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Herwig K. Schweng and Helga M. Bohm
Institut fu rT'heoretisehe Physik, Johannes Kepler Universitat Linz, A 404-0Linz Au-hof, Austria

(Received 16 November 1992)

The quantum-mechanical version of the Singwi-Tosi-Land-Sjolander (STLS) approximation is applied
to finite temperatures. This approximation has two main advantages. First, it includes a dynamic local-
field correction and second, it gives positive values for the pair-distribution function in the short-range
region at zero temperature. This is even valid for rather low densities. After a description of the numer-
ical difficulties arising with the use of a dynamic approximation, the results for the static-structure factor
and the pair-distribution function are discussed thoroughly. Detailed work is performed on the static
part of the local-field correction, with special emphasis put on the investigation of its structure. A peak
is found at a wave vector q =2.8 (in units of the Fermi wave vector) for small temperatures, which tends
towards higher values of q with increasing temperature. This peak causes an attractive particle-hole in-

teraction in a certain q region and thus gives rise to the appearance of a charge-density wave. A para-
metric description is given for the static local-field correction in order to simplify further applications.
Furthermore, the exchange-and-correlation free energy is considered. The results are compared with the
STLS results and with the modified convolution approach.

I. INTRODUCTION

In the course of the past decades the model of the elec-
tron gas has been shown to be a good description of in-
teracting electron systems for many applications. Among
the most prominent examples are the conduction elec-
trons in metals, ' which recently attracted renewed experi-
mental interest, liquid metals, and plasmas in astro-
physical situations. '

Whereas countless investigations have been performed
for zero or infinitely high temperatures, little is known
about the finite-temperature Fermi gas. The random-
phase approximation (RPA) (Ref. 4) has been thoroughly
studied by Gupta and Rajagopal. They calculated the
exchange-and-correlation potential (defined as the func-
tional derivative of the free energy ' ) for the Hartree-
Fock (HF) case and from a summation of ring diagrams.
Panat and Amritkar have further simplified this ap-
proach in the spirit of a temperature-dependent Thomas
Fermi theory. Additional detailed investigations of the
HF and RPA properties as a function of temperature
have been performed by Dharma-wardana and Taylor.
They obtained fitting formulas for both the exchange and
the ring contribution to the free energy as functions of
the temperature and the density of the system.

Many improvements on the RPA have been suggested
for the ground state, ' specifically by including static
local-field corrections (LFC's). It was the merit of Tana-
ka and Ichimaru and of Dandrea, Ashcr oft, and
Carlsson' to extend this formalism to finite tempera-
tures. Apart from studying the Singwi- Tosi-Land-
Sjolander (STLS) approximation, "Tanaka and Ichimaru
performed extensive investigations in the so-called
"modified convolution approach" (MCA). ' For this
latter theory they also fitted the free energy in the
density-temperature plane, although with a somewhat
different form than Perrot and Dharma-wardana. Addi-

tionally, the spin-dependent quantities were investigated
in detail and the phase diagram was constructed. '

To the best of our knowledge, however, no attempt has
been made to include dynamic effects into the local-field
correction G at finite temperatures. At zero temperature
the importance of the frequency dependence of G has
been demonstrated by a number of authors. ' In gen-
eral it can be stated that many of the dynamic approxi-
mations show a pronounced peak structure, while most of
the static ones do not. It thus appears of interest to in-
vestigate a local-field correction which accounts for this
possibility and simultaneously yields favorable results for
the static properties of the system. Such an approxima-
tion is the fully quantum-mechanical version' of the
STLS, the investigation of which is the main purpose of
this work.

The homogeneous three-dimensional electron gas is
characterized by two parameters, the temperature T and
the density n, conveniently replaced by

9=kit T /EF (degeneracy parameter),

= 3
n = (ajar, ) (density parameter) .

