),

(2.24)

where S, is any surface which encloses a sphere of radius
7 or cell n, whichever is smaller. Since the surface integral
in the above equation can be evaluated on a sphere with
any radius greater than r without changing its value, the
apparent divergence of the angular momentum expansion
can be avoided.

We showed above that the ¢t matrix can be obtained
from the basis function ¢7%(r) using Eq. (2.8). It can also
be obtained from the generalized cosine and sine matrices
Ct.;, and S7,;, which are calculated from the Williams-
Morgan basis functions using Eq. (2.14) and
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sn,, = / dr' T (1Yo () WM (). (2.25)
Thus, using Eq. (2.16), we have
the =Y St Cpiy (2-26)
I
Nesbet*? recently pointed out that the formula
t" = sn[snton) st (2.27)

is helpful in calculating the ¢t matrix from the general-
ized sine and cosine matrix. Calculations by one of us*3
confirmed that this approach is more efficient than use
of Eq. (2.26).

C. Independence of Williams-Morgan basis functions
within a cell of the potential in the moon region

In Egs. (2.19) and (2.20) the integrals over r’ will, for
sufficiently large values of r, include regions of space
which are outside the cell, but within the bounding
sphere r < R,,. Usually the purpose of calculating the ba-
sis functions will be the solution of a multiple-scattering
problem involving more than one potential v,,. There
has been some controversy!41% over whether the correct
procedure is to use a v, which is truncated at the cell
boundary as implied in the original work of Williams
and Morgan®® or to use the value of the potential that is
present in the physical multiple-cell problem as was sug-
gested by Brown and Ciftan.11:14:23:32,33 Note that Brown
and Ciftan as well as Williams and Morgan use the trun-
cated potential in calculating C7,; from Eq. (2.14).

In this subsection, we show, following Nesbet,?? that
the potential in the moon region does not affect the ba-
sis functions evaluated at points inside the cell. Con-
sider basis functions ¢$(r) and ¢7(r) which satisfy the
Schrédinger equation for potentials V< and V5, respec-
tively, where V and V® coincide inside the cell  and
where V€ vanishes outside the cell. In this subsection we
omit the superscript WM, but it should be understood
that we are dealing with the Williams-Morgan form of
the basis functions. Basis functions for the truncated
and nontruncated potentials are given by

620 =x3@) + [ WG rVAEIRE)  (229)
and
d3(r) = x3(r) + /S dr'Go(r,x') V(') o3 () (2.29)

where x® and x° are solutions of the Helmholtz equa-
tion. The subscripts on the integration signs indicate the
region of integration in each case.

Subtracting Eq. (2.28) from Eq. (2.29), we obtain the
general expression
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¢2(r) — ¢L(r)

= xi(r) — xZ(r)
n /Q dr'Go(r, ')V (r') [63(r') — 62(")]

+ / dr'Go(r, ) VS ()63 (x'). (2.30)
M

Here M indicates the moon region external to the cell

but within the sphere. Now, with the vector r in Q, we

apply the Helmholtz (free-particle) differential operator

V2 + E to both sides of this expression to obtain

(V24 E) [¢i(r) — 62(x)] = V(r) [¢Z(x) — ¢2(x)],
(2.31)

since the x’s are solutions of the homogeneous (V = 0)
equation and the last integral vanishes under this opera-
tor as the arguments of Gy lie in different domains. Now,
it follows from Eq. (2.31) that the difference function is
a regular solution of the Schrédinger equation inside the
cell Q. It is obvious from the procedure by which they
are constructed [Egs. (2.18)—(2.20)], that the Williams-
Morgan basis functions calculated with the truncated and
nontruncated v, (r), $$(r), and ¢7(r) are identical for
points r within a sphere inscribed inside the cell. How-
ever, since ¢7 — ¢% is a solution to the Schrédinger equa-
tion for all points inside 2 and since it vanishes at all
points within the inscribed sphere it follows3® that it van-
ishes for all points within 2. Because of the controversial
nature of this result we have performed a numerical test
which is described in Sec. IV. Note that the functions ¢}
calculated using the truncated and nontruncated v, are
not equal for points within the cell and that Egs. (2.16)
and (2.17) pertain to basis functions $"*M calculated us-
ing truncated potentials.

III. THE SCATTERED WAVE FUNCTION
INSIDE THE BOUNDING SPHERE

As mentioned in the preceding section, the basis func-
tion ¢7 (r) becomes a physical wave function for a scatter-
ing problem at positive energy with an incident spherical
wave of unit amplitude. For points outside the bound-
ing sphere of the scattering potential, it is clear that
the scattered wave function is completely determined by
the ¢t matrix. In this section we address the question of
whether or not the t matrix is sufficient to determine the
wave function in the moon region (outside the potential
but inside the bounding sphere).

