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The quantum-mechanical version of the Singwi-Tosi-Land-Sj6lander (STLS) approximation is applied
to finite temperatures. This approximation has two main advantages. First, it includes a dynamic local-
field correction and second, it gives positive values for the pair-distribution function in the short-range
region at zero temperature. This is even valid for rather low densities. After a description of the numer-
ical difficulties arising with the use of a dynamic approximation, the results for the static-structure factor
and the pair-distribution function are discussed thoroughly. Detailed work is performed on the static
part of the local-field correction, with special emphasis put on the investigation of its structure. A peak
is found at a wave vector g =2.8 (in units of the Fermi wave vector) for small temperatures, which tends
towards higher values of g with increasing temperature. This peak causes an attractive particle-hole in-
teraction in a certain g region and thus gives rise to the appearance of a charge-density wave. A para-
metric description is given for the static local-field correction in order to simplify further applications.
Furthermore, the exchange-and-correlation free energy is considered. The results are compared with the
STLS results and with the modified convolution approach.

I. INTRODUCTION

In the course of the past decades the model of the elec-
tron gas has been shown to be a good description of in-
teracting electron systems for many applications. Among
the most prominent examples are the conduction elec-
trons in metals,! which recently attracted renewed experi-
mental interest,” liquid metals,® and plasmas in astro-
physical situations. "3

Whereas countless investigations have been performed
for zero or infinitely high temperatures, little is known
about the finite-temperature Fermi gas. The random-
phase approximation (RPA) (Ref. 4) has been thoroughly
studied by Gupta and Rajagopal. They calculated the
exchange-and-correlation potential (defined as the func-
tional derivative of the free energy*>) for the Hartree-
Fock (HF) case and from a summation of ring diagrams.®
Panat and Amritkar’ have further simplified this ap-
proach in the spirit of a temperature-dependent Thomas
Fermi theory. Additional detailed investigations of the
HF and RPA properties as a function of temperature
have been performed by Dharma-wardana and Taylor.?
They obtained fitting formulas for both the exchange and
the ring contribution to the free energy as functions of
the temperature and the density of the system.

Many improvements on the RPA have been suggested
for the ground state,' specifically by including static
local-field corrections (LFC’s). It was the merit of Tana-
ka and Ichimaru’ and of Dandrea, Ashcroft, and
Carlsson'® to extend this formalism to finite tempera-
tures. Apart from studying the Singwi-Tosi-Land-
Sjélander (STLS) approximation,!! Tanaka and Ichimaru®
performed extensive investigations in the so-called
“modified convolution approach” (MCA).!> For this
latter theory they also fitted the free energy in the
density-temperature plane, although with a somewhat
different form than Perrot and Dharma-wardana.’ Addi-
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tionally, the spin-dependent quantities were investigated
in detail and the phase diagram was constructed.'?

To the best of our knowledge, however, no attempt has
been made to include dynamic effects into the local-field
correction G at finite temperatures. At zero temperature
the importance of the frequency dependence of G has
been demonstrated by a number of authors.'*~?° In gen-
eral it can be stated that many of the dynamic approxi-
mations show a pronounced peak structure, while most of
the static ones do not. It thus appears of interest to in-
vestigate a local-field correction which accounts for this
possibility and simultaneously yields favorable results for
the static properties of the system. Such an approxima-
tion is the fully quantum-mechanical version'® of the
STLS, the investigation of which is the main purpose of
this work.

The homogeneous three-dimensional electron gas is
characterized by two parameters, the temperature T and
the density n, conveniently replaced by

0=kpT /e (degeneracy parameter) , (1)
_3 -3 .
n= E(GB re) (density parameter) . (2)

Here ayp is the Bohr radius and € denotes the Fermi en-
ergy. The electron gas retains its fundamentally quantum
nature over a substantial temperature range. The
description of a classical one-component plasma’3 can be
used for 6>>1 only. In the region of 6=0.5...10 both
the quantum and the temperature effects have been
demonstrated to be of considerable importance.?!

