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Exotic behavior of the dielectric function and the plasmons of an electron gas on a tubule
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The dielectric response of an electron gas confined to the surface of a hollow infinitely long cylinder is
calculated in the random-phase approximation. The frequency dependence of the imaginary part of the
dielectric function shows a steplike behavior. The dielectric function shows the dimensional crossover
from two-dimensional to one-dimensional behavior with decreasing cylinder radius. In the quasi-one-
dimensional case, our model does not need any artificial cutofF'parameters for the Coulomb potential.

Recent experimental technology, especially nanotech-
nology, makes it possible to observe many quantum phe-
nomena in narrow or small systems in solid-state physics.
In these systems, quantum effects appear clearly. Some
"ideal narrow geometrical models" are becoming realiz-
able. A very thin long hollow cylinder is an example of
such a model. It may be considered as a simple model of
graphene tubules. ' There are many types of graphene tu-
bules, for example, atomic arrangements of carbon atoms
of the so-called armchair fiber type which has a metallic
electronic structure, and of the zigzag fiber type whose
electronic structure is that of a semiconductor. '

In this paper, an electronic structure of the former type
is treated as an electron gas. We discuss the dielectric
function and collective excitations of the electron gas
confined to the surface of the cylinder which is empty in-
side and extends infinitely.

It is efficient to take cylindrical coordinates z and y,
and their canonical momenta, pz and p, as shown in
Fig. 1. Having the rotational invariance around the
cylinder axis, the electronic state of the system is charac-
terized by the momentum along the cylinder axis,
pz =Akz, and the z component of the angular momentum

p =fil (l is an integer). When the cylinder radius R is

large enough, the dielectric behavior of the electron gas
on a cylinder is expected to reduce to that of a two-
dimensional (2D) electron gas. ' On the other hand,
when R is sufficiently small, the energy difference be-
tween two states which have an adjacent value of the an-
gular momentum gets larger to an order of R . The en-
ergy dispersion as a function ofpz does not depend on R
if the angular momentum is fixed. Since the Fermi statis-
tics force the number of angular momenta which are oc-
cupied by electrons to be small, the discreteness of the an-
gular momentum is rejected clearly in the dielectric
function. In a very narrow limit, the occupied angular
momentum l is only l =0. In the classical mechanics pic-
ture, the motion of electrons in the state is restricted only
to the direction of the cylinder axis. This state is quasi-
one-dimensional. There are some other examples of
quasi-1D systems, the quantum wire ' is one. Since the
hollow cylinder as a quasi-1D system has a different to-
pology from others, it is expected that its electronic
structure is different from that in a quantum wire or the
usual 2D electron gas. ' When the cylinder radius R is
in the intermediate region, the system becomes neither
quasi-1D nor 2D.

In the 2D electron gas system, the chemical potential
po satisfies the following relations:

Z)i Ak

with

~P (R,l,zj

=Y

FIG. 1. A schematic illustration of the cylindrical system.

kF =2~n

a, rs = l /Vvrn

Here kF is the Fermi wave vector, n the areal electron
density, and m the electron mass. The parameter rz
represents the radius of the circle per electron measured
in units of the Bohr radius ao. In the actual solids, the
Bohr radius and the electron mass should be replaced by
the effective Bohr radius and the effective electron mass,
respectively.

In the cylindrical electron-gas case, the relationship
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If R is not infinite, each free-electron energy level is split
into 1D free-electron energy bands shifted by the energies
corresponding to each angular momentum l. The elec-
tronic state is quantized around the z axis. This situation
is similar to the formation of the Landau level under the
magnetic field. But there is a difference in the energy-
level splitting between the cylindrical electron gas and

Eq. (l) between the chemical potential and the electron
density is not valid when R is so small that the angular
momentum of the system cannot be regarded as continu-
ous. Therefore, the chemical potential of the system de-
pends on R. The energy of the free-electron gas on the
cylinder is given by

n =1/naor

The density of states at energy E for the motion along the
z axis is given by

+2mlm A E (4)

Thus the chemical potential p of the system is deter-
mined by

the electron gas under the magnetic field. In the former
case, the energy difference between the state with angular
momentum l and the lowest band state with angular
momentum 0 is proportional to l . In the latter case, the
energy difference between successive Landau levels is
usually %co„cu, being the cyclotron frequency. The real
electron density is

