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Crystals from metallic clusters: A first-principles calculation
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The interactions of the "magic" Al&2Si clusters are studied by first-principles electron-structure
calculations. It is shown that clusters arranged into the fcc lattice do not conserve their separated-
cluster icosahedral structure but coalesce to form a close-packed metal.

Recently, Khanna and Jena suggested that new kinds
of materials could be constructed out of the most stable
metallic clusters. One such cluster is AlqzSi, in which the
Si atom is at the center and forms with the surrounding
12 Al atoms a regular icosahedron. In addition to its
compact geometry, the cluster also has a "closed-shell"
electron structure for the 40 valence electrons, and is thus
expected to have an unusually high stability among the
metallic clusters. Indeed, Khanna and Jena found that
the binding energy of AlqzSi exceeds that of the similar-
structure Alqs by several eV.

Khanna and Jena~ were not, however, able to make
total energy calculations for a solid composed of AlqzSi
clusters. Manninen et al. calculated the band structure
of a fcc lattice composed of spherical potential wells mim-
icking the potential felt by the valence electrons. The lat-
tice constant was leR as a parameter in the calculation.
Manninen et al.2 found that there is a band gap between
the occupied and unoccupied electron energy levels al-
ready when the distance between neighboring wells is
about lao. This calculation shows that the fcc-AlqzSi
solid could be a system bound together by van der Waals
interactions, resembling the solid fullerene. In this pa-
per we report on first-principles total energy electron-
structure calculations showing that this kind of solid can-
not be achieved with AlqqSi clusters.

Our calculations for the fcc-Alq2Si are performed
using a methods derived from the one suggested by
Car and Parrinello. 4 In short, the electron exchange
and correlation are treated in the local-density ap-
proximation (LDA).5 The ion cores are described by
pseudopotentials and a plane-wave expansion with a
cutoff energy of 180 eV is used for the valence electron
wave functions. The expansion coefficients are found by
the conjugate gradient method. 7 The calculations for the
isolated cluster were carried out with only the I' point
to sample the irreducible Brillouin zone, but for the fi-
nal calculations for the fcc solid two special k pointss
were used. We found this suKcient by testing the con-
vergence with up to 12 k points at a few values of the
fcc lattice constant. The occupation numbers of the
one-electron energy levels were found by the Gaussian-
smearing method with the final smearing width of the
order of 10 meV.

First we recalculated the properties of free Alq2Si and
Alqs clusters. A simple cubic supercell with lattice con-
stant of 17 A was used. The optimized central-atom—
surface-atom distances are 2.59 and 2.62 A. , respectively.
The corresponding binding energies are 44.9 and 41.7
eV, respectively. The results by Khanna and Jena~ dif-
fer slightly from these in the sense that the binding en-
ergy difFerence is 7.7 eV and the bond length decreases
from 2.75 to 2.70 A. when the Si atom is replaced by
an Al atom. However, we are quite confident in our re-
sults because we have obtained nearly the same bind-
ing energy and bond length differences between Alq2Si
and Alqs using a totally different type of method, the
density-functional all-electron program DMo1. This pro-
gram uses atomic-type basis functions and the discrete
variational method to perform the numerical integrals.
The method used by Khanna and Jena is more approxi-
mative because it uses atomic wave functions correspond-
ing to norm-conserving nonlocal pseudopotentials and
these wave functions are fitted to a set of Gaussians.

The total energy of the fcc Alq2Si per cluster relative
to that of the free cluster is shown in Fig. 1 as a function
of the lattice constant. In this calculation the atoms
inside the clusters are not allowed to relax. From the
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FIG. 1. Total energy of the fcc-Al&2Si lattice per Al&2Si
cluster as a function of the lattice constant. The energy of
the free cluster is subtracted. The optimized structure of the
free AlqqSi cluster is not allowed to relax when the lattice
constant decreases.