This work is organized as follows. Section II gives a
short description of the finite T formalism with the spe-
cial emphasis lying on the new dynamic LFC. In Sec. III
the static-structure factor S(g,0) and the pair-
distribution function g(r,0) are discussed. Section IV
deals with the static part of the local-field correction and
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the possibility of a charge-density wave. The tempera-
ture dependence of the exchange-and-correlation energy
is given in Sec. V. The results are compared with those
of the usual STLS which are known to give results close
to the Monte Carlo energies?? at low temperatures. The
comparison is also done in the high-temperature region.
Finally, the results are discussed in Sec. VI.

In this work dimensionless quantities will be used.
Specifically, all wave vectors are measured in
kp=(37%n)'"? and the response function ® includes a
factor (—2er/3n).

II. FORMALISM

The static pair correlations of the finite-temperature
system are conveniently obtained via the fluctuation-
dissipation theorem®?® from a sum of the dynamical
response function ®(q,w) over its Matsubara frequencies

3%
4mep

#iw
2k T

S(q,0)= f_w dw coth Im®(q,w)

=30 3 ®lg,z,), z,=2imykyT/f (3)
(where w is the frequency and ¥y =0,%1,%2,...). In the
metallic density range the so-called “generalized mean-
field approaches” have proved successful for the response
function®?*

®%4q,7,0)
1+[1—Gl(q,7,0)Jv(q)®%4qg,7,6)
This is an exact expression defining the LFC G (q,7,0).
In the units used here the Coulomb potential is given by

v(q)=4r,a/mq? [with a=(4/97)!/3]. The free response
function has to be calculated numerically from®

D(g,y,0)= 4)

0 =_1~ *® 0
®g,y,0)=7 [ “dp pn’(p,0)

.| 2pg +¢2)?+2my0)?

X1 .
(2pq —qz)z-l—(277'y9)2

(5)

This expression is obtained from Lindhard’s formula?® by
replacing each step function with the momentum distri-
bution of free particles at finite 6, namely,

n%p,0)=[exp(p?/6—m)+1]"'. (6)
The quantity f=u/kgT denotes the reduced chemical
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potential of a noninteracting system and is obtained from
the normalization condition

= a0 ™)

Concerning the choice of the dynamic local-field correc-
tion we propose the use of the so-called “quantum STLS”
(QSTLS) or “Hasegawa-Shimizu” approach!®!® for the
following reasons. First of all, it is the obvious generali-
zation of the static STLS and it is thus most suitable for
comparison. It also has the advantage of yielding reason-
able results'®!® throughout the metallic density range at
6=0, where its pair correlations remain positive to at
least the value of ;=10 (this is in contrast to most other
self-consistent theories). In addition, G (g,y =0,0) shows
a distinct peak structure leading to the possibility of a
charge-density wave. For that reason the temperature-
dependent behavior of the peak appears to be an interest-
ing question.

In the QSTLS approximation the dynamic local-field
correction is given by (for a short recapitulation of the
derivation cf. Appendix)

1(g,7,0)=v(9)G(q,7,60)2%¢q,7,6)
=~ S ®%a.q,7,00(q")[S (@ ~a,0)~ 1],
q9

(8)
where the generalized Lindhard function is defined as

2¢ O(p— —n0
0 _ _ %EF n’(p—k/2,0)—n°(p+k/2,6)
Pk y Oy X pra/2)Felp—a/2)

9

This quantity can be further evaluated with the result
%q,k,7,0)=2%g,9°k,7,0)
_1 r= 0
2 fo dp pn°(p,0)

(2pg +k-q)*+(27y8)?
(2pg —k-q)*+Q2my0)? |

(10)

XIn

As in the case of ®%gq,y,6) it is convenient’ to perform
an additional partial integration for the case of zero fre-
quency in order to remove the singularity of the logarith-
mic term,

1 e k- 2pq +k- k- exp(p?/6—p)
®%q,q'k,0,0)=— [ “d 2 |29 g | 24Ty X . (11)
»4 0q fo pp[ P 2q 20 —kq | g |[expp/0—p)+1]

with the help of these expressions the angular integration in Eq. (8) leads to the following result for the dynamic local-

field factor in the QSTLS:

I(g,7,0)/v(@)=—3 [ “dk[S (k,0)—11 [ “dp pn°(p,0

2
)fq +kth 1

(2pg +1)*+ 2wy 0)?
(2pg —t)*+ 2wy 6)?