It could be argued on intuitive, physical grounds that
the t matrix should provide a complete description of
the scattered wave function everywhere outside a poten-
tial cell. However, it is no longer obvious that this is the
case when scattering theory is cast in the angular mo-
mentum representation because the multipole expansion
of the wave function in terms of the ¢ matrix, Eq. (2.7), is
only guaranteed to converge outside a sphere bounding
the cell. If this expression is used at points inside the
sphere, the term _;, Hy/(r)tz; will generally diverge.
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This behavior led some to suspect that the wave function
in the moon region surrounding a cell, i.e., outside the
cell but inside a bounding sphere, is not described com-
pletely in terms of the cell ¢ matrix, and led to the further
conjecture that the scattering off of two adjacent, gener-
ally shaped cells whose bounding spheres overlap cannot
be described in terms of the cell scattering matrices. In-
stead, according to this conjecture, one should take ac-
count of the so-called near-field corrections,”1%:15 arising
from the presence of a nonvanishing potential inside the
moon region of a given cell.

In this section we show that the wave function in the
moon region is completely determined by the t matrix.
There is a simple, intuitive argument, based on view-
ing the cell potential as a collection of nonoverlapping
spheres, which leads directly to this result.?®> Here we
present two additional arguments based, respectively, on
a shifted-center and a shifted-cell approach. Both argu-
ments highlight the nature of the problem as one associ-
ated with geometry alone, being quite independent of the
nature of the potential in the region close to a given cell.
The first line of argument, that of the shifted center, is
simpler and more intuitive than that of the shifted cell.
However, it is less well suited for computations and less
general than the shifted-cell approach. For example, it is
only valid in the case of convex cells while the shifted-cell
argument applies to cells of arbitrary shape.

A. Displaced-center approach: Convex cells

From its derivation, it is clear that Eq. (2.7) is only
guaranteed to converge for points r outside a sphere
which bounds the potential, i.e., for r > R,,. For a point
inside this sphere, such as point P in Fig. 1, it is clear
that the restriction 7 > r’ necessary for the convergence
of the angular momentum sum in Eq. (2.6) will be vio-
lated for some parts of the range of integration. Thus it
is not surprising that Y~ ;, Hy/(r)tr . has been observed
in numerical examples to diverge for points r inside the
bounding sphere.

In spite of these difficulties, a convergent expression
for the wave function at P in terms of the cell ¢ matrix
can be obtained along the following lines. First, we note
that the point P which lies inside a sphere centered at O,

Moon region

Cell
Bounding Sphere

FIG. 1. A nonspherical cell, a bounding sphere circum-
scribing the cell, and a point P in the moon region.
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taken to be the geometric center of the cell shown in Fig.
1, lies outside a sphere centered at a point O’, displaced
from O by a vector a, as is shown in Fig. 2. Denoting
the cell ¢t matrix obtained in terms of angular momentum
expansions about O’ by tz-1(a), we can write the wave
function at P in the form

oL(ry) = Jr(ry) + D Hr(rp)trL(a) (31)
T

where ry = —a + rg is the radius vector from the shifted
center at O’ to P. But, under a displacement of the
origin, the spherical Bessel functions transform according
to the rule%

Jp(r—a)=>_ gr(a)Jp(r) (3.2)
o

so that the ¢ matrix, which, is defined by Eq. (2.9), trans-
forms under a displacement of the origin of expansion of
the Bessel functions according to the relation

tro(a) = > grr,(a) tr,L, gr,o(—a) (33)

LiL,

where t7,, 1, is the cell ¢ matrix evaluated about the orig-
inal center at O, and g1z, (a) is the matrix of the transla-
tion operator in the angular momentum representation,
given by

arr’ (a) =A4r Z ie—éq—lu JLN (a) /drYL(r)YL/ (I‘)YLN(I‘).

<~
(3.4)

Now, Eq. (3.1) takes the form
¢L(ro) = JL(ro)

+>  Hi(rp) [Z gL'L1(a)tL1ngL2L(—a)] ;
o

L1L2
(3.5)

which expresses explicitly the wave function at a point
inside the moon region of a cell in terms of the cell ¢t ma-

¢ T

FIG. 2. A point P which lies inside the bounding sphere of
a cell centered at O falls outside the bounding sphere centered
at O’, displaced from O by the vector a.
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trix. It is important to realize that the sums inside the
brackets in Eq. (3.5) must be performed before those out-
side in order for the summation to be convergent. Thus
the sum over L; must precede that over L’. If the order
of these two sums is reversed, the resulting expression
reduces to Eq. (2.7), which in the present case diverges.