Here az is the Bohr radius and cF denotes the Fermi en-
ergy. The electron gas retains its fundamentally quantum
nature over a substantial temperature range. The
description of a classical one-component plasma' can be
used for 0)&1 only. In the region of 0=0.5. . . 10 both
the quantum and the temperature effects have been
demonstrated to be of considerable importance. '

This work is organized as follows. Section II gives a
short description of the finite T formalism with the spe-
cial emphasis lying on the new dynamic LFC. In Sec. III
the static-structure factor S(q, 0) and the pair-
distribution function g(r, O) are discussed. Section IV
deals with the static part of the local-field correction and
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the possibility of a charge-density wave. The tempera-
ture dependence of the exchange-and-correlation energy
is given in Sec. V. The results are compared with those
of the usual STLS which are known to give results close
to the Monte Carlo energies at low temperatures. The
comparison is also done in the high-temperature region.
Finally, the results are discussed in Sec. VI.

In this work dirnensionless quantities will be used.
Specifically, all wave vectors are measured in
kz=(3ir n)' and the response function @ includes a
factor ( 2—s~ /3n ).

II. FGRMAI. ISM

The static pair correlations of the finite-temperature
system are conveniently obtained via the ft.uctuation-
dissipation theorem ' from a sum of the dynamical
response function @(q,co) over its Matsubara frequencies
Z

y 7

S(q, 8) = f du~ coth ImC&(q, cu)
3A %co

4m'. ~ 2 g T

potential of a noninteracting system and is obtained from
the normalization condition

=fd pn (p8).

Concerning the choice of the dynamic local-field correc-
tion we propose the use of the so-called "quantum STLS"
(QSTLS) or "Hasegawa-Shimizu" approach' ' for the
following reasons. First of all, it is the obvious generali-
zation of the static STLS and it is thus most suitable for
comparison. It also has the advantage of yielding reason-
able results' ' throughout the metallic density range at
0=0, where its pair correlations remain positive to at
least the value of r, =10 (this is in contrast to most other
self-consistent theories). In addition, G (q, y =0,0) shows
a distinct peak structure leading to the possibility of a
charge-density wave. For that reason the temperature-
dependent behavior of the peak appears to be an interest-
ing question.

In the QSTLS approximation the dynamic local-field
correction is given by (for a short recapitulation of the
derivation cf. Appendix)

=
—,'8 g C&(q z ), z =2i~ykti T/A

00

(where co is the frequency and y =0,+1,+2, . . . ). In the
metallic density range the so-called "generalized mean-
field approaches" have proved successful for the response
function' where the generalized Lindhard function is defined as

(8)

I (q, y, 8)=u (q)G (q, y, 8)@ (q, y, 8)
1= ——g N (q, q', y, 8)v(q')[S(q' —q, 8)—1],

4& (q, y, 8)4(q, y, 8)= 1+[1—G(q, y, 8)]u(q)@ (q, y, 8)
(4)

2Er + n (p k—/28) , n—(p+k/28),
q, k, y, 9 =—

3N zr —E(p+q/2)+ E(p —q/2)
This is an exact expression defining the LFC G(q, y, 8).
In the units used here the Coulomb potential is given by
v (q) =4r, a/~q [with a=(4/9~)'~ ] The free .response
function has to be calculated numerically from

@ (q, y, 8)= f dppn (p, 8)
2q 0

(2pq+q ) +(2m.y8)
(2pq —

q ) +(2~y9)

This quantity can be further evaluated with the result

4& (q, k, y, 9)=4 (q, q.k, y, 8)

f dp pn'(p, 8)
2q 0

(2pq +k q) + (2my 8)
(2pq —k q) +(2my9)

(9)

This expression is obtained from Lindhard's formula by
replacing each step function with the momentum distri-
bution of free particles at finite 0, namely,

n (p, 8)= [exp(p /8 —P ) + 1]

The quantity p=p/k~T denotes the reduced chemical

(10)

As in the case of @ (q, y, 8) it is convenient to perform
an additional partial integration for the case of zero fre-
quency in order to remove the singularity of the logarith-
mic term,