(12)

9®—kq  2t+q*—k?

[the result for ¥y =0 takes an analogous form corresponding to Eq. (11)]. In the region of small wave vectors one can
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further show that
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2,2 ;.2
. 3q? o V2 (2p +k)*—z,/q
G ( 0,7,0)=———F— dk[S (k,0)—1 dp n”(p,0 In
e 40%0,7,0) o 1y e n 00 (2p —k)*—z2 /q°
! (2p +k&)*—z2 /q°
—2 [ d&€In . (13)
fO —k;’,‘)z—zf,/q2 .
For nonvanishing Matsubara frequencies this leads immediately to
2 .
G’(q—»O,y?&0,0):—q?fo dk[S (k,0)—1]=q>mar,f™/4 (14)
where fi" denotes the interaction energy in rydbergs per electron. In the case of ¥ =0 Eq. (13) results in
2 3
_ 69" _ 0 p._p |22tk
G(g—0,0,0)= q)o f dk[S (k,0)—11[ “dp n(p,6) ok (15)

At 0=0 this expression reduces to a result reported by Holas and Rahman."’

III. STATIC CORRELATION FUNCTIONS

In the calculation of the static-structure factor the unperturbed quantity is conveniently extracted from the frequency

summation
< [1—G(q,7,0)19%4q,7,6)
S(g,0)=5%4gq,0)— hv( ) . (16)
q 9 2 y}:w 1+[1—G(g,7,0)]v(9)®%g,7,0)
The finite-temperature free structure factor is given by
(g2 2
5%g e)—1+—f dp n°(p,0)ln | =Xl (g 1 2pg)/6] -
1—exp[—(q —2pq)/6°]

It already has been pointed out by Tanaka and Ichimaru® that the sum in Eq. (16) is not rapidly convergent. For nu-
merical computations it is thus necessary to split off the asymptotic form of ®%gq,v,6), namely,

2
<I>(;,(q,7/,0)Ei—49—2— (gory—o). (18)
3 q —zy
The final expression for S (g, 8) then reads
36 2 [9%g,7,0)] 0 2
S(q,0)=S%4gq,0)——v(q) 1—Gl(q,7,6) — [P (q,7,6)
q a 2 0 ,:2_00[ 47,01 1+[1—G(q,7,0) v (q)®%q,7,6) [Pal4.7,6))
v(q) 1 20 q
——[1-G(q,»,0)] | ———5——+ th-2—
36 | R ey
~Lulg) 3 [6a,2,00-Gla,7,01[®%(g,7,001 . (19)
y=—o :

The second term vanishes for large ¢,7 with ¢ %776, It

is noteworthy that in contrast to static local-field correct-
ed theories,’ Eq. (19) contains an additional ¥ sum given
by the last term of this equation. This is caused by the
frequency dependence of G(gq,7,0). Figure 1 demon-
strates that G(q,y,0) varies rather weakly with y and
quickly reaches its limit G (g, «,6). Therefore Eq. (19)
can be evaluated by using a suitable cutoff parameter
Hrg,q,0) in the fourth term. The number of y’s which
have to be considered decreases with increasing tempera-
ture. This is consistent with the mainly classical behavior
of the system in the high-temperature limit, where only
the static contribution survives.

r
The static-structure factor obtained this way from Eq.

(19) is plotted in Fig. 2. A Fourier transformation leads

from S (g, 0) to the pair-distribution function g (7,6):

— 1+ [ Pdgsi _
g(n®=1+— [ “dgsin(gr)[S(g,6)—1] . (20)

g (r,0) is depicted in Fig. 3 for several combinations of 7,
and 6.

