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Effect of an image potential on the ground-state energy of shallow-donor impurities
near the surface of semi-infinite crystals
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The effect of image potential on the ground-state energy of a shallow-donor impurity near a sharp sur-
face of a semi-infinite crystal is studied. A simple but realistic trial function is used in the confocal ellip-
tic coordinate system with the foci at the hydrogenic donor impurity and its image point. The ground-
state energy of this system is calculated as a function of the impurity position.

I. INTRODUCTION

In recent years, the problems associated with shallow
impurities near a sharp planar surface have attracted
much attention. Levine' investigated theoretically the
quantum-mechanical properties for an isolated donor
atom located at the surface of a dielectric crystal. Since
then, other authors have investigated energies and
other properties of the donor states. It is important to
note that all these authors constrained the impurity atom
to lie exactly at the surface.

Realistically, impurities are distributed in the near-
interface region, not necessarily localized at the surface.
When an impurity atom inside the medium is not too far
from the surface, it is no longer possible to solve the
Schrodinger equation analytically with proper boundary
conditions. A number of authors studied this prob-
lem " variationally; however, they did not consider the
effect of the image potential. In this paper, we use a sim-
ple but somewhat reasonable trial wave function to study
the ground-state energy of shallow-donor impurities near
the surface of a semi-infinite crystal. In our calculations,
the effect of image potential is taken into account.
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where e& is the dielectric constant of the crystal, —e is
the free-electron charge, and r is the distance of between
the electron and the atomic nucleus (Fig. 1), i.e.,

r =+x +y +(z —R)

In the effective-mass approximation, the Hamiltonian of
this system is

e2 2

2m,* e, r

where m,* is the electron effective mass.
When an impurity atom is close to the crystal surface,

the donor impurity states are also influenced by the dis-
tance between the impurity and the surface. As R ~~,
the solution of the Schrodinger equation should approach
the three-dimensional hydrogenic wave function. When
R ~0, it should become the wave function of a hydro-

II. VARIATIONAL SOLUTIONS
OF A HYDROGEN ATOM

NEAR AN IMPENETRABLE WALL

Let us first consider a donor impurity embedded in a
dielectric crystal. The impurity is near the surface. The
distance between the donor impurity and the surface is R.
Since the height of the surface barrier is of the order of
several eV, ' and the binding energies of shallow-donor
impurities are only of the order of millielectron volts, the
surface can be modeled as an infinite potential barrier.
This assumption requires that electron wave functions
vanish on the surface of the crystal. The effect of finite
boundary potentials on the binding energies of donor im-
purities has been shown to be negligible. ' ' Therefore
the potential is given by
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FIG. 1. The coordinate system centered at the hydrogenic
impurity. The boundary surface is at z = —R.
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genlike atom located at the surface of the half-three-
dirnensional space, i.e., the Levine wave function. Taking
these into our consideration, we write the trial wave func-
tion of the ground state as

e2
V =—

e,R(g —rl)
(15)

g(r, R ) =F(r,R )P(r,P), (4)

where p(r, p) is the ground-state function of a hydrogen
atom, i.e.,

r

p(r, p)= A
ao

L

3/2 r
exp

ao

e2

E,R (g—ri)
(16)

where ao =e,fi /m, e, p is the variational parameter, and
A is the normalization constant.

Because V= 00 outside the crystal, the wave function
satisfies

and
' 3/2

p
ao

2aRgn .(g „)
nR[4(a +1)—(a+2)e ]

11(r,O)=0 when r cos8= —R . (6) (17)

When r cos(8}=—R, it equals 0 satisfying the boundary
condition Eq. (6). Therefore, F(r, R ) can be selected to
be

where

a*0
(18)

F(r,R)=R+rcos(8) .

Thus the trial wave function, Eq. (4) can be written as
' 3/2

f(r, R) = A (R+r cos8) exp
a 0

(g)
ao

g=[[p +(z+2R) ]'i +[p +z ]' ]1/2R,
g= I[pz+(z+2R )z]'i —[p +z ]'i ]1/2R,

(9a)

(9b)

In the half-infinite space z (—R, we have /=0, and
when z & —R, we have a nonvanishing wave function, as
expected.

It is convenient at this stage to introduce the confocal
elliptic coordinate system. The relations between the
confocal elliptic coordinates, (g, q, P), and the cylindrical
coordinates read

Using the variational principle, we can obtain the
ground-state energies of impurities near the crystal sur-
face as functions of R.

The computed ground-state energies are presently
graphically in Fig. 2 [curve (1)], where the energies are in
units of efFective Rydberg R~*=e /2ao e„and R is nor-
malized to the effective Bohr radius ao. From Fig. 2
[curve (1)], it can be seen that the ground-state energy
varies remarkably with the distance if R is between ao
and 2a o. For example, the ground-state energy at
R =0.Sa0 is only one half of that at R =0.

Our results are similar to those obtained by Liu and
Lin, but the physical meaning is clearer and the calcula-
tion is simpler. Aside from the effective image potentials,
electron-phonon interactions also can be taken into ac-
count in our calculations. However, we restrict our dis-

where
-4.25 '

z +p =r, p =y +y, z=rcosO,

1(g~ oo, 0 q(1(, 0($(2m. .

