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Theoretical investigation of the longitudinal Hall effect in SrAs3
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The resistivity and Hall coefficients of SrAs3 are calculated for T=O K using different model band
structures. The magnitude of the experimentally observed low-temperature values for the first-order lon-

gitudinal Hall coefficients (LHE) cannot be reproduced within a single-band model based on a realistic
Fermi surface with monoclinic symmetry. An ellipsoidal two-band model, however, yields a quantitative

description of the measured LHE. This result strongly supports our earlier assertion that the LHE is

essentially a two-band effect.

An unusual first-order longitudinal Hall effect (LHE)
has been recently observed for the low-symmetry com-
pounds SrAs3, CaAs3, and AuTe2. ' The geometrical ar-
rangement for a LHE is characterized by a magnetic field
B parallel either to the current density j or the Hall elec-
trical field E. According to the action of the Lorentz
force, j, B, and E are expected to be mutually perpendic-
ular [the transverse Hall effect (THE)]. However, in crys-
tals of low symmetry, longitudinal components exist
which may be even of the same order of magnitude as the
THE components. The measured temperature depen-
dence of the LHE coefficients gives strong evidence that
the LHE is essentially a two-band effect. In addition, it
has been demonstrated by a model calculation for a
monoclinic two-band conductor that nonvanishing LHE
coefficients are produced by the products of nondiagonal
and diagonal conductivity elements (within the monoclin-
ic ac plane) for the two bands involved. It is the purpose
of this paper to investigate quantitatively the order of
magnitude of the LHE coefficients of SrAs3 based on
model band structures which fulfill the requirements of
crystal symmetry. We start with a single monoclinic
band which fits the measured (hole) Fermi surface. This
single-band model yields values for the LHE coefficients
much smaller than those observed. By adding an ellip-
soidal electron band, the description of the experimental
data can be considerably improved, yet a sign discrepan-
cy remains with the LHE coefficients. An almost-perfect
description, however, can be obtained with an ellipsoidal
band model for both, holes and electrons.

SrAs3 crystallizes in the monoclinic space group
C2/I, and the unit cell contains two formula units of
SrAs3. The orthogonal laboratory system x„x2, and x3
is oriented to the crystallographic axes c, a, and b with x1
parallel to c*, x2 parallel to a, and x3 parallel to b. In
this notation b is the twofold axis and the monoclinic an-

gle b=112 is between a, and c. a*, b*, and c* denote
the reciprocal-lattice vectors with b* positioned parallel
to b, and a*, and c* lie in the (a, c) plane forming an an-
gle of 67.1'. The point group 2/m (C2h) contains four

elements: the identity (E), a m.-rotation around x3 (C2),
refiection on the x„x2 plane (crt, ), and the inversion (i).

C2 and o.H are the generators of the group, with

i =C2oo.~ and E=ioi. In the low-B limit the resistivity
tensor can be expanded as

where p,. is the (polar, rank-two) zero-field resistivity ten-

sor and p; k denotes the (axial, rank-three) Hall tensor.
Higher-order terms in (1) will not be considered here.
General symmetry considerations and Onsager's relation
require that p; =p., is symmetric and p; k =pj,k is an-

tisymmetric with respect to the first and second indices.
For C2& there are four independent resistivity com-
ponents: p11 p12 p22 and p33 1'e' &1 &2 and &3 are in

general not the principal axes of the resistivity tensor.
The THE is related to the three independent coefficient

p2», p132, and p321 and the LHE is characterized by p131
5, 6and p232.