With increasing r, the pair-distribution function takes
negative (and thus unphysical) values for small 7, a
deficiency inherent in self-consistent approaches relating
S(g,0) and G(q,»,60). The validity range of these ap-
proximations is determined by the smallest positive
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FIG. 1. Dynamic local-field correction G(gq,y,6) as a func-
tion of g at r, =2 for several Matsubara frequencies z. The con-
vergence of increasing y together with the faster convergence
with increasing temperature is demonstrated. Solid line, y =0;
dotted line, ¥ =10; dashed line, ¥ =20; dash-dotted line, y = «;
left figure, 6=0.1; right figure, 6=0.5.

g(r=0,0). As it is shown in Ref. 21 this minimum is
found at a finite temperature and not at 6=0.

In the QSTLS the two-particle dynamics is taken into
account via the momentum dependence of the Wigner
functions, as manifested in the generalized ®°. This im-
proves significantly the short-range pair correlations
compared to the standard STLS. Thus for most practical
purposes the QSTLS can be considered of sufficient quali-

ty.

IV. STATIC LOCAL FIELD G (q,0,0)

A. Peak structure and charge-density wave (CDW)

In contrast to static LFC’s like STLS (Ref. 11) and
MCA (Ref. 12) GBS shows an interesting peak struc-
ture, even for small ;. This peak possessing a magnitude
>1 is found' at g =2,8 at §=0. For 6 <0.04 our static
LFC does not change within the accuracy of our calcula-
tions and agrees with the result reported by Holas and
Rahman in Ref. 19. For higher 0 the position of the peak
tends towards larger g values with increasing tempera-
ture. Furthermore, the width of the peak increases while
its magnitude decreases slightly with 6. This is clearly
shown in Fig. 4. The variation of this structure with g
and 6 for low densities is illustrated best in a three-

S(g.0)

oo — e
000 050 1.00 150 200 250 000 050 1.00 150 200 250 300
q
FIG. 2. Static-structure factor S(g,0) as a function of g for
several @’s. Solid line, 6=0.1; dotted line, 6=0.5; dashed line,
6=1; dash-dotted line, 6=3; left figure, r,=2; right figure,

re=3.
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FIG. 3. Pair-distribution function g(r,60) as a function of r
for several 0’s. Solid line, 6=0.1; dotted line, 6=0.5; dashed
line, 6=1; dash-dotted line, 6=3; left figure, r, =2; right figure,
r,=>35.

dimensional plot (Fig. 5).

One of the most important consequences of this peak is
the possibility of a CDW. Such an instability of the elec-
tron liquid occurs when the static response function
diverges®® because in this case electrons can be excited by
an infinitesimally small external field. We therefore look
for a solution of

4a
mq?

14+[1—G(g,0,6;r,)]r, $%4g,0,0)=0 . 21
In the g region, where a CDW is expected, G(q,0,0)
varies rather weakly with r,, provided the coupling
strength is sufficiently large. The density dependence of
Eq. (21) is therefore mainly governed by the explicit ap-
pearance of r,. We thus follow the suggestion of Ref. 19
in neglecting the r; dependence of G beyond a certain r,
value. We found that the use of r, =20 yields reliable re-
sults for 6 < 1. Equation (21) is therefore rewritten as
— 4a_ o 1
[G(q,0,0;r,=20)—1]—P"(q,0,0) . (22)

mq?

ro=
For high temperatures correspondingly higher r; have to
be chosen. It is obvious from Eq. (22) that a CDW can
only occur for G(gq,0,0)=1. The lowest r, value for
which Eq. (22) has a solution and the corresponding g
value gcpw is presented in Table I for several tempera-

1.40

1.204
1.004
0.804
0.60

G(q.0.0)

0.404

0.204

-t
0123 4567890123 45678910
q
FIG. 4. Static local-field correction G (g,0,6) as a function of
g for several @’s. Solid line, 6=0.1; dotted line, 6=0.5; dashed
line, 6=1; dash-dotted line, 6=3; left figure, », =2; right figure,

re=35.
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FIG. 5. Static local-field correction G (g,0,6) as a function of
g and 6 for r,=10.

tures (the 6=0 result is taken from Holas and Rah-
man'®), Furthermore, the coupling parameter
[=2a’r, /0 is given.