@ (q, q k, 0, 9)= f dpp. p
Oq 0

k.q
2q

2

2pq+k q k-q
ln +p

2pq —k q q

exp(p /8 —p)
[exp(p /8 —p)+1]

with the help of these expressions the angular integration in Eq. (8) leads to the following result for the dynamic local-
field factor in the QSTLS:

I(q, y, 8)/u(q)= ——', f dk[S(k, 8)—1]f dp pn (p, 9)f dt ln
0 2t+q' —k' (2pq —tP+(2~y8)'

(12)

[the result for y=0 takes an analogous form corresponding to Eq. (11)]. In the region of small wave vectors one can
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further show that

G(q~O, y, 0)=— f dk[S(k, 8)—1]f dp n (p, 8)—ln z z

(2p +k) —zr /q

4N (O, y, 8) & o k (2p —k) —z /q

(2p +kg) —z /q—2 dggln
0 (2p —kg) —z /q

(13)

For nonvanishing Matsubara frequencies this leads immediately to

G(q —+O, y&0, 0)= — f dk[S(k, 0)—1]=q ~ar, f'"'/4,
0

where f'"' denotes the interaction energy in rydbergs per electron. In the case of y =0 Eq. (13) results in

2
0 p p &7+k

G(q —+0,0, 8)= f dk[S(k, 8)—1]f dp n (p, 8) — ln4'(0 0) k' k' 2p —k

At 0=0 this expression reduces to a result reported by Holas and Rahman. '

(14)

(15)

III. STATIC CORRELATION FUNCTIONS

In the calculation of the static-structure factor the unperturbed quantity is conveniently extracted from the frequency
summation

( 0) 38 ~ [1 G(q, y, 8)]C& (q, y, 0)
1+[1—G(q, y, 0)]v(q)N (q, y, 0)

The finite-temperature free structure factor is given by

(16)

S (q0)=1+ 0 f dpn (p, 0)ln
x [ ( + P

1 —exp[ —(q —2pq)/8 ]
(17)

It already has been pointed out by Tanaka and Ichimaru that the sum in Eq. (16) is not rapidly convergent. For nu-
merical computations it is thus necessary to split off the asymptotic form of 4& (q, y, 8), namely,

4 2

(q, y, 8)=— (q or y~~) . (Ig)
q

—zy

The final expression for S (q, 8) then reads

S(q, 8)=S (q, 8) — v(q) g [1—G(q, y, 8)] ' ' —[N„(q,y, 8)]30 @0( 8) 2

1+[1—G(q, y, 8)]v(q)N (q, y, 8)

v (q) [1—G(q, ~, 0)] + coth
1 20 q

sinh (q /28) q

2
v (q) g [G(q, oo, 0)—G(q, y, 8)][@ (q, y, 8)] (19)

The second term vanishes for large q, y with q, y . It
is noteworthy that in contrast to static local-field correct-
ed theories, Eq. (19) contains an additional y sum given
by the last term of this equation. This is caused by the
frequency dependence of G (q, y, 0). Figure 1 demon-
strates that G(q, y, 8) varies rather weakly with y and
quickly reaches its limit G(q, ~,0). Therefore Eq. (19)
can be evaluated by using a suitable cutoF parameter
8(r„q,8) in the fourth term. The number of y's which
have to be considered decreases with increasing ternpera-
ture. This is consistent with the mainly classical behavior
of the system in the high-temperature limit, where only
the static contribution. survives.

The static-structure factor obtained this way from Eq.
(19) is plotted in Fig. 2. A Fourier transformation leads
from S(q, 8) to the pair-distribution function g (r, 0):

3 QO

g(r, 0}=1+ f dq sin(qr)[S(q, 8)—1] .
27" 0

(20)

g (r, 8) is depicted in Fig. 3 for several combinations of r,
and 0.