In the construction just described, we can take the
point P to lie arbitrarily close to the cell boundary by
allowing the vector a to become very large (essentially
approaching infinity as the point moves right against the
face of the cell). Therefore, at least formally, the ¢ matrix
in the angular momentum representation yields a com-
plete description of the wave function everywhere outside
a spatially bounded potential cell. We point out that the
basic feature characterizing the shifted-center construc-
tion just described is the replacement of a single, diver-
gent sum, that over L’ in Eq. (2.7), by a double, condi-
tionally convergent sum, that over L; and L' in Eq. (3.5).
Note that this replacement is based purely on the under-
lying geometry, i.e., ratios of vectors and the shape of a
potential cell, and does not involve the potential in the
moon region.

It is clear that the shifted-center argument can only
be used with potential cells of convex shape. Also, its
numerical implementation becomes increasingly cumber-
some as the point P approaches the face of a cell, and the
length of the vector a becomes very large. The method
described in the next subsection removes the first limi-
tation and also yields a more convenient expression for
computations.

B. Displaced-cell approach

Our starting point is again the Lippmann-Schwinger
equation in the form of Eq. (2.2). We seek a convergent,
multipole expression of the wave function in the moon
region, point P in Fig. 1, in terms of the cell ¢t matrix.
Such an expression can be obtained as follows. We note
that for all points confined to the moon region adjacent
to a face of a convex polyhedral cell there exist vectors b
that satisfy the inequalities

[b| < |ro —r +b| (3.6)

and

|r| < [ro + b] 3.7)

for all vectors r inside the cell. We can readily establish
the existence of these vectors. Any vector b that is per-
pendicular to the face of the cell, directed outward, and
larger than the largest vertical distance from the bound-
ing sphere to the face satisfies the inequalities above.

We now add and subtract such a vector b in the ar-
gument of Gp in Eq. (2.2) and use the first inequality
above to obtain the expression

oL(ro) = JL(ro)
+3 " Jp(b) [ / drHp (r — ro + b)u(r)ér(r)| .
=
(3.8)
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Here the sum and integral can be interchanged since |r — rg + b| > |rg|. In view of the second inequality above,
the Hankel function in the last equation can be further expanded to yield the result

¢r(ro) = JL(ro) + Y _ Ju(b) [Z Grrv(ro +b) / erL,,(r)u(r)q&L(r)]
i

L

=Ji(ro) + »_ Ju/(b) [Z Grpi(ro+b)trir
o

L

This equation is an expression for the wave function
at a point inside the moon region explicitly in terms of
the cell ¢ matrix. It should be kept in mind that the
brackets in Eq. (3.9) indicate the proper order in which
the sums should be performed in order to yield converged
results. In particular, the sum over L, corresponding to
the second expansion, must be carried out before the sum
over L' that arose as a result of the first expansion.

There are obvious similarities between Egs. (3.5) and
(3.9). In both a divergent sum has been replaced by a
conditionally convergent double sum. Both derivations
highlight the geometric nature of the problem. However,
the expression in Eq. (3.9) holds two advantages over
that in Eq. (3.5). First, it can be generalized to the
case of concave cells, as we argue below. Second, it only
involves sums over values of L that are not excessively
large and vectors of finite, and usually small, length in
contrast to the large values of L and the infinite vectors
that could occur in Eq. (3.5). The calculations presented
in the next section indicate that converged results can be
obtained over a broad range of the outside sum L’ when
the internal sum L, is taken to values about twice as
large as those of the outer sum L’. Also the value of
b for which optimal convergence rates can be expected
was found numerically to be of the order of the radius of
the circumscribing sphere. The convergence properties
of the double sum in Eq. (3.9) have been discussed at
length in a previous publication,*®46 which treated the
three-dimensional Poisson equation.

In addition, Eq. (3.9) has a physical interpretation
which is distinct from that of Eq. (3.5). The effect of
the double expansion in that equation was to shift the
position of the cell center. In Eq. (3.9), the points inside
the moon region are shifted to positions outside through
the addition of the vector b. Then, the wave function is
calculated at these shifted positions and brought back in-
side the moon region by means of the outer sum involving
Jr(b). Alternatively, we may think of the points in the
moon region as being kept in place but with the entire
cell being shifted by —b. In contrast to the shifted-center
approach of the preceding subsection, during the shifting
operations in the present argument, the center of the cell
remains fixed with respect to the cell boundary leading
to expressions which involve the original cell ¢ matrix.