Discussion

If the temperature is fixed gcpw becomes larger for
higher r,. For increasing temperature the critical r;
tends towards higher values. This effect can be compared
with the fact that for 6— oo the system behaves mainly
classically in the g region considered.?! By construction,
the static part of the QSTLS LFC must tend towards the
STLS results, which are always smaller than one and
therefore yield no CDW. So the solution of Eq. (22) has
to vanish in QSTLS for 6— oo. This argument also ex-
plains why the magnitude of the peak decreases with in-
creasing 8. In contrast to the r, value and to the peak po-
sition the value gcpw is almost independent of the tem-
perature. Moreover it is seen from Table I that the
influence of the temperature on the critical r; is impor-
tant even for small 6’s.

TABLE 1. Smallest r, value for a charge-density wave and
corresponding g position for several temperatures [I'=2a%rs /0,
a=(4/9m)'"].

0 7, r q
0.0 60 o 2.3
0.1 68 369 2.3
0.5 142 154 2.2
1.0 240 130 2.2

B. Fitting formula for G (q,0,0)

The static local field G (g,0, 8) has various applications.
Specifically to be mentioned is its role in recent develop-
ments of weighted density-functional theory?’ and in the
study of freezing of quantum liquids.?® In order to avoid
the numerically demanding calculation it is worth giving
a fitting formula of G (¢,0,0). In contrast to this quantity
which has a nonanalyticity at ¢ =2 and 6=0 and a nu-
merically critical behavior for small 6’s there, the expres-
sion J(g,0,0):=G (g,0,0)®%q,0,0) is a smooth function
of g. We therefore construct a fit for J(g,0,6). Some in-
formation on the fit parameters can be derived from the
limiting behavior of G (g,0,6) and ®%g,0,6):

lim ®°4,0,0)

=02 [ =4y g lexplg?/6—m)+1]7F,  23)
2 Yo ’
lim ®°(,0,6)= —— , 24)
3q
lim G (,0,0)=1—g(0,) . 25)

The small-q expression for G (g,0,0) is given by Eq. (15).

TABLE II. Fitting parameters for 6=0.1, 0.5, and 1.0 for
several densities.

6=0.1 6=0.5 6=1.0
(a) r,=1
a; 4.01990Xx 107! 2.96074 X 107" 1.78717X107!

6.63838Xx 1074
1.38642X 1073
5.47722X 107!
1.20939Xx 1072
4.15361x1073
—1.676 10X 103

—1.01506%x 1073
5.73268X107*
4.76054% 107!
4.98499X 1072
5.33827%x1073
4.27269X107*

a, —1.28437X1072
a, 2.97160%x1073
b, 3.54234X107!
b, 1.00130X107!
by —1.12543X1073
b, 2.54149X1073

cy —2.43032 —4.3948 —6.22972

¢,  9.49703X107!  9.27290X10"!  8.83680X 107!
b) r,=2

a, 4.30308X10°"  3.26165X10"!  2.10793X10"!

1.83138x107*
1.78085X107*
4.60709% 107!
3.29351X 1072
2.24149X107°
1.22509% 1074

—3.49637x107?
1.04241X1073
3.71579X 107!
7.18431X107?
8.12117x107*
7.88042X107*

a, —1.90650X1072
a; 2.64518X1073
b,  2.93030%x107!
b, 9.27930X107?
by —2.20308X1073
b, 1.88114Xx107°

cy —2.209 30 —3.89232 —5.75137
c, 8.39632X 107! 8.37702X 107! 8.00292X 107!
(c) r,=5
a; 4.67927X107! 3.62911%x 107! 2.47303X 107!

—4.75128X 1073
2.57089X 1074
3.17374Xx 107!
4.70395X 1072
2.21850X 1074
1.55170x10™*
—6.00093
8.12319x 107!

