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In this paper, we present a study of the ground-state phase diagram of a one-dimensional quantum
chain, the Penson-Kolb-Hubbard model,

H= — g (tet+„c; + Vc~+„tc;+„tc;tc;t)+g Un;tn;t

at half filling. We have examined the system using exact diagonalization for samples of up to 12 sites and

employed two techniques, eigenprojection decomposition and twisted-boundary conditions, in analyzing
the data. These techniques allow us to characterize the ground state in a manner insensitive to changes
in sample size and provide us with a clean way to visualize the physics. When used with the "correct"
order parameter, qualitative features emerge even for sample sizes as small as six sites. We find that the
second-order charge-density-wave —spin-density-wave transition in the weak-coupling limit (t &) U-2V)
turns into a first-order superconducting —antiferromagnetic transition in the strong-coupling regime
tt « U-(4/vr) V]. We also observe evidence of a charge-density-wave —superconducting transition in

the parameter range (t —V»U). These three transition lines meet together at a tricritical point at
(t:U: V) -(0.04:0.54:0.42). A naive renormalization-group analysis in the intermediate-coupling regime
produces results consistent with this conclusion.

I. INTRODUCTION

There are two facts that make the proposed Penson-
Kolb-Hubbard (PKH) model

i, g =+1,o.
( tc;+„c; + Vc;+„tc;+„tc;tc; t )

+ g Un;tn;t

an interesting object to study. First, many of the high-T,
materials discovered within the past few years, in particu-
lar the cuprates, share certain common characteristics.
For example, the "Cooper" pairs observed are extremely
small with coherence lengths comparable with the size of
the unit cell. The on-site electron-electron repulsion U is
notably stronger than the single-particle hopping ampli-
tude t. Finally, the undoped materials are insulators and
superconductivity is triggered by changes in doping.

It is generally accepted that the insulating behavior of
und oped materials is caused by the strong on-site
electron-electron repulsion and that some sort of Hub-
bard model will adequately describe the physics of the in-
sulating phase. In this paper we assume that when the
materials are doped, some unexplained mechanism binds
pairs of charged carriers tightly together and that the re-
sulting "Cooper" pairs move freely as single entities in
equilibrium with single carriers. We assume that the
physics of the doped materials can then be modeled

through a suitable choice of effective interactions among
the pairs. Since the Penson-Kolb-Hubbard model cap-
tures many of these phenomenological characteristics, we
can use it to study some of the possible phases of high-T,
materials.

Penson and Kolb' introduced their one-dimensional
pair-hopping model, our PKH model without the
Hubbard-U term, as a model for electron segregation.
They found that a single-particle excitation gap, AE„„i„
opens up when the pair-hopping amplitude V increases
beyond —1.4t. This is not very surprising because the
model is superconducting in the infinite-V limit by con-
struction. What is surprising is that the second-order
derivative of ground-state energy E with respect to
V, d E/dV —the analog of specific heat, shows a local
maximum at V-1.4t which neither diverges nor disap-
pears on extrapolation to the infinite sample-size limit.
Using this and some other scaling arguments, Penson and
Kolb inferred the existence of a transition of the model at
V-1.4t which is neither first nor second order. ' AfHeck
and Marston restudied this problem using
renormalization-group equations. In the weakly coupled
continuum limit, they found' that the pair-hopping model
and the negative- U Hubbard model are essentially
equivalent. The only differences are in the values of the
bare coupling constants, so that this places the two mod-
els in the same region of the phase diagram. As a result,
they suggested that the apparent transition at V-1.4t
could be just a finite-size artifact. This leads us to ask the
question whether there really is a transition and if so,
what is the nature of this transition.
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In this paper we will restrict ourselves to the study of
the one-dimensional PKH model with non-negative
t, U, V. The restriction of t ~0 is purely a convenience.
This is because under the canonical transform
c; ~( —1)'c;, the t term of the PKH Hamiltonian sim-

ply changes sign. The one-dimensional and non-negative
V restrictions are motivated by our desire to compare
with Penson and Kolb's result. ' In addition, we believe
that if we approximate the physics of the cuprates by the
PKH model, the relevant V should be non-negative in the
superconducting phase and U has to be non-negative in
the insulating phase. In the following sections we first
justify our choice of Hamiltonian. Then based on heuris-
tic arguments, we explain what we should expect for the
phase diagram of the one-dimensional PKH model. We
present numerical evidence supporting our predictions.
Finally, we compare our numerical results with predic-
tions based on renormalization-group analysis and dis-
cuss briefly the deviations of our results from ANeck and
Marston's analysis.