With increasing r, the pair-distribution function takes
negative (and thus unphysical) values for small r, a
deficiency inherent in self-consistent approaches relating
S (q, 8) and G (q, co, 0). The validity range of these ap-
proximations is determined by the smallest positive
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FIG. 1. Dynamic local-field correction G(q, y, O) as a func-
tion of q at r, =2 for several Matsubara frequencies z. The con-
vergence of increasing y together with the faster convergence
with increasing temperature is demonstrated. Solid line, y=0;
dotted line, @=10;dashed line, y=20; dash-dotted line, y= ~;
left figure, 0=0.1; right figure, 0=0.5.

g(r =0,8). As it is shown in Ref. 21 this minimum is
found at a finite temperature and not at 0=0.

In the QSTLS the two-particle dynamics is taken into
account via the momentum dependence of the Wigner
functions, as manifested in the generalized N . This im-
proves significantly the short-range pair correlations
compared to the standard STLS. Thus for most practical
purposes the QSTLS can be considered of sufficient quali-
ty.

IV. STATIC I.OeXI. I IEI.D G(q, o, g)

A. Peak structure and charge-density wave (CDW)

In contrast to static LFC's like STLS (Ref. 11) and
MCA (Ref. 12) Gq shows an interesting peak struc-
ture, even for small r, . This peak possessing a magnitude
~1 is found' at q=2, 8 at 0=0. For 0(0.04 our static
LFC does not change within the accuracy of our calcula-
tions and agrees with the result reported by Holas and
Rahman in Ref. 19. For higher 0 the position of the peak
tends towards larger q values with increasing tempera-
ture. Furthermore, the width of the peak increases while
its magnitude decreases slightly with 0. This is clearly
shown in Fig. 4. The variation of this structure with q
and 0 for low densities is illustrated best in a three-

FIG. 3. Pair-distribution function g(r, 0) as a function of r
for several 0's. Solid line, 0=0.1; dotted line, 0=0.5; dashed
line, 0= 1; dash-dotted line, 0=3; left figure, r, =2; right figure,
r, =5.

dimensional plot (Fig. 5).
One of the most important consequences of this peak is

the possibility of a CDW. Such an instability of the elec-
tron liquid occurs when the static response function
diverges because in this case electrons can be excited by
an infinitesimally small external field. We therefore look
for a solution of

1+[1—G(q, 00;r, )]r, 4 (q, 0, 8)=0 .
7Tq

(21)

r, = [G(q, 0, 0;r, =20)—1 j 0& (q, 0, 8)4'
(22)

For high temperatures correspondingly higher r, have to
be chosen. It is obvious from Eq. (22) that a CDW can
only occur for G(q, 0, 8) ~1. The lowest r, value for
which Eq. (22) has a solution and the corresponding q
value qcDw is presented in Table I for several tempera-

In the q region, where a CDW is expected, G(q, 0, 0)
varies rather weakly with r„provided the coupling
strength is suKciently large. The density dependence of
Eq. (21) is therefore mainly governed by the explicit ap-
pearance of r, . We thus follow the suggestion of Ref. 19
in neglecting the r, dependence of G beyond a certain r,
value. We found that the use of r, =20 yields reliable re-
sults for 8~ 1. Equation (21) is therefore rewritten as

1 ~
10--—
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FIG. 2. Static-structure factor S(q, 0) as a function of q for
several 0's. Solid line, 0=0.1; dotted line, 0=0.5; dashed line,
0=1; dash-dotted line, 0=3; left figure, r, =2; right figure,
r, =5.

FIG. 4. Static local-field correction G(q, 0, 0) as a function of
q for several 0's. Solid line, 0=0.1; dotted line, 0=0.5; dashed
line, 0=1; dash-dotted line, 0=3; left figure, r, =2; right figure,
r, =5.
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B. Fitting formula for G(q, 0, 8)

The static local field 6 0
S 'fipecificall to be m

& q, , as various applications.
fi y entioned is its role in recent d 1

ments of wei h
stud

'g ted density-functional theor d
'

h

y of freezing of quantum liquids In
eory an in the

the nume
'

'
ui s. n order to avoid

e numerically demanding calculation it is worth ivin

q, , n contrast to this quantity
q = an =0 and a nu-which has a nonanalyticity at =2 and 0=

merically critical behavior for small 0's there, the ex res-

q, , q, 0, 8) is a smooth function
o q. We therefore construct a fit for J ( 0 8) S
formationon on the fit parameters can be derived from the
limiting behavior of G (q, 0, 8) and @ (q, 0, 8):

lim+ (q, 0, 8)
1/2 —1/2'(exp(q'~8 —r)+11 ' (23)

lim 4 (q, 0, 8)=
3q

lim G (q, 0, 8)= 1 —g (0, 8) .