—1.31461X1072
8.74920X107*
2.49659x 107!
6.85724X 1072

—4.63451X107*
5.22588X107*

—2.07149
7.73807X 107!

a, —3.18916X1072
a;  2.56252X1073

b, 1.86426X107!

b, 9.06933X102

b, —5.94708X1073
by 1.56348X 107}

1 —1.27570

¢, 7.58882X107!
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The fit must meet the requirements for an application
on a wide range of r; and 6. It therefore turned out to be
useful to divide the g range into two parts. 0 =g =6 con-
tains the structured part with the peak, while the region
g = 6 is mainly proportional to ¢ ~2. Taking all this into
account we choose a parametric description of the follow-
ing form:

7(4.0,0)= a1q2+a2q4+a3q6
5 1+b,g%+byg*+byq°+b,q®
g<6, (26a)
1
J(g,0,0)=——— , ¢=6. (26b)
1 c;+c,q? 1

The fitting parameters a; —c, are calculated by using a
nonlinear optimization method on the basis of least-
J

kyT
2

o

b

y=—o

Q. V,T)=f01dk}»_1(AH1)k= > l
q

kgT 1dA M[1—Gl(q,7,T
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v(g)®%g,y, T)—1

M (@@%g,y, D
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squares fitting. The error made by the discrepancy be-
tween the two fitting formulas at ¢ =6 is less than
5X 1072 This is suitable for most applications. The
values for the fit coefficients are given in Table II for
several ; and 8. The fit is valid for ¢ <12.

V. THERMODYNAMIC CONSIDERATIONS

The calculation of the excess free energy f,. in the
RPA has been discussed by several authors.*%%2° Here
we give a short description of the calculation when LFC’s
are used.

The exchange-correlation part Q.. of the grand poten-
tial Q is obtained from an integration over the coupling
strength A of the interaction part H, of the Hamiltoni-
an® (T is the temperature, u is the chemical potential,
and Vis the volume):

—+

3

2

y=

Here the first term denotes the exchange part, while the
second one describes the correlation contribution to Q.
It should be mentioned that in many cases it is useful to
separate the exchange from the correlation part, e.g., for
RPA calculations.*> In contrast to the RPA, the local-
field correction G(q,7,T;A) in Eq. (27) prohibits an
analytical solution of the A integration.

As a next step this formalism is applied to the electron
gas with fixed u, ¥, and T. Under the assumption that
w/u’~1 a Taylor expansion leads to®

nf(n,V, T)=Q, (u° V,T)/V . (28)

Thus Q,(u° V,T) for fixed values (u° V,T) essentially
equals the exchange-and-correlation free energy.

The effective potential VT =8(nf, )/8n is discussed in
Refs. 5 and 6. Again, the coupling strength integration
leading to V¥ can be performed analytically for the RPA

only.*?

fO A 1+Av(@)[1—G(q,y,T;\)]9%g,v,T)

1 ’ . (27)

According to Egs. (27) and (28) f,. can be obtained
directly from the interaction energy per volume as
defined in Eq. (14) via an integration over the coupling
strength. As stated above this integral has to be solved
numerically, where A is conveniently replaced by r,.
Note that this only effects the interaction-dependent
terms, not all density-dependent quantities like the re-
duced temperature 6(r,). We therefore obtain for the
exchange-correlation free energy per particle in rydbergs:

2 [lar [ "dalsq,6m—11.

2
Tar;

fx[Ry]= (29)

The results obtained from Eq. (29) for the exchange-and-
correlation free energy in the STLS and QSTLS are com-
pared in Table III with the MCA results.'? These results
are higher than the corresponding STLS values for all
temperatures. For zero temperature the STLS energies
are known to be close to the Monte Carlo calculations.?

TABLE III. Exchange-and-correlation free energy — f,. in mRy. STLS refers to standards STLS approach, QSTLS to its quantal

version Eq. (12), and MCA denotes results obtained by Tanaka and

er.22

Ichimaru.'>? MC are the Monte Carlo results of Ceperley and Ald-

6=0 6=0.1 0=0.5 =1 6=5 6=10

7 MC STLS QSTLS MCA STLS QSTLS STLS QSTLS MCA STLS STLS STLS
1.0 1035 1040 1038 1042 1034 1031 940 939 942 804 415 292
2.0 548.4 550 549 553 548 547 520 520 522 464 267 195
3.0 380 379 384 380 379 367 366 371 335 205 153
4.0 293 292 296 293 292 286 286 265 170 128
5.0 239.6 239.7 238 243 240 239 235 235 238 220 146 112
6.0 203 202 206 203 203 201 200 189 129 100
10.0 128.9 128 127 130 128 127 128 127 130 123 90 72
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TABLE 1V. Correlation free energy — f..r (mRy) (notation
as in Table III).