The shifted-cell approach can be generalized to treat
concave cells. For parts of the moon region around a
concave cell there may be no single vector b that satisfies
the inequalities in (3.6) and (3.7). However, it is possible
to replace the single vector b by a sum of N vectors,
b = 3N | b,, so chosen that for all o the following
inequality holds:

] .

(3.9)

|bn| <

n
Zba—-r—f-ro

a=1

. (3.10)

This allows a series of consecutive expansions of the type
used in Eq. (3.8) by which the point at ry is moved
outside the bounding sphere or the cell is displaced in
the opposite direction in a number of steps rather than
in a single step.

C. Derivation of MST equations

One may view Eq. (3.9) as a technique for perform-
ing an analytic continuation of Eq. (2.7) (which is only
convergent for 7 > R,) into the moon region (r < R,)
corresponding to a particular face of the cell. This ap-
proach can be used to derive the secular equations of
MST for space-filling cells. We imagine that the space-
filling cells are separated by narrow corridors of vanishing
potential whose width will ultimately be set to zero. We
follow the original approach of Korringa! and attempt to
match wave functions along the boundaries of the cells.
We write the wave function in the corridor surrounding a
given cell as the sum of “incoming and outgoing waves”
which are regular and irregular at the origin, respec-
tively. If the potentials were confined within nonover-
lapping spheres we could write, for example,

Y= [Jz + ZHEIt’L‘/L} af.
LI

L

(3.11)

For full cell potentials, however, the sum over L’ in the
above equation will generally diverge inside the bound-
ing sphere so that it cannot be used within the narrow
corridor of zero potential. We know, however, from the
discussion of the preceding subsection that there is an
analytic continuation of the second term in this equation
such that the outgoing term can be written as

=D L + e lal,

L

(3.12)

where

2O ) lras R = D HE ()t (3.13)
Ll

The usual derivation of the MST equations equates the
“incoming” wave on site n with the sum of the “outgoing”
waves from all of the other sites,

D JEEa)al = Y 7 (rw)al.
L

n’s#n,L’

(3.14)
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If cells n’ and n adjoin then the expansion of ¢7£’,’°ut using

Eq. (3.13) cannot be applied in the zero-potential region
separating these cells. The expansion of this function
centered at the center of cell n given by Eq. (3.9) does
converge, however, provided that the distance between
the centers of the cells exceeds the radius of the bounding
sphere. This provides exactly the analytic continuation
needed to complete the derivation of the MST secular
matrix,

F O (rnr) = S TR (rn) | S Crrr (Run )t
L LII
(3.15)

This equation when substituted in Eq. (3.14) yields the
MST secular equation for space-filling potentials,

’ ’
az = E E GLLI/ (Rnn’)t?‘uL/azl.
n'stn L' L'

(3.16)

It is a simple generalization of Korringa’s! result and is
currently being used by several groups to calculate the
electronic structure of solids. We only caution that work-
ers should be careful to converge the internal sum (over
L") for potentials whose bounding spheres overlap sig-
nificantly. Note that the analytic continuation described
by Eq. (3.9) never has to be evaluated in a practical cal-
culation. Its existence is sufficient to allow the above
derivation of the KKR secular matrix.

We believe the above to be a rigorous derivation of the
full cell MST equations subject to the constraint (which
can be easily removed if necessary) that the distance be-
tween expansion centers of adjacent cells should exceed
the radii of the bounding spheres. We have not proved
here, however, that a solution to the MST equations
allows us to reconstruct the wave function everywhere
in space. Thus, although the basis functions converge
or have well-defined analytic continuations, we have not
shown that in all cases the wave function, which consists
of a sum of these basis functions with coefficients deter-
mined by the secular equation ) ; ¢7a? converges. This
convergence was shown, however, for the case in which
the system potential is analytic (aside from a term pro-
portional to 1/7 ) within each of the bounding spheres.3*
Fortunately this case is the one that is important for most
physical applications.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples of the
formalism presented in the preceding sections by examin-
ing explicitly the case of a two-dimensional square cell. In
particular, we illustrate by means of explicit calculations
(i) that the t matrix suffices to determine completely the
basis function everywhere outside a potential cell, even
in the moon region; (ii) that the solution of the coupled-
channel equations depends critically on the convergence
of the internal sums defining the basis function; and (iii)
that the values of the cell basis functions evaluated at
points inside the cell are independent of the value of the

2125

potential in the moon region around the cell. Before pre-
senting the results of the numerical calculations, we quote
a few relevant formulas for the case of scattering theory
in two dimensions.!527