(24)

(25)

FIG. 5. Static local-field correction 6( 0 0' a

q and 0 for r, = 10.
q, , ) as a function of

The small-q expression for G ( 0, 8r q, , is given by Eq. (15).

TABLE II. F'Fitting parameters for L9=0. 1 0.5
several densities.

. , and 1.0 for

tures (the 8=0 resesult is taken from Bolas and Rah-
man ). Furthermore, the coupling parameter

a r, / is given.

Discussion

TABLE I. Smallest r, value for a char e-, va ue or a c arge-density wave and

a = (4/9m)'
ing q position for several temperat 'I"=ra ures

L
=2a rs/0,

0.0
0.1

0.5
1.0

60
68

142
240

369
154
130

2.3
2.3
2.2
2.2

If hthe temperature is fixed bqcDw ecomes larger for

ten
ig er r, . For increasing temperatur th
ends towards higher values. This eff

e e critical rS

with the fact
s. is e ect can be compared

classi
i e act that for 0—+~ the system b h

'cally in the q region considered. ' By construe
'

em e aves mainl

e static part of the COSTI.S I.F ee C must tend towards the
ways smaller than one a dresults, which are alw

ere ore yield no CDW
n

y CDW. So the solution of Eq. (22) has
to vanish in QSTLS for 8~ oo. Th'

lains
is argument also ex-

p ains why the magnitude of the eak d
creasin 0. In c

e pea ecreases with in-
'ng . n contrast to the r, value and to the e k

sition the value
o e pea po-

e qco~ is almost independent of th t
perature. M

e em-

inAu
p . Moreover it is seen from T bl I

uence of the temperature o th
a e that the

tant even for small 8's.
n e critical r is ims impor-

a&

Q2

a3
b)
b~

b3
b4
C)

C2

a&

a2
a3
bl
b2

b3
b4

Cl

C2

a&

a2
a3
bl
b2

b3
b4
Cl

C2

0=0. 1

4.01990X 10
—1.28437X 10
2.971 60X 10
3.542 34X 10
1.001 30X 10

—1.125 43 x 10-'
2.541 49X 10

—2.430 32
9.497 03 X 10

4.30308 x10-'
—1.906 50X 10
2.645 18X10
2.930 30X 10
9.279 30 X 10

—2.203 08 X 10
1.88114x 10-'

—2.209 30
8.396 32X 10

4.67927X 10
—3. 189 16x 10-'
2.56252X10
1.86426X 10
9.069 33 X 10

—5.947 08 x 10-'
1.563 48 X 10

—1.275 70
7.588 82 x 10-'

0=0.5

(a) r, =1

2.960 74 X 10
—1.015 06x10-'
5.732 68 X 10
4.760 54x 10-'
4.984 99x 10-'
5.338 27 x10-'
4.272 69 X 10

—4.3948
9.272 90X 10

(b)
3.26165 x10-'

—3.496 37 x10-'
1.042 41 x 10-'
3.715 79 X 10
7. 184 31 X 10
8. 121 17x 10 4

7.88042X 10
—3.892 32

8.37702x10-'

(c) r, =5
3.629 11X 10

—1.31461x 10-'
8.749 20X 10
2.496 59 X 10
6.857 24X 10

—4.634 51x 10-'
5.225 88 X 10

—2.071 49
7.738 07 X 10-'

8= 1.0

1.787 17X 10
6.638 38X 10
1.38642 X 10
5.477 22 X 10
1.209 39x10-'
4. 153 61X 10

—1.676 10x 10-'
—6.229 72

8.836 80X 10

2. 107 93 X 10
1.831 38 X 10
1.78085 X 10
4.60709X10
3.293 51 X 10
2.24149 x 10-'
1.225 09 X 10

—5.751 37
8.00292x10 '