6=0.1 6=0.5 =1 6=5 6=10
rs STLS QSTLS STLS QSTLS MCA STLS STLS STLS

1.0 154 151 383 383 386 455 335 251
20 108 107 241 241 244 289 227 174
3.0 87 86 181 181 122 219 179 139

40 73 72 147 146 178 150 118
50 64 63 124 124 127 150 130 104
6.0 57 56 108 107 131 116 93

10.0 40 39 72 71 75 88 82 68

With increasing 6 the QSTLS energies quickly approach
those of the standard STLS, the differences being negligi-
ble already at 9=~1.

The fit for f,(r,,0) presented in Ref. 5 is used to obtain
the correlation part of the free energy from the above
data for f,. (Table IV). It is seen that — f, decreases
faster with 6 than —f,., leading to an increase in the
correlation part for 6 5 1.

Finally, Table V shows the comparison with the classi-
cal results of Berggren.’® It is known that in this limit
much better approaches are available."> Therefore one
might question the quality of the STLS energies with in-
creasing 6. From the close agreement with the Monte
Carlo results®?> at =0, however, the STLS can be as-
sumed to provide a good description to at least O~1.
Furthermore, even in the limit 6 >>1, the quantum sys-
tem does not show the unphysical short-range behavior
of the classical STLS.213° One can therefore expect that
the finite-temperature quantum STLS yields reasonable
results throughout the intermediate regime of finite de-
generacy.

V1. SUMMARY AND DISCUSSION

The use of a dynamic LFC instead of a static one in the
description of a finite-temperature electron liquid allows
the investigation of new physical effects. One of the most
important of them is the possibility of a CDW. The
smallest r, value where such an instability appears in-
creases with increasing 6 while the corresponding wave
vector remains constant. Even at small temperatures
6=0.1 the predictions differ considerably from the 6=0
results.”® Responsible for the existence of a CDW is a
peak in the static local-field correction G(gq,y=0,6).

TABLE V. High-temperature behavior of the free excess en-
ergy measured in kzT. For a given I, f,. denotes the quantum
results and focp denotes the classical results evaluated at tem-
perature 0 and with the corresponding density parameter
r, =0T /(2a%).

rs(6) Sfocp —fx(0)

I 6=10 6=50 6=100 focp 6=10 6=50 6=100
0.1 1.84 9.20 18.43 0.015 0.019 0.018 0.017
0.2 3.68 18.42 36.75 0.043 0.050 0.048 0.047
0.3 5.52 27.71 0.077 0.087 0.085
04 7.37 0.161 0.128
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One finds that this maximum is shifted towards larger g
with increasing 6. While the peak’s amplitude decreases,
the width of the g region where G(q,0,0)= 1 increases
substantially with 6.

For the static-structure factor and the pair-distribution
function the QSTLS yields favorable results compared
with static LFC’s.?! In particular, the short-range
behavior is improved considerably.

For the exchange-and-correlation energy one detects
only a small deviation from the STLS results for higher
temperatures. This corresponds to the fact that the
difference between STLS and QSTLS vanishes in the clas-
sical limit. We close this article with a short outlook on
other theories and on the possibility to extend this work.