0163-1829/93/48(3)/1981(3)/$06. 00 48 1981 1993 The American Physical Society



1982 BRIEF REPORTS 48

minimum of the curve the cohesive energy of the fcc solid
is about 6.1 eV per cluster, i.e. , 1 eV per additional
Al-Al bond formed. This energy per bond is roughly half
of the binding energy of an Al dimer, but 0.3 eV more
than the energy per bond in the Al metal. Thus the
bonds formed are metallic in character. This is very clear
from the intercluster Al-Al bonds corresponding to the
minimum of the total energy curve. The bond length is
only 2.61 A. , whereas the intracluster Al-Al bonds are 2.72
A.. Moreover, at this intercluster separation the highest
occupied energy bands are broad and there is no energy
gap.

The fcc lattice formed by the unrelaxed clusters at the
volume corresponding to the minimum energy in Fig. 1
is far from the true ground state of the atomic system in
question. We have demonstrated this by allowing the 13
basis atoms of the fcc lattice to move according to the
Hellmann-Feynman forces in the constant volume. The
energy lowering in the relaxation is 2.2 eV per cluster.
The structural relaxation is illustrated in Fig. 2 showing
the average pair correlation functions around Al atoms in
the unrelaxed and relaxed cluster lattices and in an ideal
(atomic) Al fcc lattice. The pair correlation functions
have been obtained by representing each atom by a Gaus-
sian function with a finite width and then calculating the
total atom density. The pair correlation function corre-
sponding to the unrelaxed cluster lattice (the top panel
in Fig. 2) consists of more or less evenly spaced peaks
with similar intensities. When equilibrium is achieved
the atoms have moved so that the shortest Al-Al bonds
have increased to 2.71 A. and the open regions of the
unrelaxed cluster lattice have become more filled. As a
result, the relaxed pair correlation function (the middle

panel in Fig. 2) resembles at short distances that of an
ideal close-packed fcc structure (the bottom panel in Fig.
2). This is true for the distances as well as for the in-
tegrals (total number of atoms) of the first three peaks
or nearest-neighbor shells. However, the ideal fcc lat-
tice cannot be constructed using 13-atom supercells and
therefore the long-range ordering difFers from the ideal
one. We have further determined that the volume of the
system will shrink by keeping the atomic positions in the
basis fixed but optimizing the lattice constant. However,
the resulting volume per atom is due to the mismatch
still 2070 larger than that for the ideal fcc Al lattice.

The idea by Khanna and Jena that the A1~2Si
clusters could be the building blocks of a novel ma-
terial, which could have exciting properties, was in-
spired by the research on solid Csp (Ref. 11) and on
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FIG. 2. Average pair correlation functions around Al
atoms. (a) Unrelaxed fcc-Ali2Si lattice, lattice constant 10.4
A. (b) Relaxed fcc-Ali2Si lattice, lattice constant 10.4 A. (c)
Ideal fcc-Al lattice, lattice constant 4.22 A.

the metallocarbohedrenes. Solid C60 is really a van
der Waals bonded system as the first-principles LDA
calculations show. In the C60 molecule there is a
graphitelike bonding mechanism with the a and vr bonds
between the carbon atoms. There are no dangling
bonds pointing out of the C60 molecule and therefore
the molecules cannot bind strongly together. In the case
of AliqSi cluster the binding mechanism is metallic, and
the valence electron gas can bind the clusters strongly
together. The situation is analogous to the formation of
Mg metal. The Mg atom has a closed-shell structure, but
when the solid is formed the uppermost filled s band and
the first empty p band overlap resulting in a metal.

In conclusion, we have performed first-principles cal-
culations for a solid composed of Ali2Si clusters. The to-
tal energy minimization of a fcc structure of rigid Alj2S1
clusters leads to such a small lattice constant that the
smallest intercluster Al-Al distances are shorter than the
intracluster Al-Al bond length. When the clusters are
then allowed to relax the Al atoms tend to move towards
a close-packed arrangement. Thus, the calculations show
that it is not possible to maintain the Ali~Si clusters in
a solid but the clusters will coalesce to a bulk Al metal
with substitutional Si impurities.

The authors wish to thank P. Jena and S. N. Khanna
for suggesting this problem and for many useful discus-
sions. We are also indebted to J. S. Lin and M.-H. Lee
for invaluable discussions.
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