2.473 03 x10-'
—4.751 28 X 10
2.57089 X 10
3. 173 74X 10

4.703 95 X 10
2.218 50X 10
1.551 70X 10

—6.000 93
8. 123 19X10
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J(q, 0,9)=, q )6 .
1

c) +cpq

q(6, (26a)

(26b)

The fitting parameters a, —cz are calculated by using a
nonlinear optimization method on the basis of least-

I

The fit must meet the requirements for an application
on a wide range of r, and 0. It therefore turned out to be
useful to divide the q range into two parts. 0(q (6 con-
tains the structured part with the peak, while the region
q ~6 is mainly proportional to q . Taking a11 this into
account we choose a parametric description of the follow-
ing form:

a, q +a~q +a3q
J(q, 0, 0)=

1+b$q +b2q +b3q +b4q

squares fitting. The error made by the discrepancy be-
tween the two fitting formulas at q =6 is less than
5X10 . This is suitable for most applications. The
values for the fit coe%cients are given in Table II for
several r, and 0. The fit is valid for q ( 12.

V. THERMODYNAMIC CONSIDERATIONS

The calculation of the excess free energy f„, in the
RPA has been discussed by several authors. ' ' Here
we give a short description of the calculation when LFC's
are used.

The exchange-correlation part A„of the grand poten-
tial 0 is obtained from an integration over the coupling
strength A, of the interaction part H, of the Hamiltoni-
an (T is the temperature, p is the chemical potential,
and Vis the volume):

kaT "
f i dA, A, [1—G(q, y, T;A)][u(q)N (q, y, T)]

I+Au�

(q)[1—G( qy, T;A, )]N (q, y, T)
(27)

Here the first term denotes the exchange part, while the
second one describes the correlation contribution to 0„.
It should be mentioned that in many cases it is useful to
separate the exchange from the correlation part, e.g. , for
RPA calculations. ' In contrast to the RPA, the local-
field correction G(q, y, T;A, ) in Eq. (27) prohibits an
analytical solution of the A, integration.

As a next step this formalism is applied to the electron
gas with fixed p, V, and T. Under the assumption that
p/p = 1 a Taylor expansion leads to

nf„,(n, V, T)=Q„,(p, V, T)iV .

Thus fI„,(p, , V, T) for fixed values (p, V, T) essentially
equals the exchange-and-correlation free energy.

The effective potential V'„=fi(nf„, )15n is discussed in
Refs. 5 and 6. Again, the coupling strength integration
leading to V'„can be performed analytically for the RPA
only."

According to Eqs. (27) and (28) f„, can be obtained
directly from the interaction energy per volume as
defined in Eq. (14) via an integration over the coupling
strength. As stated above this integral has to be solved
numerically, where A. is conveniently replaced by r, .
Note that this only effects the interaction-dependent
terms, not a11 density-dependent quantities like the re-
duced temperature 0( r, ). We therefore obtain for the
exchange-correlation free energy per particle in rydbergs:

f„[Ry]= f dr,'f dq[S(q, 0;r,') —1] . (29)
~mr,

The results obtained from Eq. (29) for the exchange-and-
correlation free energy in the STLS and QSTLS are com-
pared in Table III with the MCA results. ' These results
are higher than the corresponding STLS values for all
temperatures. For zero temperature the STLS energies
are known to be close to the Monte Carlo calculations.