In order to improve the small g behavior of the QSTLS
and STLS the following proposals have been made in the
literature. First, in the so-called Singwi-Sj6lander-Tosi-
Land approach’! the Coulomb potential in Eq. (8) is
screened by the dielectric function of the system. De-
rived from a diagrammatic analysis,?* this screening
should be a dynamic one. Due to the lack of investiga-
tions of this fully dynamic SSTL at =0, however, this
approach cannot be assessed. Second, in the so-called
“quantum Vashishta Singwi” approximation!>2%32 the
local-field correction is replaced by

G(q,7,6)— 1+%n56; GBTLS(g . 6) . (30)

At finite temperatures this requires a very high computa-
tional effort, since the derivations for every ¥ in Eq. (30)
are numerically very sensitive. Finally, it appears
promising to screen the interaction in Eq. (8) by the
static-structure factor, i.e.,

1(g,7,6)= —% S ©%q,q’,7,0)v (¢S (g")
2

X[S(q'—q,0)—1]. (31)

This expression has the advantage that it can be derived
in analogy to the QSTLS (cf. Appendix) and that it coin-
cides with the MCA approach investigated extensively by
Ichimaru and co-workers! 123334 if the limit —0 is tak-
en for ®%q,q’,7,0). (As mentioned in Sec. IV A this lim-
it also transforms the QSTLS into the standard STLS.)
Although Egq. (31), too, is computationally rather
demanding, it can be simplified by invoking the screening
in a global manner as successfully applied in Ref. 12.
Further work in this direction is in progress.
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APPENDIX g 9
. ) i —— 4= |8f,(k,r1,¢)

For the ease of comparison with the classical case, all m Or
quantities carry their natural dimensions. The starting
point is the Wigner distribution functlon, which is = lsin #i3 3
defined in the following way [¢¥ and z/; are the creation # 2 9r, dk
and annihilation operators for an electron at space and
time point (r,#)]: x| Uz, )n k)

fg'(k)r’ fdxe_lk x<“par x/2(t)¢ar+x/2(t)>

=n%k)+8f,(k,1,1) . (A1)

The linearized equation of motion for §f in a weak exter-

nal potential U™ can be written in the symbolic form
P J

fﬁ,z,;r(k,k’,r',r,t)zfdxe‘“‘"‘fdx’e

In order to close this hierarchy, approximations are
necessary for 8f. Following Singwi et al,!! Hasegawa
and Shimizu'® suggested the ansatz of local equilibrium

FR K, 0,0)=f,(k,1,0)f . (K,T',)g*Ur—1") . (A4)

It should be noted that this ansatz does not fulfill the
sequential relation

Jdr' 3 kK, r,n,n=[drfO,n,n=nf(r,) .
ko

Rk VAN £ 17 PN € 1T UINN (31T SN {5 DI

—i—fdr’v(r—r’)klz'ﬁ 2. (k,kK',1',1,1)

(A2)

The subscript in the operator d/9r, indicates that d/0r
acts only on the first factor i m the following products, i.e.,
on U™ and v(r—r'). 8f? denotes the deviation from
the equilibrium part of the two-particle Wigner function
f?, defined by

[

In order to ensure that the pair function has the correct
weight under the r’ integral in Eq. (A2) the above ansatz
has to be modified according to

FOSFDLr (k1,0 fdyheq(r—y)

Xhe(y—r)f . (K',y,1) . (A6)

(h®9 is short for g®*9—1.) Linearization around thermal
equilibrium and Fourier transformation of Eq. (A2) leads

Ko’ (A5) to the form
J
w—l";—iﬂ 81, (k,q,0)=[n%k—q/2)—n%(k+q/2)]U (g, o)
+8p(q,0) S v(g") A (g )[n°(k—q' /2)—nk+q'/2)][S(q—q)—1] . (A7)

q

UH=U""+v8p denotes the Hartree potential and the ‘“‘screening function” A is to be replaced by 1 for the quantum
STLS. In the corrected approach of Eq. (A5) A4 (q’) is identical with the static-structure factor S(g’).

Equation (A7) is divided by w—kq/m =w—e(k+q/2)+e(k—q/2) and summed over k. This yields
oplg,w)= 3 8f,(k,q,w)
ko
=x%gq,0)[U™(g,0)+v (q)8p(g,0)]+8p(g,0) S v(g') A (g )x°q,q9",0)[S(q—q')—1] . (A8)
T
A comparison of Eq. (A8) with 4(g')=1 and Eq. (4) gives the desired result of Eq. (8) while the use of A(g")=S(q’)

leads to Eq. (31).
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