coupling regime ( U, V ~ t) the qualitative features of the
phase diagram will not depend on our specific choice of
half filling. This is because as we increase the couplings,
momentum states far away from the Fermi surface be-
come energetically accessible. Unlike the case of a weak-
ly interacting Fermi gas, we no longer require to fulfill
the "perfect nesting" condition in order to have a
charge-density-wave phase. We hypothesize that when
we dope the materials, the main effects of the pairs will be
captured by the effective interaction among the pairs
themselves so that it is no longer necessary to consider
the doping dependence explicitly in the medium-strong-
coupling part of the phase diagram.

At half filling, particle-hole symmetry forces p= U/2
independent of t and V. The chemical-potential term—)Mg; n; becomes irrelevant in the determination of
the ground state and we will simply drop it in the follow-
ing discussion.

B.Heuristic expectations based on various known limits

II. CONSTRUCTION OF THE PKH MODEL

A. Physical justification

If we perturb the one-dimensional Hubbard model to
favor the formation of "small" pairs, the pairs formed
will "block" the hopping of normal unpaired particles
due to the Pauli-exclusion principle. In the dilute "pair"
limit, the physics should be dominated by this type of
competition between single particle and localized pair
hopping instead of interactions among the pairs. As a re-
sult, the role of the pairs should be expressible as an in-
teraction term quadratic in the pair creation 6; =c;&c;&
and annihilation 6; =c;&c;& operators,

H „,= g V„b,;+„b,;

Weakly interacting

Hub
d Kolb's
g model

We are left with two dimensionless parameters U/t
and V/t As w. e have discussed in Sec. II A, we will re-
strict ourselves to the parameter space where both of
them are non-negative. Using the fact that simultaneous
scaling of all three parameters t, U, V leaves the ground
state invariant, we can represent the phase diagram by an
equilateral triangle tUV as shown in Fig. 1. Figure 1

summarize all the important results of this paper. The

=y V, n, ,n, , +
i, g=+1,+2, . . . , o.

V„4;+„4; .

The term Vo and V„(g=+I,+2, . . .) represent the pairs'
potential and kinetic energies, respectively. Physically,
we expect

~ V+, ~

~
~ V+2~ ~ .

, and the Fourier trans-
form Vk to be a real, even function of k. In addition, V~&~

should be monotonically increasing for 0 ( k~ (~. As a
result, it just suffices to keep the U:= Vp and V:= V]
terms to get the right qualitative shape of VI, . Similarly,
we can restrict single-particle hopping only to nearest
neighbor and arrive at

t g c,t+ „c, + Vb, t+ „b,,

+ U g n;tn;t —)gLtn;

We will restrict our study to the case of half filling.
For the sample sizes we have used in our calculation, we
believe they are simply too small to make any meaningful
statement for doping away from half filling. However, we
would like to argue that in the intermediate- and strong-

B C D

FIG. 1. An equilateral triangle representing the parameter
space t+ U+ V=1 of the Penson-Kolb-Hubbard model. Any
point p inside the triangle t UV corresponds to

t:U: V=dist(p, UV):dist(p, t V):dist(p, t U),

where dist(p, AB) is the distance between the point p and the
line segments AB. The solid lines tC, tE, EP, and DE are phase
boundaries predicted by renormalization-group equations Eqs.
(4.2a) —(4.2d) using initial conditions Eqs. (4.1a)—(4.1d) at cutoff
5=0.02 while the dashed line AB is supposed to be an artifact.
The circles represent the CDW-SDW transition line we located
by maximizing (N/t)~Ex=a(g, =m) Ex=a(P, =0)~ for N—=10.
The diamonds and squares are the CDW-SC transition line we
estimated by minimizing the expression —g~[Po (A, +1)6 CDW

(A, ) +Po (A, —1)]' for N=10 and 12, respectively.
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boundaries of the triangle represents various known lim-
its we will describe here. We will defer the discussion of
other details of Fig. 1 to the relevant sections.

Along the tU line where V=O, the model reduces to
the one-dimensional Hubbard model which is exactly
solvable. It is well known that at half filling, there is a
gap b,E ( —e """'~ for small U) in the charge sector
but none in the spin sector. As U varies, the ground state
depends on U analytica11y and hence no transition is pos-
sible along the tU line.