TABLE III. Exchange-and-correlation free energy —f„, in niRy. STLS refers to standards STLS approach, QSTLS to its quantal
version Eq. (12), and MCA denotes results obtained by Tanaka and Ichimaru. ' MC are the Monte Carlo results of Ceperley and Ald-
er.22

E9=0
MC STLS QSTLS M CA

0=0. 1

STLS QSTLS
8=0.5

STLS QSTLS MCA
0=1 0=5
STLS STLS

0= 10
STLS

128.9

1.0 1035
2.0 548.4
3.0
4.0
5.0 239.6
6.0

10.0

1040
550
380
293
239.7
203
128

1038
549
379
292
238
202
127

1042
553
384
296
243
206
130

1034
548
380
293
240
203
128

1031
547
379
292
239
203
127

940
520
367
286
235
201
128

939
520
366
286
235
200
127

942
522
371

238

130

804
464
335
265
220
189
123

415
267
205
170
146
129
90

292
195
153
128
112
100
72
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1.0 154
2 0 108
3.0 87
40 73
5.0 64
60 57

10.0 40

151
107
86
72
63
56
39

383
241
181
147
124
108
72

383
241
181
146
124
107
71

386
244
122

455 335
289 227
219 179
178 150
150 130
131 116
88 82

251
174
139
118
104
93
68

With increasing 9 the QSTLS energies quickly approach
those of the standard STLS, the differences being negligi-
ble already at 0=1.

The fit for f, (r„9)presented in Ref. 5 is used to obtain
the correlation part of the free energy from the above
data for f„, (Table IV). It is seen that f dec—reases
faster with 9 than f„„leadin—g to an increase in the
correlation part for 0 ~ 1.

Finally, Table V shows the comparison with the classi-
cal results of Berggren. It is known that in this limit
much better approaches are available. ' Therefore one
might question the quality of the STLS energies with in-
creasing 0. From the close agreement with the Monte
Carlo results at 0=0, however, the STLS can be as-
sumed to provide a good description to at least 0=1.
Furthermore, even in the limit 0)&1, the quantum sys-
tem does not show the unphysical short-range behavior
of the classical STLS. ' One can therefore expect that
the finite-temperature quantum STLS yields reasonable
results throughout the intermediate regime of finite de-
generacy.

TABLE IV. Correlation free energy f,—„(mRy) (notation
as in Table III).

0=0. 1 8=0.5 I9=1 0=5 0=10
rz STLS QSTLS STLS QSTLS MCA STLS STLS STLS

G(q, y, 9)—+ 1+—,'n G~ (q, y, 9) .
n

(30)

At finite temperatures this requires a very high computa-
tional effort, since the derivations for every y in Eq. (30)
are numerically very sensitive. Finally, it appears
promising to screen the interaction in Eq. (8) by the
static-structure factor, i.e.,

One finds that this maximum is shifted towards larger q
with increasing 0. While the peak s amplitude decreases,
the width of the q region where G(q, 0, 9) ~ 1 increases
substantially with 0.

For the static-structure factor and the pair-distribution
function the QSTLS yields favorable results compared
with static LFC's. ' In particular, the short-range
behavior is improved considerably.

For the exchange-and-correlation energy one detects
only a small deviation from the STLS results for higher
temperatures. This corresponds to the fact that the
difference between STLS and QSTLS vanishes in the clas-
sical limit. We close this article with a short outlook on
other theories and on the possibility to extend this work.

In order to improve the small q behavior of the QSTLS
and STLS the following proposals have been made in the
literature. First, in the so-called Singwi-Sjolander-Tosi-
Land approach ' the Coulomb potential in Eq. (8) is
screened by the dielectric function of the system. De-
rived from a diagrammatic analysis, " this screening
should be a dynamic one. Due to the lack of investiga-
tions of this fully dynamic SSTL at 0=0, however, this
approach cannot be assessed. Second, in the so-called
"quantum Vashishta Singwi" approximation' ' ' the
local-field correction is replaced by

VI. SUMMARY AND DISCUSSION

The use of a dynamic LFC instead of a static one in the
description of a finite-temperature electron liquid allows
the investigation of new physical effects. One of the most
important of them is the possibility of a CDW. The
smallest r, value where such an instability appears in-

creases with increasing 0 while the corresponding wave
vector remains constant. Even at small temperatures
0-=0. 1 the predictions differ considerably from the 0=0
results. ' Responsible for the existence of a CDW is a
peak in the static local-field correction G(q, y=0, 9).