~

The electronic properties of single crystals of SrAs3
have been studied by investigating the temperature
dependence of the electrical conductivity, the Hall effect,
and Shubnikov —de Haas (SdH) oscillations. ' At 4.2 K
SrAs3 is predominatly p type, as indicated by the positive
sign of the high-field transverse Hall coefficients. The
periods of the SdH oscillations have been interpreted
with an elliptic cross section of the Fermi body in the
b*c' plane, while the cross section in the a*c* plane
resembles a parallelogram with rounded corners. A
rough estimate of the hole concentration nh using an el-

lipsoidal approximation suggests the existence of two
equivalent Fermi bodies to reconcile the SdH carrier den-

sity with the Hall data. We use nh =6.9X10' cm as a
starting value. A further low-frequency SdH oscillation
has been explained by a spherical electron band with

n, = 1.4.X 10' cm . Since no band-structure investiga-
tion is available yet, we set up an expansion of E(k) in

terms of polynomials in k„k2, and k3, which are invari-

ant under the group of the wave vector ko of the center
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of the respective Fermi bodies. In reciprocal space, the
orthogonal system k, , kz, and k3 is chosen parallel to x, ,
x2, and x3 (i.e., parallel to c*,a, and b) We assume both
hole Fermi bodies to be located near the center of the
Brillouin zone (ko=0) so that E(k) of each Fermi body is
invariant under all point-group transformations, i.e., the
generators Cz and o.&. These polynomials can be con-
structed from invariant monoms x y z" with n =even
and k+m =even. Therefore, in dimensionless form, the
monoclinic hole band is described by

2.0

1.0

0.0

—1.0

(a)

P(k)=ak„+bk +ck +dk +ek~+fk~+gk,

+hk, +ik k +jk k +1k k +mk k

where

kl&, K ( VF/P~)', E(k)=EFE(k ) .

(2)

—2.0

—2.0 —1.0 0.0
kx

1.0 2.0

k is analogous to the Fermi wave vector for a single
spherical band and EF is the Fermi energy at zero tem-
perature. V+=4~ nI, denotes the volume of the Fermi
body containing nh (hole) carriers and PF is the volume
of the dimensionless Fermi body enclosed by E(k)=l.
For convenience, we define a Fermi-energy effective mass
mF by

EF (fi~) l2mF —.
Equation (2) contains all second-order terms and a

selected set of fourth-order terms which are sufFicient to
describe the measured asymmetric shape of the hole Fer-
mi body. Terms k k, k k„and k k k, have been left
out, however, because their parameters could not be fixed
by the available data. The sixth-order terms k and k
have been included for stability reasons. Otherwise, E (k)
may take on large negative values along certain directions
in k integration. Coefticients a, b, . . . , m, EF have been
fitted to the shape of the Fermi surface (see Fig. 1), the
hole concentration ni„and the cyclotron masses m *:

m*ym, =—
It)

1 dk

Contour C is the extremal orbit perpendicular to B and 0~
denotes (in dimensionless form) the component of the
respective velocity:

9(k ) =VE(k ) .

Numerical results for the band parameters are listed in
Table I. As expected, the Fermi energy is slightly smaller
for the monoclinic band than in an ellipsoidal approxima-
tion.

In kinetic theory, the zero-field conductivity and the
Hall tensor are directly related to the band structure,

1.0

0.5

N 0 0

—0.5

—1.0

—1.0 —0.5 0.0 0.5 1.0
kx

scattering time ~, and charge q of the carriers by

&J e VmF

q nr
~ij k + ij k

mF

&;, = J 9,v f'(P-„—p)d k,
2 F

B0.
&;,„=e „k f0;0„'f '(E-„p)d'k . —

"'4V ' "ak (10)

FIG. 1. Cross sections of the Fermi bodies. (a) (001) plane,
(b) (010) plane. The square symbols represent the experimental
data derived from SdH measurements (Ref. 4). The solid lines
are calculated for different parameter sets from Eq. (2) with
P(k) =1.