A. The two-dimensional square cell

The Green function for the two-dimensional Helmholtz
equation is

er) = ——ZHO(nlr —-r']) fE>0 1)

—%Kq(nlr —v|) ifE<O0,

where k = /| E| and where Hj is a Bessel function of the
third kind and Kj is a modified Bessel function.*¢ The
Green function can be expanded in cylindrical harmonics
as

1

o0
= > I(sr)Kp(rs)e 00

L=—c0

G(r,x') = — (4.2)

for E < 0. The Green function for £ > 0 may be ob-
tained from the relations%®

In(2) =i~ LJp(iz), (4.3)

Ki(z) = %iHlHL(iz). (4.4)

Using these Green-function expansions in the equations
that determine ¢ (r), Egs. (2.18)—(2.20), and omitting
in this section the superscript WM, we obtain

pr(r)ett? = i [ I (kr)eCepip(r)

L'=—o00

+KL/(f~cr)eiLl€sL1L(r)] (4.5)

with the explicit expressions for the elements of the phase
function matrices

1 T
cwnlr) = v+ 5o [ Ku s Wams (bl
0
(4.6)

and
T
SL/L(T) = —%/0 IL/(I‘CT’)VL_LI(T’)¢L(T')7‘Id7"d0'.

(4.7)

Note that we have used the normalization C = 1, the
factor —1/27 in Eq. (4.2) has been absorbed into sir (),
and VL (r) is defined by

27
Vi(r) = L / dov (r,8)e'L?. (4.8)
2m 0
If V is symmetrical about the x axis so that V(r, —6) =
V(r,0), then Vp(r) = V_r(r) and the relations ¢/ =
c_rr—r and sy = s_r._r hold. In this case the states
will be either odd or even with respect to § — —6. For
even states (symmetric about the z—axis), we have
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oL(r) = Z [I(kr)cos L'8cr p(r) + Kp/(xr)cos L'0 sp (1))

l/=—o00

[e9) o0
= Z er cos L'0 I (kr)[ep n(r) + c—pn(r)] + Z er cosL'O Kp/(kr)[spn(r) + s—pn(r)]
L'=0

L'=0

where ez = 1 if L’ # 0 and ¢p = 0.5.

We can define é11(r) = cp/(r) + c—r/r(r) and simi-
larly 37/..(r) = spn(r) + s—r/r(r), which allows us to
write the equations for calculating basis functions for
symmetric states in the form

érr(r) = 6Lr
o0 r
+ Z eL/// r'dr' K, (k')
L'"=0 0

X(Vir—p + Vorsrn oL L (7'/)’
(4.10)

§L’L(T) = — Z EL”/ TIdT/IL’(HT,)
L"=0 0
X[V + VLN+L’]¢L”L(7J)v
(4.11)

and

ér(r) = Z e cos L' { I, (kr)er p(r)
L'=0

+Kr(kr)spn(r)}. (4.12)

B. Sufficiency of the asymptotic forms
of CLIL and SLIL

First we illustrate the point made in Sec. III that it
is possible to represent the basis function in the moon
region using only the asymptotic form of the matrices
Cpp and Syp. Figure 3 shows the value of a symmet-
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FIG. 3. The basis function ¢4(r) at the midpoint on the
boundary of a square cell as a function of the internal sum-
mation index. The thick solid line is the exact result, the
dashed line represents the divergent expansion resulting from
Eq. (4.13), and the thin solid line represents the convergent
double summation of Eq. (4.15).

(4.9)

—

ric L = 4 basis function calculated for a two-dimensional
square cell of side equal to m and with a constant po-
tential V = —5 Ry. The basis function is evaluated at a
point in the moon region, specifically at the center of one
of the faces. The thick solid line shows the exact result
which in this case is a Bessel function corresponding to a
shifted energy E/ = E + 5. This basis function was also
calculated using the single expansion in Eq. (4.12), but
with the asymptotic values of the generalized sine and
cosine matrices

¢L(E,r) =Y [Ju(r)Crr + Hp (r)SpL]

L’

(4.13)

which is valid outside a sphere (here a circle), bounding
the cell. The results as a function of the internal summa-
tion index L’ are shown by the dashed line in the figure.
Of the two terms inside the brackets in Eq. (4.13), the
first yields a convergent expression everywhere outside
the cell. This is because the product ) ;, Ji/(r)Cr/
converges for all values of r, as discussed in Sec. II, Eq.
(2.24). However, the second term diverges. This diver-
gence arises because the term containing Sy, is the re-
sult of an integral, Eq. (4.11), over cell vectors some of
which have magnitudes larger than the argument r of the
Neumann function. Thus the summation over L’ in this
term includes an incorrect expansion of the free-particle
propagator of the form

S JL(R)HL(') forr >, (4.14)
L

leading to the divergent behavior exhibited in Fig. 3.