Around the vertex t where t &&U- V, the model is
nothing but the usual one-dimensional weakly interacting
fermion gas. If we take the continuum limit naively, our
model will be equivalent to the Hubbard model with the
Hubbard-U replaced by U —2V. As a result, we should
expect a charge-density-wave —spin-density-wave (CDW-
SDW) transition line at U -2 V (tC in Fig. 1).

Along the tV line, the model reduces to Penson and
Kolb's pair-hopping model. Penson and Kolb's study
suggests that there may be a transition at V-1 4t (.P in
Fig. 1) and AfHeck and Marston's study shows that, at
least in the weak-coupling limit, there is a gap AE,
(-e """'~ for small V) in the spin sector but none in
the charge sector.

Along the UV line where t =0, the parity of the num-
ber of particles at each site is a good quantum number.
This allows us to decompose the eigenspace of H into sec-
tors specified by the parity of the occupation number at
each site. Within any sector, the system is a collection of
"even" segments, within which pairs are confined, inter-
leaved with immobile "odd" sites. We can apply the
Jordan-Wigner transform on each even segment and
trivially solve the model. We find that for small U, the
ground state is nondegenerate and consists of a single
infinitely long even segment with freely moving pairs. As
we increase U, a first-order transition will occur at
U=(4/vr) V ( -D in Fig. 1). Above this value, the
ground state is infinitely degenerate. All sites are singly
occupied and the spins of all particles are independent of
each other. There is a gap ~ U —(4/vr) V for pair forma-
tion, and the V term becomes irrelevant to the physics.
As a result, the model reduces to the Hubbard model in
the parameter range t «(4/m. ) V& U and the system is
basically an antiferromagnetic insulator.

Combining the information along the boundaries of the
triangle tUV, we expect the second-order CDW-SDW
transition in the weak-coupling limit ( r ))U —2 V)
changes to a first-order superconducting (SC)—antiferro-
magnetic (AF) transition in the strong-coupling regime
[t « U-(4/~) V]. There will also be a CDW-SC transi-
tion line at (t —V)) U) and these three transitions lines
will meet at a tricritical point within the triangle. This is
indeed what we find when we exactly diagonalize the
Hamiltonian for small systems.

III. ANALYSIS BASED ON EXACT DIAGONALIZATION

Initially, we tried to attack the problem by studying
the single-particle and pair excitation gaps defined by

~+single' p(ENm+1, m ++Nm —I, m N, m, m)

~Epair' 2 (ENm + I, m + 1 + N, m —1,m —1 Nm, m)

A. Eigenprojection decomposition

The first technique was introduced by Cannon, Scalet-
tar, and Fradkin in Ref. 5. Given any physical system
which exhibits a phase transition when its parameters are
varied, let 0 be the order parameter, 0 the corresponding
operator, and ~%0) the ground state. Instead of looking
at the ground-state correlation functions, we can perform
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FIG. 2. The scaled single-particle and pair excitation gaps
NAE '

g&
and NAE~„, for various single-particle hopping am-

plitude t (0.05 & t & 3.0) and sample sizes N= 6,8, 10 at
U =0.0, V=1.0.

where Ez „ is the ground-state energy for a system of N
sites with m spin-up and n spin-down e1ectrons, using ex-
act diagonalization based on the I.anczos algorithm aug-
mented by finite-size scaling analysis. Figure 2 shows the
scaled energy gaps we obtained along the t V line
( U =0, V = 1,m =N/2, N =6,8, 10). It clearly shows
that while the scaled pair excitation gap NAE „., remains
finite for all t/V, the scaled single-particle gap NAE„„&,
diverges for t/V 0.7. This is consistent with Penson
and Kolb's result of the opening of a single-particle exci-
tation gap at t/V-0. 7