TABLE I. Monoclinic hole band parameters (two equivalent pockets).

a =0.66
b =0.14
e=0.02
2=0.021

e=0.035
f=0.01
g= 4.4
A =4.0

i = —0.29
j=0.23
I=0.00
m = —0.05

0,=S.066
E„=10meV
a =2.037 & 10 cm
mI; /mo =0.161
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n = n ( T =0) is the concentration at zero temperature
and &=i&(k) according to (6). f'(Ek —p) denotes (in di-
mensionless form) the derivative of the equilibrium Fermi
function of the carriers with chemical potential p. ~ has
been assumed independent of k, c „k is the antisym-
metric rank-three unit tensor, and the integration is over
the Brillouin zone. For a single spherical band mF is
identical with the usual effective mass, f'~=(4'/3), and
therefore o; =5, . , and 0';-k=a;.k. At zero temperature
Eqs. (9) and (10) can be reduced to integrations over the
Fermi surface:

1,1

12
22
3,3

(a)

&fJ

1.98
—0.11

0.91
11.00

(a)

PlJ

3.62
0.41
7.92
0.65

(b)

PlJ

5.8
—1.0

5.3
1.0

(c)

PlJ

5 ~ 16
3 ~ 86
5.99
1.21

Expt.
PlJ

5.22
?

4.5—7.4
1.0—1.42

TABLE II. Conductivity and resistivity tensor at T=0: (a)
monoclinic hole band, (b) hole plus electron band, (c) ellipsoidal
hole and electron band. p;; is in 10 0 cm.

a03
131 232 p 12

k~
(16)

~l~1
+ij k Smnk f4V, Oak

(12)

v(=2) denotes the number of equivalent Fermi bodies.
To evaluate these integrals, we first solved E(k )=1 for
k, =F(k, k~) and then performed the integrations nu-
merically.

The resistivity tensor p, is obtained by inversion of the
tensor o.; and the Hall resistivity tensor is given by

Pij k Pimpjn ~mnk (13)

Summation over repeated indices is implied. In particu-
lar, the longitudinal Hall resistivity components are

P131 P33( P11 131+P 12~ 321)

P232 P33( P22~232+P12~132)

(14)

Note that there are two different sources of the LHE (as
described by a resistivity tensor) originating from the lon-
gitudinal Hall conductivity and the nondiagonal resistivi-
ty components. Both contributions have the same origin
and tend to compensate each other.

Numerical calculations have been performed for a sin-
gle monoclinic hole band as described by Eq. (2), a mono-
clinic hole band plus an ellipsoidal electron band, and el-
lipsoidal bands for both holes and electrons. Parameters
have been chosen to fit the experimental resistivity and
Hall resistivity data of Ref. 2 (cf. Tables II and III). A
scattering time ~& =2.29X10 ' s has been used for the
monoclinic hole band (T=O). The Hall resistivity tensor
is independent of ~&. The transverse Hall coefficients are
slightly smaller than 1/nke =9.05. For the special form
of (2), with no coupling between k, k~, and k„we have

where ( ) =2g+ 12h ( k, ) = 11.7 denotes an average over
the Fermi surface. Comparison with the experimental
data (Table III) shows that the LHE elements are much
too small. In addition, two out of three THE elements
even have a wrong sign.

The negative signs of p2&3 and P32& indicate an impor-
tant electronic contribution to the Hall effect so that a
single monoclinic hole band cannot account for the ob-
served THE. As a first approximation for the electron
band, we assume an ellipsoidal shape with principal axes
not being parallel to the k„, k„, and k, axes and take the
orientation and the effective masses as fitting parameters,
m;* =m;m, * with m

&
m2m 3

= 1. The mean electron
effective mass m,*=0.02mo represents a typical value for
a semimetal. With respect to the principal axes we have

n, (T) 1 n, (T)
ij ~ (0) ij & ijk ~ ~ (0) ijk

m; +e m;mj
(17)

[no summation on index i on the right-hand side of (17)].
Then, the electronic conductivity and Hall tensor contri-
butions were rotated around the k3 axis by an angle p:

j =R'IR j ~ 'jk=R ~R j (18)

where R,.& denotes the corresponding rotation matrix. A
reasonable fit of the experimental data was obtained for
m1=7, m2=0. 35, m3=0. 408, /=20, rk =1.3X10 ' s,
and ~, /~& =1.9; see Tables II and III.