The figure also shows the results obtained when the
second sum in Eq. (4.13) is replaced by a double expan-
sion of the type indicated in Eq. (3.8). Now, the basis
function in the moon region takes the form

$L(E,r) = > Ju(r)Cry
LI

+ Z Ji/(b) Z Grr(r+b)Spip
L/ LI/
(4.15)

Taking b = 1 and carrying the sum over L” to a maximum
value of L}/ .. = 60 yields a rapidly converging expansion
as L' increases, as is indicated by the thin solid curve.
As mentioned above, it is necessary to carry out the
sum over L prior to that over L’. If the order of sum-
mations is interchanged, one obtains the divergent expan-
sion of Eq. (4.13). If the upper limit on the L’ sum ap-
proaches LY . even the double summation in Eq. (4.15)
will become an inaccurate representation of the function
¢r(E,r). We have found numerically that choosing L/

max
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about twice as large as the largest value of the outer sum
over L', coupled with a value of b about the size of the ra-
dius of the bounding sphere, usually leads to convergence
over a wide range of values of L’.

Clearly, both L{ .. and the maximum value of L’ de-
pend on the value of L that characterizes the basis func-
tion. Both must increase sufficiently fast as L increases
in order to maintain convergence. Finally, note that the
behavior exhibited by the various sums in Eqs. (4.13) and
(4.15) has a purely geometric origin, depending only on
the lengths of vectors in the argument of the free-particle
propagator and not on the details of the potential in the
cell. The results shown here illustrate the fact that the
asymptotic values of the generalized sine and cosine ma-
trices, and hence of the t matrix, suffice to determine the
basis function everywhere outside the boundary of a cell,
even inside the moon region.

C. Coupled-channel equations for truncated
potentials

In the numerical studies reported here, we consider
the solution ¢$(r) of the Schrédinger equation associ-
ated with a two-dimensional cell in the shape of a square
and having a constant potential V; = —5.0 Ry. This
solution can be found in either of two ways. The first
method of solution involves the straightforward applica-
tion of the formalism presented above, namely the solu-
tion of the coupled-channel equations, Eqs. (4.5)—-(4.7)
or (4.10)—(4.12). In this method, for this example, the
potential that enters the coupled channel equations is
Vo everywhere within the square cell and zero outside.
We call this the truncated potential. An alternative
method, proposed by Brown and Ciftan,!1:14:32:33:23 who
believed the first method to be incorrect, consists in using
the true crystal potential everywhere inside the sphere
which bounds the potential in solving the coupled chan-
nel equations. For this example, the Brown-Ciftan ap-
proach yields coupled channel equations which are trivial
to solve since they correspond to a constant potential.

Our experience with the first method (truncated po-
tentials) indicates that it is a viable procedure, but its
successful implementation depends on the convergence of
the internal sums in the expression for the basis function,
Eq. (4.12). In that expression, one must carry the sum-
mation on the right-hand side of the equation to values of
L’, which in general must exceed the value of the of the
basis function index L in order to yield converged results.
The magnitude of this internal index depends in general
on the value of the outer index L. It is important to note
the interplay of these two indices and how it affects the
convergence of the basis function. In solving for the basis
function ¢$(r), corresponding to a given value of L, one
can determine the phase functions cr/z, and sy/r through
Egs. (4.10) and (4.11) to arbitrarily high values of L’. As
the basis function is not known exactly and is itself being
determined through the coupled-channel equations, the
values of the phase functions become less and less reliable
with increasing L’. This is because the exact evaluation
of the phase functions requires the exact value of the ba-
sis function, which in turn is given only if these phase
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functions are known exactly. Thus one may obtain fairly
stable, apparently convergent results as a function of the
internal summation index, but as that index approaches
its cutoff value (where the phase functions are not very
accurately known) the basis function may begin to show
signs of instability. This behavior is illustrated in Fig.
4 in connection with the two-dimensional square cell for
the basis function corresponding to L = 0 and with a
cutoff value of the internal sum L’ = 64.

