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We describe a consistent approach for applying the coherent-potential approximation (CPA) to
the various representations of the linear mufBn-tin orbital method. Unlike the previous works of
Kudrnovsky et al. IPhys. Rev. B 35, 2487 (1987); 41, 7515 (1990)j, our results for the ensemble-

averaged Green functions in the tight-binding representation yield E- and r-dependent quantities
that are consistent with the traditional applications of the single-site CPA. To illustrate the reliability
and the usefulness of our approach we compare the nonspherically averaged charge densities, calcu-
lated in real space, of ordered NiPt in Llo structure and the substitutionally disordered Nio. 5Pto 5

on a face-centered-cubic lattice.

With the development of screening transformations of
the linear muffin-tin orbitals (LMTO's) it has become
possible to transform the LMTO method, ' a reliable
and computationally efBcient approach for calculating
the electronic structures of periodic solids, into a erst
principles tight-binding (TB) LMTO method. s One of
the advantages of the TB approach is the possibility
of describing the electronic structures of systems with-
out perfect translational symmetry such as surfaces,
interfaces, dilute impurities, and others. So far the
applications of the LMTO-based approaches have been
mostly directed towards ordered systems with or with-
out perfect translational symmetry, although efforts are
being Inade to describe amorphous solids using the TB
LMTO formalism.

To be able to incorporate some of the advantages that
the TB LMTO method offers in the electronic struc-
ture description of substitutionally disordered systems,
we have to take into account the effects of substitu-
tional disorder within the LMTO &amework. As the
coherent-potential approximation (CPA), in conjunction
with Korringa-Kohn-Rostoker (KKR) method, has been
very successful in describing the effects of substitutional
disorder, the application of the CPA in the context
of the TB LMTO method is expected to be reliable as
well.

Generally, the electronic properties of substitution-
ally disordered alloys are calculated &om the ensemble-
averaged Green functions, G+ (E, r, r'), obtained within
the single-site CPA. The ensemble averaging of the
Green functions depends crucially on whether E- and r-
dependent quantities are single site or multisite in nature.
For example, the r dependence of G+(E, r, r') in em
pirical TB or erst-principles KKR-CPA-type approaches
comes through the basis functions, taken to be atomiclike
functions or partial waves, respectively, which are single
site in nature. That is, these basis functions are deter-
mined entirely by the characteristics of the atom at that
site, although the characteristics themselves may depend
implicitly on the surrounding medium. However, in the

first-principles TB LMTO method the basis functions are
multisite in nature, i.e. , they depend explicitly on the
surrounding atoms. Thus one has to be careful in ap-
plying the ensemble-averaged results of empirical TB or
KKR-CPA-type approaches to the TB LMTO method.

Previous attempts ' at incorporating the CPA
within the TB LMTO approach do not properly take
into account the multisite nature of the TB LMTO's. As
a consequence, the ensemble-averaged Green functions
for the substitutionally disordered alloys become incon-
sistent with the traditional applications of the single-site
CPA. In other words, the calculation of the single-site
wave functions relies on specific con6gurations of the
neighboring atoms, which is inconsistent with the single-
site CPA. These inconsistencies lead to erroneous charge
density, p+(r), and other r-dependent quantities calcu-
lated from G (E, r, r').

In this paper we describe a consistent approach for
applying the CPA to the various representations of the
LMTO method. In particular, we 6nd that the applica-
tion of the single-site CPA to the TB representation re-
quires an additional approximation, missing in previous
works. ' We illustrate the usefulness of our approach
by calculating in real space the nonspherically averaged
charge densities of ordered NiPt in L10 structure and the
substitutionally disordered Nio 5Pto 5 on a face-centered-
cubic (fcc) lattice. In the following we concentrate on
that part of the Green function that contributes to the
charge density, although our results can be easily ex-
tended to include terms that are left out. The details
of our derivations are given in Ref. 16, and the full ex-
pression for the Green functions is derived in Ref. 17.
The two main references that we use are Refs. 5 and 10.

An energy-independent LMTO in a general represen-
tation n can be written as

+~kc(»)
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where rR = r —R, R are the site vectors, and I (= lm)
denotes the angular momentum index. The functions
gPRL(rR), ltlRL(rR), and hR, L, RL are defined in Ref 5.,
and yR'L(rR) are the solutions of the Laplace equation
in the interstitial region. In Eq. (1) as well as in the
following, we set E = E and do not indicate energy
dependence explicitly. An overdot indicates derivative
with respect to energy. The values of o. determine the
spatial extent of the LMTO's through the structure con-
stant term in 6 . For o.R~ ——0 for each B and l,
the structure constants are long ranged leading to ex-
tended yRL(rR). The choice of o.Rl = pl, known as the

I

nearly orthogonal representation, results in exponentially
damped structure constants, and hence relatively local-
ized yRL(rR). The representation obtained for nRl = Pl,
with P, = 0.3485, P„= 0.05303, and Pg = 0.0107, is
called the TB representation in which the structure con-
stants are vanishingly small after second- or third-nearest
neighbors for close-packed solids. The P representation
is well suited for real-space evaluation of the charge den-
sities because of the localized nature of the TB LMTO's.