However, it is apparent that the energy gaps in these
graphs exhibit a sample-size dependence of period 4.
This is also true for other numerical data we have collect-
ed. For any one-dimensional numerical calculation,
N =6 is about the minimum size for which we could trust
the result. This implies we need calculations on systems
of 14 sites in order to make a 1/N interpolation. This
makes finite-size scaling analysis unattractive. From the
numerical data we have collected, we also notice that the
ground-state energies and energy gaps offer no distinct
features as we vary the parameters (t, U, V) over the inte-
rior of the tUV triangle. As a result, we found that we
needed more sensitive tools to characterize the physics in
different regions of the phase space. Here we report on
two techniques which proved useful in helping us study
the ground-state phase diagram.
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superAuid. In a superAuid, if we apply a gauge transfor-
mation p~e'~p to the superAuid order parameter p, the
free energy I' of the system will acquire an extra term
proportional to p and

l VP l:E~E+const p l
VQ l . As a

result, if we perform a finite-size calculation on a
superQuid system contained in a volume of length scale L
using a twisted boundary condition p(x+L)=e'~p(x),
the ground-state energy Eo of the system will have a P
dependence of the form const p(P /L) and hence we can
use Eo with different boundary conditions to extract the
superAuid order parameter p.

We have implemented this idea into our numerical cal-
culation by "twisting" the boundary condition. We have
considered two classes of boundary conditions,

FKx. 4. Same plot as Fig. 3 at t=0.10. The drastic change of
the qualitative shape of P &(A,(A, +1)) at U-0. 57 has beenl~l'
completely smoothed out. This implies the transition has been
switched to a second-order one.

pair twist: c, +& =e c;

spin twist c +&

(3.la)

(3.1b)

increase U, the peak of P~&~2(A, (A, +1)) moves from A, ,„
to 0 smoothly, signifying a second-order transition.

In Fig. 5(a) we have plotted P~&~2((A, +1)) for odd A, at
t=0.04, N= 10. Pay attention to the little bump for A, = 1

at U/( U+ V)-0.57. For t=0.03, this bump is relatively
sharp and it smoothes out when t=0.05. In Fig. 5(b) we
have plotted Po (A, ) = ( VolP- l %0) at t= 0.04,

CDW o OCD

%=8. Once again, the cusp of Po (0) at
CDW

U/( U+ V) -0.57 is relatively sharp at t= 0.03 and
smoothes out when t=0.05. From this, we estimate that
at t j( U+ V) = 0.04+0.01, the first-order transition for
small t changes to a second-order transition at larger t.

In Fig. 6 we have plotted Po (A, ) for t=0.01, 0.1,
CDW

0.4, and 0.7, N=8. There are several notable features.
First, BPo (0)jBU has a discontinuity at

CDW

U/(U+V)-0. 6+0.05. This point seems to move to-
ward bigger U as we increase t and there is an obvious
change of shape of Po (A, ) when U/( U+ V) increases

CDW

beyond this value. Second, for small t, Po (A, ) in the
CDW

small-U side shows extremely strong even-odd depen-
dence on A, . As we increase t, this even-odd dependence
in Po diminishes. The boundary that separates the

CDW

regions with and without such dependence seems to move
towards the t V line and completely go away at
t/(U+ V)-0.7. This suggests that there are actually
two second-order transition lines when we increase
t/(U+ V) beyond -0.05. As we increase t further, one
of them moves slowly toward the asymptote
U/(U+ V)-0.67 while the other towards the tV line
and completely goes away at a place consistent with Pen-
son and Kolb's assignment of a transition point.

B. Twisted boundary conditions

A second technique to identify phase transitions origi-
nates from the study of the helicity modulus in a

(b)

FIG-. 5. (a) The ten-site P 2(A.(A, + 1)) for odd A, and

(b) the eight-site P0 (A, ) at t=0.04 for various
CDW

U (0.05 ~ U 0.8 V = 1.0—U). Both the bump in (a) and cusp
in (b) at U-0. 57 smoothes out when t changes from 0.03 to
0.05. This implies the first-order transition switches over to a
second-order transition at t/( U+ V) -0.04+0.01.
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iP g/N
(te ' c,+„c,

i, g=+l, o.

i2$ g/N+ Ve ~ c;+„tc;+ &c;&c;&)

+ g Un;tn;(, (3.2a)

Physically, the "pair twist" boundary condition is
equivalent to joining the ends of the one-dimensional
chain to form a loop encircling a suitable magnetic Aux.