Although the results of the previous section are in
reasonable agreement with experiment, they are not yet
physically acceptable. In particular, no choice of the

TABLE III. Hall tensor at T =0: (a) monoclinic hole band, (b) hole plus electron band, (c) ellipsoidal
hole and electron band: p;,k is in cm'/As.

2, 1,3
1,3,2
3,2, 1

1 3 1

2 3 2

(a)
O'lJk

—0.85
—10.71
—4.81
—0.63

0.63

(a)

PlJJ

8.37
8.86
8.69
0.07

—0.13

(b)

P lJk

—10.0
2.4

—30.0
7.6

—12.5

(c)

PlJk

—9.32
12.29

—29.20
11.62
17.52

Expt.
PlJk

—9.2
12.3

—29.1

11.6
17.4
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TABLE IV. Hole and electron conductivities [in (Q cm) '] of
the ellipsoidal band model at T =0.

Holes Electrons

1,1

1,2
22
33

3133
—1368

1161
7591

605
—1039

2059
681

(electron) parameters leads to p»„and p232 being positive
and of correct magnitude. The reason is, probably, the
rather small hole contribution to o.12, o.131, and o232
within the monoclinic band model. To overcome this
shortcoming, we tried an ellipsoidal band model for both
holes and electrons. For each band the rotated tensor
elements are given by

&»=cos Po'»+sin P&z2,

&,2
=sing cosP( &z2

—& '» ),
022=sin QCT ii+cos /&22,

2
213 1122+ 12 &

O 132

321 3322 &

131 3312 ~

232 3312 ~

For a single band this [by Eq. (13)] leads to

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

PSJk Iga (28)

being identical with the spherical band result. In particu-
lar, there are no longitudinal Hall resistivity components.
For the case of a hole and an electron band, contributions
(19)—(27) are added with the appropriate prefactors [see
Eqs. (7) and (8)]. This procedure reproduces Eq. (22) of

Ref. 2 for p232. The conductivity parameters, four each
for the hole and electrons, are fitted to the eight mea-
sured resistivity and Hall resistivity components for
T~0 (Tables II—IV). This can be done almost perfectly,
and, moreover, the fitted conductivity components
represent positive-definite tensors and the effective-mass
ratios (mz*z /mh*3. =16) for the hole band are at least in
qualitative agreement with the Fermi-surface data. An
even larger anisotropy (m,; /m, '2. =40) results for the
electron band, which is, of course, inconsistent with the
original determination of n, . The surprising success of
the ellipsoidal two-band model clearly suggests a critical
revision of the earlier interpretation of the SdH data.
The corresponding rotation angles are Pz =27. 1' and

P, = —27.5'. We note that Ph is close to the angle be-
tween the k axis and the longer diagonal of the Fermi-
surface cross section (see Fig. 1).

Our theoretical investigations can be summarized as
follows. Within a single monoclinic band no satisfactory
description of the experimental Hall data could be ob-
tained. In particular, the longitudinal components are
much too small. It seems that a significant LHE cannot
result from a single band. For the ellipsoidal two-band
model, however, a perfect agreement is obtained using
reasonable assumptions for hole and electron densities.
Moreover, the orientation and anisotropies of the hole
and electron ellipsoids can be determined. We conclude
that a significant LHE is not produced by a single low-

symmetry band. The real origin lies in the fact that the
low symmetry allows for the existence of two quasiellip-
soidal bands whose principal axes are rotated with
respect to each other. As a next step in our theoretical
investigation of the LHE we have to include the magne-
toresistivity data to obtain a self-consistent determination
of the hole and electron concentrations nI, and n, . Then,
realistic temperature dependencies for carrier concentra-
tions and mobilities should be built in to reproduce the
measured temperature variations of the transport
coefficients. For trigonal a-arsenic the first mentioned
procedure has been successfully performed in an earlier
paper by Jeavons and Saunders. However, the point
group 3m of e-As does not allow for longitudinal Hall
coefficients.
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