The figure shows the difference between the calculated
and exact basis functions for L = 0, ¢{}(r), at various
distances r from the center of the cell, indicated in the
figure, along a ray from the center to a corner of the
square. The values r = 3.14538, 3.47525, and 4.442 88
correspond, respectively, to a point on the MT sphere
inscribed in the cell, to a point between this sphere and
the cell corner, and to the cell corner. In each case the
internal summation in the basis function Eq. (4.5) was
carried to L = 64, and the phase functions ¢ and s were
also determined to that value. As is seen in this figure,
#8(r) converges with increasing L’ for points r well in-
side the cell (away from the corner), but at the corner, it
can be seen to diverge when L’ approaches 64, its cutoff
value. Thus, when the basis function used in the deter-
mination of the phase functions is also determined by
the calculation (as will be the case in all but the simplest
model calculations), the coupled-channel equations may
yield divergent values for the phase functions and the
basis function. The divergences can, however, be pushed
farther and farther away from the region of interest by
solving these equations for higher and higher values of
the internal summation index.

We have verified that the solutions to the coupled-
channel equations with truncated potential are finite and
correct by substituting the correct solution

L
s K iLO
6100 = (g ) Ju(60)e (4.16)

0.010 : - -

: —o— 314538 ;

| —=— 377836 i

0.0051 | -T=-= 444288 !

exact : :

%s % | .|
0.000{_| e

" [

v L
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-0.010 y— . .

0 20 40 60

L
max

FIG. 4. The difference between the calculated and the
exact basis function for L = 0 as a function of internal sum-
mation index at various points along a ray from the center of
a square cell of side equal to 7 to a corner of the cell. The
curves correspond to various distances along this ray as indi-
cated in the legend. The point r = 3.145 38 lies on the MT
sphere, while r = 4.442 88 is at the corner.
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into the left-hand side of Eqs. (4.6) and (4.7). The
correct result is generated on the right-hand side of Eq.
(4.5) as the internal limit of the summation on L’ is in-
creased. These results indicate that the coupled-channel
equations with truncated potential are correct, but must
be used with care in cases such as the empty lattice test
in which the truncated potential is extremely nonspheri-
cal. In other words, these equations are indeed satisfied
by the exact basis functions and are not inherently diver-
gent, but the sum over L’ in Eq. (4.5) may diverge if the
internal summation used to represent ¢ (r’) in Egs. (4.6)
and (4.7) is truncated at too small a value. On the other
hand, when these equations are applied to realistic po-
tentials, whose strength is often concentrated inside the
MT sphere, reliable results may be obtained even when
all expansion variables, even those corresponding to in-
ternal summations, are truncated at fairly small values.

D. Independence of basis functions
of potential in the moon region

The second approach which can be followed in solv-
ing for the cell basis functions is based on the formal
results of Sec. IIC. We saw there that the basis func-

tion for points r inside the cell is independent of the
J

¢2(r) = (g)LJL(ﬂr)e"“’ - (g)LXL;e“"’Vo /m

where the various functions occurring here have been in-
troduced above. Note that the second term inside the
brackets in this expression involves the “wrong order”
expansion of the Green function so that if the sum over
L' were carried out before the integral were evaluated
the sum would diverge [the argument 7’ in the regular

0.1

Integral
3

-0.3
3.1416

4.1416
r

FIG. 5. The integral over the moon region of the cell that
represents the difference between the cell and sphere basis
functions when the argument of the basis function lies at var-
ious positions along a ray from the center of a square cell of
side 7 to the corner of the cell. Note that convergence is essen-
tially complete for L > 24, where L is the internal summation
index.

oon
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potential in the moon region of the cell and that it co-
incides there with the basis function for a sphere (circle,
in this case), which contains the potential in the moon
region. This affords one the possibility of solving first
for the basis function of the sphere and then determining
the cell phase functions through an additional integra-
tion over the moon region; see Eq. (2.30). For the case
of the square cell with a constant potential —Vj, the ob-
vious choice for the potential in the moon region is also
—Vb, leading to a spherically symmetric potential inside
the sphere (circle) and a straightforward determination
of the sphere basis function, Eq. (4.16). In realistic cases
the choice of the potential to be used in the moon region
may be less obvious.

In the present case, Eq. (4.16) yields an exact expres-
sion for the basis function of the sphere and thus for the
cell basis function inside the domain of the cell where
the two coincide. The fact that these two basis functions
#¥M do indeed coincide over the domain of the cell is
illustrated in Figs. 5 and 6 for the case of the square
cell. It follows from Eq. (2.30) that inside the domain
of a cell  the cell basis function differs from that of the
sphere by an integral over the moon region, so that we
must have [ Go(r—r')V(x')d3r = 0. For the case at

moon
hand, we have explicitly

d2 T 10! . /
2—7: [ Kp(kr')e "0 Jp(Br")ett? Iy (kr)

I (k' )e= T (B Y Ky (nr)} , (417)

f

solution I/ (xr’) lies in the moon region and can become
larger than the length r of the argument of the irregular
function Ky (kr), which lies inside the cell]. However, as
argued above, performing the integral first always leads
to converged results.