To reuse the code designed for periodic boundary con-
iP /N

ditions, we apply a canonical transform c,- —+e ~ c;
iP, o /N

in case (3.1a) and c; ~e ' c; in case (3.1b). This
will reduce the awkward boundary condition back to a
periodic one with H transformed to

i, my=+1, cr

iP cry/N
(te * c;+„~c;~+Vc;+„tc;+„gc;gc;t)

+ g Un;&n;& (3.2b)

for pair and spin twists, respectively.
In Fig. 7 we have plotted (N/t)~Ez 0(P~ =m)
Ez—=o(/~ =0)~, the differences of the scaled ground-

state energies for the momentum K =0 sector calculated
with and without a spin twist P, =~, versus
U ( V = 1.0—U) for various t (0.01 ( t ( 1.0) at N = 10.
There are several facts worth mentioning. First, for t =0
and U/(U+ V)(0.57 where the ground state consists
purely of freely moving pairs, no spin degree of
freedom exists in the ground state and

FICr. 6. The eight-site eigenprojection decomposition Pz (A, ) for the charge-density-wave operator OcDw at t=(a) 0.01, (b) 0.10,
CDW

(c) 0.40, and (d) 0.70. We have plotted them with diff'erent scales in order to bring out various features. First, there is always a
discontinuity in BPz (0)/BU at U-0. 60+0.05 which moves towards bigger U as we increase t. Second, in the small-U side of the

cDw
phase diagram, there is a very strong even-odd dependence in A, of Po (A, ) for small t which goes away at t -0.7.

CDw
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Z= fN[ct, c]exp —fdr+ g [ct+„(3—t)c; —Vbt+„b, , ]+Un;&n, &

where 8 is regularized in such a way that the contribu-
tions from all self-interacting diagrams vanish.

To connect this functional integral with continuum
RG equations, we have to separate those contributions in
Z originating from degrees of freedom with nonlinear
dispersion relations. This is because continuum RG
equations rely on the scaling hypothesis which is no
longer valid for such degrees of freedom.

In theory, we pick an arbitrary 5 (n./2, small enough
such that over the range ( ~

k
~

—(m/2) ( (5 the dispersion
relation is approximately linear. We then integrate away

the "fast" modes (i.e., those ck, ck satisfying
) ~k

~

—(~/2) ( )5) and reexpress the partition function Z
in terms of an 5-dependent effective action S,z which in-
volves only the "slow" modes,

Z= f2)[c I,„,c,I, ]exp[ —S,ff(c t c I ) jc

We then expand S,tr=(1/2!)I 2c c+(1/4!)I 4c c c c
+ - -. as a "polynomial" in c=c,&, or c,&, and identify
r4 k —~ yp —p with the running coupling coefficients in

the RG equations at cutoff 5. We then use the continu-
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FICx. 9. The A, =A, „=4component of the eight-site eigenprojection decomposition P z(A, (A, +1)) vs U(0.05~ U~0. 8) for vari-

ous t (0.01 ~ t ~ 1.00) calculated under different boundary conditions —periodic in (a), P~ =sr in (b), and P, =~ in (c). The crosses,
pluses, and diamonds correspond to t=0.01, 0.1, and 1.0, respectively.
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um RG equations to approximate the limiting behavior
of S,z as 5&0 and infer the "long-wavelength" physics of
the system.

The lowest-order approximation of S,~ can be calculat-
ed by integrating the fast modes in the standard manner
as outlined in Ref. 2. It turns out I 2 remains invariant
and when we express I4 ~k ~

— y2 —0 ln terms of the

g $ g2 g3 g4 defined in Ref. 10, the nonvanishing running
coupling constants are given by

vary 5, the precise positions of various transition points
change. The limiting values of the renormalized cou-
plings also depend on how we handle the g4 term. We
may choose to absorb it into the "unperturbed Hamil-
tonian" and physically, this will lead to a renormalization
of the Fermi velocities. However, the qualitative features
of the phase diagram remain invariant under all these
changes.

B. Comparison with results from exact diagonalization

gl~~ =g~j =g~ =(U —2V)+ (U —2V) lntan
1 2 5

2m't

g 2(~ g2Jg.2
r

1
4UVln tan — +4V (1—sin5)

5
27Tt 2

g3~=g3 =( U+2V)+ (4V —U )ln tan
1 2 2 5

27Tt

(4.1a)

(4.1b)

(4. 1c)

Based on our numerical results at t /V-0. 7+0. 1 along
the tV line, we identify the point P with the parameters
t U. V= 0.7:0.0.1 0. Within the current level of approxi-
mation, this corresponds to the choice of
5-2exp( —2. 5 —0.7~)-0.02. If we overlay Fig. 1 with
our results from exact diagonalization, the second-order
CDW-SDW transition line (the circles in Fig. 1) from ex-
act diagonalization matches nicely with its RG prediction
tC ( U =2 V) for small t. We have also estimated the posi-
tion of the CDW-SC transition line by minimizing the ex-
pression

—gq[Po (A, + 1) 2Po —(A, )+Po (A, —1)]

+4V (1—sin5)

g~~ =g~ =( U+2V), (4.1d)

(4.1e)

This is basically what Aleck and Marston derived in
Ref. 2 except we do not assume 5 « m. /2 here.