From Eqs. (10}and (11),we obtain

r =R(g —q)

and

(10)

(12)

M.50

z=R(gq —1) . (13) -1.00

Substituting the relations (10)—(13) into the Hamiltoni-
ans, H, T, V, and the wave function f, we have 2.0 3.0

R (g„ )

4.0 5.0 6.0

g2 ~2 Q2

(g —1)(1—g ) BP

(14)

FIG. 2. The ground-state energy of a shallow-donor impurity
near the surface as a function of R. Curve (1), the contribution
of image potentials is not included. Curve (2), the contribution
of the image potentials is included. The energies are in units of
the effective Rydberg and distance is in units of the effective
Bohr radius.
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cussions in this paper only to the effect of image poten-
tials.

III. THE EFFECT OF IMAGE POTENTIALS

We assume that a donor impurity is located at a dis-
tance R from the planar interface. The static dielectric
constant of the material in the region 3, where the im-
purity atom is contained, is e1, and the static dielectric
constant in the region B is e2. The following calculations
are valid for both semiconductor-insulator and
semiconductor-vacuum interfaces, if we choose e1 and e2
accordingly. The impurity center is chosen as the coordi-
nate origin and the z axis is chosen to be perpendicular to
the interface plane. In the effective-mass approximation,
the Hamiltonian is

—01

—0.2

20 3.0

v,)

5.0 6.0

y2 + V + V + V
2@iq

(19)

where V1 is the screened Coulomb potential, as defined in
Eq. (1), V2 and V3 are the electron-image-proton interac-
tion and the electron-image-electron interaction, respec-
tively. V2 and V3 are found to be

FIG. 3. The interaction energy V2 (electron-image-nucleus
potential) and V3 (electron-image-electron potential) as func-
tions of the distance from the surface of a symmetric silicon
crystal. The energies are in units of the effective Rydberg ener-

gy, and R is in units of the effective Bohr radius.

and

2

V =—
e*(r +4R +4rR cos8) ' ~

(20)
where the energies are in units of effective Rydberg and
the distances are given in tems of the effective Bohr ra-
dius and a=PR /ao. Hence the expectation value of the
total energy is

2

V3=
e*(R + r cos8)

where

E)(e) +e2)
)fc

&2

(21)

(22)

and

2

V =—
e*R (g+g)

(23)

In the confocal elliptic coordinate system, T and V1
are expressed by Eqs. (14) and (15), respectively. It is also
straightforward to obtain the expressions of V2 and V3 in
the confocal elliptic coordinate, i.e.,

E=(T&+(V, &+(V &+(V & . (29)

Applying the variational procedures, we obtain the
ground-state energies of the impurity atom.

For the sake of simplicity, we assume F1=1. The cal-
culated ground-state energies for a shallow donor near
the surface of a symmetric silicon crystal, in which the
transverse effective mass equals the longitudinal effective
mass, is plotted in Fig. 2 [curve (2)] as a function of the
distance of the impurity from the surface, R. Figure 3
shows the contributions of the image potentials, V2 and
V3, to the ground-state energy. In Fig. 4, we plot the ex-
pectation values of the dipole moment.

From these calculations, we find the following.
(1) Although the contribution of image potentials is

small compared with that of the Coulomb interactions, it
2

V3=
4e*R g7)

(24) 0.0

Using Eq. (17) as the test wave function, we find the ex-
pectation values of the energies are —2.0C»

CJ

&T&=P',

1 —2(1+a )e
e* 2+a —4(1+a )e

(25)

(26)

A

V —4.0

(V, &= —P . (3+4a )e —(3+6a+6a +2a )

e* 4[4(1+a )e —(2+a)a ]
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1.0 2.0 3.0

R (a )

4.0
I

5.0 6.0

8ae +3+2a
e* 4[4(1+a )e —(2+a)]

(27) FIG. 4. The expectation value of the dipole moment (p, ) as
a function of R, the distance between the impurity atom and the
surface. The dipole moments are in units of eao /2, and R is in
units of the effective Bohr radius.
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is certainly not negligible, especially when the impurity is
very close to the surface. In the case of GaAs, we have
( V2+ V3 ) /( V, + V2+ V3 ) =0.34, if R =0.

(2) The contribution of the image-proton potential to
the ground-state energy is larger than that of the image-
electron potential. The former is negative while the latter
is positive. Therefore the total contribution of image po-
tentials is equivalent to an increase in the e6'ective nu-
clear charge.

(3) Because the total contribution of image potentials
to the ground-state energy is negative, the presence of the
image potentials reduces the ground-state energy and
makes the ground-state energy reach the bulk limit
E = —Ez more rapidly.

(4) The effect of the image potential is drastically re-

duced with the increase of the distance from the impurity
atom to the interface, as expected. This is because the
influence of the interface on the impurity states decreases
with the increase of R.

(5) When R =0, the larger the dielectric constant e„
the higher the ground-state energy E~.

(6) When R =0, the expectation value of the dipole mo-
ment i(p, )i&0. This fact indicates that the spherical
symmetry of the impurity state is damaged. With in-
creasing R, i (p, ) i gradually decreases due to the
influence of the interface. i(p, ) i vanishes if R is very
large, which means that the deeper the impurity atom,
the less the influence of the interface. In other words,
when R increases, the ground state of the impurity be-
comes more spherically symmetric.
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