The Green function of ordered structures can be ex-
pressed in terms of the LMTO's as

G (&»r) = ).~Rl (& rR,'») + ):).~R'L'(rR')[PR'l'(F)]'
R'L' RL

X ER, L RL (z) —1lPRl (@) ]PRl (&)]""eRL (rR)

where Z is the atomic-sphere approximation (ASA) ver-
sion of the scattering path operator and is defined in
Refs. 16, 18, and 19. The single-scatterer Green func-
tion, JRh(E, r, r), is given by

E &Rl*('Rl, »r)&«*(cRl; r r)
JR)$(E~ &) &J =

E —col
(3)

The resonance energies cR&, 's are determined from the
potential function P (E) such that PRl(E = cRl;) = 0,
and correspond to the eigenstates, numbered by li (i =
0, 1, 2, ...), of the single scatterer. However, in practice
the sum over li is carried through only for the valence
states and hence in the following we drop the symbol i.

For describing the electronic structure of substitution-
ally disordered alloys made of atoms of type A and B,
we associate with each lattice point a coherent-potential
function, PL' (E), determined self-consistently from the
relation

PL' (&) = &~Pl '"(@)+ &RPl ' (&)

+(P, "(&)-P.: (&))
E, (P, ' (E) —P ' (E)), (4)

where C~ and C~ are the concentrations of A and B
atoms, respectively, and we have assumed the lattice to
be cubic with l & 2. For l ) 2 or for the case of noncubic
lattices for all I, the matrices in Eq. (4) are not diagonal
and a more general expression should be used as given
in Ref. 10. Equation (4) is the formal analogue of the
expansion determining the e8'ective scattering matrix in
KKR CPA. The electronic properties of such alloys are
calculated with the help of Green functions, which are
ensemble averages of the Green functions given by Eq.
(2), and the understanding that the efFective scatterers
correspond to the coherent-potential function given by
Eq. (4).

The process of taking the ensemble average of Green

functions within the single-site CPA, relevant for our pur-
poses, is described in detail in Refs. 10 and 11. In order to
apply the results of Ref. 10, we must fi.rst ensure that the
individual terms of the Green functions given by Eq. (2)
are similar in nature to the terms in the Green functions
of Ref. 10 as far as the process of ensemble averaging is
concerned. The Green function given by Eq. (2) has two
multisite terms, namely, the scattering path operator Z
and the LMTO y . As pointed out earlier, the function
Z is the ASA version of the scattering path operator of
the multiple-scattering theory and thus during ensemble
averaging can be treated exactly like ~ of Ref. 10. We
note that for o.R~

——pR~, the structure constants S~ be-
come random and hence Z~ is not easily amenable to the
ensemble averaging within the single-site CPA. Even if
we were to treat the disorder in the structure constants
along the lines suggested by Blackman, Esterling, and
Berk, ambiguities in the construction of the site wave
function itself would remain. One approach would be to
average the wave function over all possible occupations of
neighboring sites, thus, replacing PRL(rR) in Eq. (1) by
its concentration average. However, averaging the wave
function is inconsistent with the CPA. A convenient way
out is to use the scaling relations given by Eq. (91) of
Ref. 5, and write Z~ in terms of Z or Z~.

The multisite nature of y prevents us from applying
directly the results of Ref. 10. From Eq. (1) we see that
in the o; representation the LMTO at R has contributions
coming from its neighbors situated at R . These contri-
butions depend not only on the structure constants but
also on the radial functions and the potential parameters
of atoms surrounding K. In the CPA this prescription
for evaluating y cannot be carried out because CPA
replaces the individual atoms by effective atoms whose
radial functions and potential parameters are unknown.
Thus, to be consistent with the traditional applications
of the CPA, we make y site diagonal so that the en-
semble average of the Green functions can be carried out
using the procedure outlined in Ref. 10. As shown in
Refs. 5 and 16, the y 's become site-diagonal in pure-L
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approximation. Thus, in Eq. (1) the summation over R'
is restricted to the site zn question. Hence, in the follow-
ing we evaluate the ensemble-averaged Green functions
within the pure-L approximation and for site-diagonal

S.