Setting 2mt to 1, we than supply Eqs. (4.1a)—(4.1d) as
initial conditions to the following two-loop continuum-
limit RG equations' in y = —ln(5/2),

dg, /"3' =g. +—'(g. +g4)g.

dg, /d3 —=g3+ ,'(g, g4-)g3-

dg3/d—3 =g,g3+ .'(g,'+g-3 2g,g4—)g3

—dg4/dy =-.'(g,g 3
—g,'»

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where g:=g
&

—2g2 and g, :=g &. Figure 1 shows the re-
sult for a typical 5 =0.02 when we integrate Eqs.
(4.2a) —(4.2d) to y ~ ao.

The phase diagram is composed of five regions charac-
terized by the limiting values of the renormalized cou-
pling s,

t ABC: g, =g3 =0, g~ -2.5, gp
~ 0,

tCDE: g, =g —g, = —2, g4 =0,
tEP: g =g =0, g4- —2.5, g -0,
UBA: g, =gp g3 —2, g4=0,
VPED: g, =g =g3= —2, g4=0 .

Within the current level of approximation, the
renormalization-group analysis poses several uncertain-
ties in its quantitative predictions. For example, if we

for N =10 and 12. They predict a phase boundary (the
squares and diamonds in Fig. 1) qualitatively similar to
their renormalization-group counterpart DE. However,
there are a few qualitative inconsistencies between the
renorrnalization-group analysis and the results from exact
diag onalization.

First, we have not been able to observe the phase boun-
daries tE and AB predicted by RG equations in our exact
diagonalization. The phase boundary tE lies purely in
the weak-coupling regime where the RG equation can be
trusted. tE should have been visible had we chosen the
correct order parameter to use in the spectral decomposi-
tion. Since no transition takes place along the tU line at
"exactly" half filling and AB lies purely in the
intermediate- and strong-coupling regimes where RG
analysis is unreliable, we believe AB is simply an artifact.

Second, inconsistencies come in when we try to map
our phase diagram to that of a weakly interacting Fermi
gas. Using the classification given in Ref. 10, we may
infer several conclusions: in phase tUC there is a gap in
the charge but not in the spin sector and the system is in
a SDW state; in phase tCDE, there is a gap in both the
spin and charge sector, but since CDW is the dominant
instability, the system should be in a CDW state. This
view is consistent with our observations of the CDW or-
der parameter in exact diag onalization. The same
classification also leads to the conclusion that in phase
tEP, there is a gap in the spin but not in the charge sector
and the system is superconducting. In phase VPED, only
the CDW response functions can diverge and the system
can only be in a CDW state. The last conclusion is total-
ly against physical intuition. The following argument
shows that it is definitely wrong. Along the UV line for
U&(4/~)V, the system is equivalent to the XY model
and we can calculate the equal time (singlet)—
superconducting response functions and the charge-
charge correlation functions exactly. " They are given by
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tx/2] —1

2

O (x
—1/2)

x /2 l
—1

4., H
J 4J 2

(4.3)

((n —1) (n —1)o) =5 0+2[1—
(
—1)"j(mx )

-O(x ) . (4.4)

Since the oscillating part of the charge-charge correlation
function is the CDW response function and it decays
much faster then the superconducting one, phase VPED
is really in a superconducting instead of a CDW state.