Now, if the functions ¢$(r) and ¢ (r) are to coincide

0.0000 i _
\0
: B
o) .
> 00125 / ><
-
£
\_ "
-0.0250 .
3.1416 3.3416 3.5416
r
FIG. 6. Results analogous to those of Fig. 5, but along

a ray making an angle of /8 with the horizontal axis. Note
that now the moon region does contribute when the argument
of the basis function lies outside the cell, so that the cell basis
function and the sphere basis function are no longer identical
there.
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when r lies in the cell, then the second term on the right-
hand side of Eq. (4.17) must vanish. That this is indeed
the case is demonstrated in Figs. 5 and 6. These fig-
ures show the value of that term as a function of the
internal angular momentum summation index, indicated
along the curves, and as a function of the length r along
two different directions: In Fig. 5, r varies along a line
from the MT radius to the corner of the cell, while in Fig.
6 the direction of r makes an angle of /8 with the posi-
tive x axis, and the vertical line indicates the point where
this ray crosses the cell boundary. In both cases, the inte-
gral, and hence the difference between the cell and sphere
basis functions, approaches zero with increasing L’. We
also note that when r lies in the moon region rather than
inside the cell, i.e., to the right of the vertical line in Fig.
6, the integral over the moon region no longer vanishes
as the two basis functions are no longer identical there.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have examined the formal and com-
putational aspects of the solutions of the Schrodinger
equation associated with nonspherical potentials. The
main results of our study can be summarized as follows.
First, we have shown that the ¢ matrix associated with
a spatially bounded but otherwise arbitrarily shaped po-
tential (provided that the ¢ matrix exists) suffices to de-
termine the wave function everywhere outside the cell
boundary, and not only outside a sphere circumscribing
the cell. Second, we showed that the methods proposed
by Williams and Morgan, on one hand, and by Brown
and Ciftan, on the other, yield identical results when
both are carried to convergence.

The fact that the cell basis functions do not depend
on the potential outside the cell has interesting compu-
tational implications. For example, it affords one the
freedom to place any potential in the moon region of a
cell that allows the Schrodinger equation for the entire
sphere to be solved more easily than that for the cell
alone. We used this feature above to set the wave func-
tion inside a cell of constant potential equal to that of a
sphere containing the same potential. In that case it was
easy to assign a potential to the moon region, i.e., the cell
potential itself, that greatly simplified the calculation of
the sphere wave function. In realistic cases, the choice of
moon potential may be less obvious.

Brown and Ciftan!!14:32:33 have suggested that the cell
potentials to be used in the calculation of electronic struc-
ture must be the physical potential contained inside a
sphere that is circumscribed around a given cell. In other
words, the potential in the moon region of a cell depends
on the potentials of the neighboring atoms. They argued
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that this procedure provided an exact and convergent
treatment of cell scattering, while that of Williams and
Morgan was inherently divergent. They supported their
conclusions with numerical results based on the empty
lattice. The discussion just given allows us to interpret
the results of Brown and Ciftan as follows.

Both procedures, that of Williams and Morgan® and
of Brown and Ciftan,'# are indeed inherently convergent
if all summations are properly carried out, but either
may yield divergent results for particular truncations of
sums for certain potentials. In fact, the latter may have
worse convergence problems than the former if moon po-
tentials contributed by the cells adjacent to a given cell
deviate greatly from spherical symmetry. Consider as a
first example, a square lattice of square well muffin-tin
potentials. In this case, the Williams-Morgan method is
trivial and the Brown-Ciftan method would be expected
to have convergence difficulties similar to those observed
in Sec. IV for the Williams-Morgan method.

Consider as a second example, a checkerboard lattice,
with potentials +U and —U distributed in alternate cells
of a square lattice. In this case, the straightforward ap-
plication of the Williams-Morgan procedure requires the
solution of the coupled-channel equations for two non-
spherical potentials equal to £U inside the square cell
and zero outside. The Brown-Ciftan procedure requires
the solution of these equations for two nonspherical po-
tentials equal to £U inside the cell and FU outside, re-
spectively. We expect the Williams-Morgan version to
be marginally easier to solve. Even better would be to
recognize that the potential outside the cell is irrelevant
so the basis functions can be trivially solved for constant
potentials £U.

It appears, then, that in realistic calculations one
should consider carefully the choice of the potential that
should be placed in the moon region of a cell, as a proper
choice may greatly reduce computational labor. It is not
expected that the potential of nearby cells would always
constitute the best choice.
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