The ensemble-averaging of the Green function can be
easily carried out if we express it in terms of an on-site
contribution, GR'L,"RL(E,r, r), and of an off-site contri-
bution, GR', L, RL(E, r, r). We find that the ensemble-
averaged on-site Green function is given by

R'L ', RL(@ r r) = +&JRl (@»rR) + +&&RL'( R)[ Rl' (@)]

[DRI,',RL(E) RL', RL( ) / Rl ( )][ Rl ( )1 +RL (rR)
++BJ„,' (&, rR, rR) + &BXRL (rR) [&Rl (E)]

RL', RL( ) RL', RL( ) / Rl ( )][ Rl ( )] +RL ( R)

where

the superscript | stands for the single-site ensemble-averaged Green functions, and the central site is denoted by
& = 0. The ensemble-averaged ofI'-site Green function becomes

(@ r»rR') = (+&N'L'(rR')[+Rll (@)] DR''L', R L (+) + +BXR'L (rR')[+R'l (E)] DglL, R I, (@))

[ R'L', RL(@)](+&+RL( R) [ Rl (@)] DRL, RL( )

+&B~R'L (»)II'R/ (&))'""DRL,RL(&)) (7)

Equations (5) and (7) represent the ensemble-averaged
Green functions for the substitutionally disordered alloys
in the CPA.

As expected, use of o.R~ ——0, and the partial waves
in Eqs. (5) and (7) lead to the results of Refs. 20—22.
If we further assume that the potential parameter p~ is
negligible, the densities of states calculated &om Eq. (5)
are similar to the results of Refs. 14 and 15 because the
imaginary part of the Green function is representation
invariant. However, the ensemble-averaged. Green func-
tions given by Eqs. (5) and (7) provide expression for
the full nonspherical charge density over all of r space.

In the P representation Eqs. (5) and (7) can be used to
calculate the electronic properties of disordered systems
in real space. For example, the nonspherically averaged
total charge density in the CPA is given by

I

charge densities of ordered structures where we find that
our approach yields charge densities that are essentially
identical to the results of the full-potential methods. Re-
sults for Si, Al, Li, and AlLi in Ilo phase are given in
Ref. 16. We also find that the use of pure-I TB LMTO's
for calculating the charge densities of ordered structures
leads to the piling up of charge along the nearest-neighbor
directions.

To illustrate the usefulness of our approach, we show
in Fig. 1 the nonspherically averaged charge densities of
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where EF is the alloy Fermi energy. For evaluating p (r)
for the substitutionally disordered alloys using Eq. (8)
we use the pure-L TB LMTO's. ' The evaluation of
pure-I TB LMTO's at site R requires the radial solu-
tions inside the atomic sphere, the potential parameters
associated with the atomic sphere at K, and the on-site
terms hRL RL, and thus presents no ambiguities with re-
gards to the ensemble averaging of the Green functions
for the substitutionally disordered alloys.

We have tested our method by calculating the valence

55-

FIG. 1. The valence charge densites of (a) I lg ¹Ptin the
(100) plane and (b) substitutionally disordered Nip. sPto s in
the (001) piane of the fcc lattice calculated scalar relativisti-
cally. The 6lled circles denote Pt atoms, and the 6lled squares
denote Ni atoms in (a) and CPA atoms in (b). The charge
density is in 10 a.u.
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ordered NiPt and substitutionally disordered Nio 5Pto 5
calculated using the pure-I TB LMTO's &om the spher-
ically symmetric one-electron potentials obtained for or-
dered NiPt and disordered Nio 5Pto 5, respectively. The
charge density of ordered NiPt, shown in Fig. 1(a), is
almost entirely spherically symmetric except along the
Ni-Ni directions. In Fig. 1(b) we show the nonspher-
ically averaged charge density for the substitutionally
disordered Nio sPto s in the (001) plane of the fcc lat-
tice with the Pt atom at the central site surrounded by
CPA atoms. A comparison of Figs. 1(a) and 1(b) reveals
that up to Pt atomic sphere the changes in the charge
density due to substitutional disorder are small. Some
of the differences in p(r) of NiPt and Nio sPto s, as we
move away &om the central site, are due to the fact that
in the disordered case the central site (Pt) is surrounded

by CPA atoms and not by Ni atoms as in NiPt.
In conclusion, we have applied the CPA to the various

representations of the LMTO method, including the TB
representation. The resulting ensemble-averaged Green
functions require the TB LMTO's to be site diagonal,
otherwise the r-dependent quantities become inconsis-
tent with the traditional applications of the single-site
CPA. We have demonstrated the usefulness of our ap-
proach by calculating in real space the nonspherically
averaged charge density of substitutionally disordered
Nio SPt05 on a fcc lattice and compared it with the
charge density of ordered NiPt in L lo structure.
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