Finally, let us compare our results with the analysis of
Aleck and Marston. Figure 10 illustrates schematically
the V dependence of the running coupling constants g
and g3 (Ref. 12) at fixed cutofF 5 along the tV line. As V
increases from 0, the running coupling constants move
away from the separatrix g =

~g3 ~, and for small positive
V, the corresponding renormalization-group trajectory
terminates on the critical line g3 =0 at gp-4( V /2m. t )' exp( crt l—4V) Th.is renormalizes the
dispersion relation of the lowest-lying charge-density-
wave excitations slightly but leaves the charge sector gap-
less. ' As pointed out to us by AfBeck, ' the low-energy
sector of the PKH model in the large- V regime is
equivalent to the XXZ model with a small repulsive zz
coupling. This is well known to be a strictly marginal
perturbation which changes the exponents but leaves the
charge sector gapless. 'Given that the charge sector is
gapless for both small and large V, AfBeck and Marston
then argued that it should remain gapless for all V and in-

ferred that there is no transition along the t V line.
However, this conclusion is inconsistent with the ob-

served qualitative di6'erences in Po for large and small
CDW

V and the apparent crossing of the small and large V
behavior at V/t —1.4 as depicted in Fig. 6. Further-
more, our RG calculations show that for intermediate V,
the momentum dependence in the dispersion relation of
the pairs can drive the running coupling constants at
fixed cuto6' 6 across the lower branch of the separatrix.
gp g 3 wil 1 then renormalize into their limiting strong-
coupling values. This will in turn favor the formation of
a gap in the charge excitation spectrum. Combining
these hints, we propose the following scenario.

In the weak-coupling limit, the charge sector consists
of excitations which do not care whether or not a site is
singly occupied. As we increase V beyond 1.4t, a gap
opens up for those charge excitations with a projection
on singly occupied sites. However, excitations involving
no unpaired electrons (i.e., all the sites involved will be ei-
ther empty or doubly occupied) remain gapless. We ex-
pect them to be the gapless excitations required by gauge
symmetry arguments in the absence of the long-range
Coulomb interactions. As a result, the low-energy charge
sector in the large- V limit consists solely of such pair Auc-
tuations which are analogous to the Bogoliubov-
Anderson modes in the usual BCS superconducting
theory.

In essence, we believe that the Penson-Kolb transition
is characterized by the opening of a single-particle excita-
tion gap at V-1.4t.

V. SUMMARY AND FUTURE DIRECTIONS

I
I

I I I 1

0.5—

—0.5 0
gp

0.5

FICx. 10. Illustration of the V dependence of the running cou-
pling constants gp and g3 at fixed cutoff 5=0.02 along the tV
line. The dashed curves are schematic sketches of the
renormalization-group trajectories. The solid curve is the run-
ning coupling constants we calculated using Eq. (4.1a) at
5=0.02. Presumably when V increases beyond 1.4t, it crosses
the lower separatrix g, = —

gp &0 (a) and the system will be re-
normalized to the lower Luther-Emery fixpoint (b) as shown.

We have proposed the Penson-Kolb-Hubbard model as
a phenomenological model which captures some of the
essential physics of the high-T, materials and have stud-
ied the ground-state phase diagram of its one-dimensional
counterpart both by exact diagonalization using the
Lanczos algorithm and by renormalization-group equa-
tions. Due to the sample-size dependence of period 4 in
numerical data, we have abandoned the standard ap-
proach of studying energy gaps and correlation functions.
Instead, we look at the expectation values of the eigen-
projection operators associated with the CDW and super-
conducting order parameters. Augmented with studies
based on the idea of twisting the boundary conditions, we
have confirmed various features of the phase diagram
which we predicted through heuristic arguments. Unlike
the data we collected through energy-level analysis, these
techniques produce results much less sensitive to changes
in sample size. In addition, when used with the "correct"
order parameter, the expectation values of the eigenpro-
jection operators o6'er distinctive features right at the
transition points. This allows us to determine the transi-
tion lines accurately using only calculations with very
small samples. In conclusion, these techniques provide a
nice framework to visualize what is happening physically.
They allow us to avoid expensive large-X calculations'
and still understand the underlying physics.

On the other hand, our renormalization-group analysis
is far from perfect and poses certain uncertainties in its
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predictions. The breakdown of the "qualitative" predic-
tions of continuum-limit RG equations in the
intermediate-coupling regime is particularly worrisome.
This indicates that as we increase the couplings, the
"momentum" dependence of the coupling is no longer ir-
relevant and hence RG equations constructed in the con-
tinuum limit completely lose their predictive power for
intermediate couplings. A possible improvement would
be reanalyzing the problem using a renormalization
scenario which adheres closer to Wilson's original idea of
momentum-shell recursion and keeps the momentum"
dependence at all times. Some work is in progress along
this direction and preliminary results look promising. It

would also be interesting to repeat the current study on
the two-dimensional version of the PKH model and corn-
pare it with experimental data on the cuprates whose
physics is believed to be quite two-dimensional in nature.
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