TABLE V. High-temperature behavior of the free excess en-

ergy measured in ka T. For a given I, f„, denotes the quantum
results and focr denotes the classical results evaluated at tem-

perature 0 and with the corresponding density parameter
r, =01 /(2a ).

I (q, y, 9)= ——g 4 (q, q', y, 9)U (q')S(q')

X[8(q' —q, 9)—I] .

This expression has the advantage that it can be derived
in analogy to the QSTLS (cf. Appendix) and that it coin-
cides with the MCA approach investigated extensively by
Ichimaru and co-workers" ' ' if the limit A' —+0 is tak-
en for C& (q, q', y, 9). (As mentioned in Sec. IV A this lim-
it also transforms the QSTLS into the standard STLS.)
Although Eq. (31), too, is computationally rather
demanding, it can be simplified by invoking the screening
in a global manner as successfully applied in Ref. 12.
Further work in this direction is in progress.
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0.2 3.68 18.42 36.75 0.043 0.050 0.048
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APPENDIX

For the ease of comparison with the classical case, all
quantities carry their natural dimensions. The starting
point is the Wigner distribution function, ' which is
defined in the following way [g and g are the creation
and annihilation operators for an electron at space and
time point (r, t)]:

5f (k, r, t)g
Bt m Br

2. ca a= ——sin
2 Bri Bk

X U'"'(r, t)n (k)

f (k, r, t)= f dxe ' *(l(r~r xl2(t)for+XI2(t) ~ + fdr'v(r —r') g 5f' ' (k, k', r', r, t)
k'o-'

(A2)=n (k)+5f (k, r, t) . (A 1)

The linearized equation of motion for 5f in a weak exter-
nal potential U'" can be written in the symbolic form

The subscript in the operator 8/Br, indicates that 0/Br
acts only on the first factor in the following products, i.e.,
on U'"' and v(r —r'). 5f' ' denotes the deviation from
the equilibrium part of the two-particle Wigner function
f ' ', defined by

f' ' (k, k', r', r, t)= fdxe '" "fdx''e ' '*'&p . *l2(t)p —' 'l2(t)l4 —'+ 'l2(t)g .+*l2(t) ~ . (A3)

k'o' (A5)

In order to close this hierarchy, approximations are
necessary for 5f. Following Singwi et al. ,

" Hasegawa
and Shimizu' suggested the ansatz of local equilibrium

f' ' (k, k', r', r, t)=f (k, r, t)f .(k', r', t)g'q(r r') . (A4)—

It should be noted that this ansatz does not fulfill the
sequential relation

f dr' g f' '. (k, k', r', r, t)= fdr'f' '(r', r, t)=nf(r, t) .

In order to ensure that the pair function has the correct
weight under the r' integral in Eq. (A2) the above ansatz
has to be modified according to

f' '~f' '+f (k, r, t)n f dy h'q(r —y)

Xh' (y —r')f .(k', y, t) . (A6)

(h'" is short for g'q —1.) Linearization around thermal
equilibrium and Fourier transformation of Eq. (A2) leads
to the form

cv — 5f (k, q, co)=[n (k —q/2) —n (k+q/2)]U (q, cv)
m

+5p(q, co) g v(q')A (q')[n (k —q'/2) —n (k+q'/2)][S(q —q') —1] . (A7)

U = U'"'+U5p denotes the Hartree potential and the "screening function" 3 is to be replaced by 1 for the quantum
STLS. In the corrected approach of Eq. (A5) A (q') is identical with the static-structure factor S(q').

Equation (A7) is divided by co —kq/m =co —s(k+q/2)+ e(k —q/2) and summed over k. This yields

5p(q, co) = g 5f (k, q, cv)

=y (q, co)[ U'"'(q, co)+ v (q)5p(q, cv)]+5p(q, co) g v (q') A (q')y (q, q', co)[S(q—q') —1] .
q'

(A8)

A comparison of Eq. (AS) with A (q') =1 and Eq. (4) gives the desired result of Eq. (8) while the use of A (q') =S(q')
leads to Eq. (31).
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