2~R X
1

aors

8m
2/2

1/2 1/2

( )i/2+2
2mR 2

$2l 2

+ . +2 p—
2mR

i/2-

where l „is defined by

Al
l =max . l:p — )0 . .max

2mR

The R dependence of the chemical potential is shown in
Fig. 2. This system can be regarded as a quasi-1D system
when R (a&&rs/&m. The chemical potential oscillates
around the value of the 2D electron gas with increasing
R. This behavior can be explained as follows. For very
small R, only the I =0 band is occupied. With increasing
R, the number of particles per unit length along the z axis
and the chemical potential become larger. Then the bot-
toms of the l =+1 bands go down, and the l =+1 bands
begin to be occupied. The density of states of the 1D
band is in inverse proportion to the square root of an en-

ergy measured from the band bottom. Since the density
of states near the band bottom is very large, electrons

prefer to occupy the l =+1 states rather than the 1=0
state. Thus the chemical potential decreases when it
passes through the band bottom. Now we introduce a
quantity q for convenience as

g2 2
q

2m
(7)

q corresponds to the Fermi wave vector which character-
izes the motion along the z axis. From Eqs. (6) and (7),l,„ is equal to the integral part of Rq. Rq characterizes
the dimension of our system. The motion of electrons is
in quasi-1D for Rq & 1, and 2D for Rq ))1. Our system
changes from quasi-1D to 2D smoothly as Rq increases.

The Coulomb interaction V(z, y) between two elec-
trons on a cylinder surface is given by

2

V(z, y) =
r

R/ap

FIG. 2. The R dependence of the chemical potential at r& = 1.

r = [2R ( 1 —cosy)+z ]'~

It should be noted that, in our system, effects of the
Coulomb force between two electrons on the motion of
the electrons is different from those on a Aat surface,
since each electron is confined to a curved surface. The
component of the Coulomb force norma'. to the cylindri-
cal surface is canceled out with constraints which keep
the electrons on the surface.

The Fourier transform of the Coulomb potential is
given by

V(kz, I ) =4e R f dy cos(2lq&)KO( ~2Rkz sing~ ) .
0

Here Ko(x) is the modified Bessel function of the second
kind. This is derived without using any artificial cutoff
parameters. Equation (9) can be integrated analytically
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for l =0 as

V (kz, o) =4~e'RI()( IRkz I )&0( IRkz I )

In the long-wavelength limit Rkz && 1, we obtain the fol-
lowing asymptotic expression:

and

kz

2mR 2

( kz +kz ) ()12(I + i )2

2mR

V(kz, 0)= —4me R 1n~Rkz
~

.

Using the perturbation theory, the lowest-order polar-
ization function II' ' is

Here o is the total area of the cylinder surface, and n~(g)
the Fermi distribution function. Performing an analyti-
cal continuation, the polarization function can be divided
into its real and imaginary parts:

(0)( I k, )
2 y y F k P F k P
o. (, „, g g'+—i ((Ice

z

where

(10) R II' '(I k
2m fi kzR ( a —(g—P)

and

ImH '(l, kz, co) = — g [g(g+a+p) —g(/+a —p)+g( —/+a —p) —g( g+a+p)]2M'k R
(12)

with

A lI'
Ado

mR
' 1/2

g2 I 2

P= kz q'—

I I f
I

and

~max —~ —~max

The dielectric function e(l, kz, co) is given by the
random-phase approximation (RPA):

e(l, kz, co)=1—V(l, kz)II' '(l, kz, co) . (13)

The frequency dependence of the dielectric function is
shown in Fig. 3 for several R values. We note that Rq is

a monotonically increasing function of R. For Rq &)1,
the dielectric function is almost the same as that calculat-
ed in the RPA for a usual 20 electron gas.

As R grows smaller, the imaginary part of the dielec-
tric function has definite discrete values, such as a step
when kz and l are fixed. This can be explained from the
expression of the imaginary part of II' )(I,kz, co). This
function contains only co in the 0 function. As R grows
smaller (1 ~ Rq ~ 10), the region of the I' summation be-
comes smaller, then the summation over I' cannot be re-
placed by an integration. Therefore, the imaginary part
of e(l, kz, ~) cannot have a continuous value as a function
of co. On the other hand, the real part of e(I, kz, co) shows
some peaks, rejected with logarithmic singularities in
each polarization component.

If R is large enough, the I' summation can be replaced
by an integral, and the logarithmic singularities are re-
moved. Thus we cannot find any divergent peaks in

e(l, kz, co). This result is in agreement with that in a 2D
electron gas. ' When 0 (Rq & 1 is only the l'=0 case al-
lowed. Only then can a free-electron state of the system
be characterized by a quantum number kz, which means

2
AEQ /p

I
I

I I I

Re c

I t I I

FICx. 3. The frequency dependence of the dielectric function
e for several R values at rz = 1, l =0, and kz =0.5q. Rq= 0.71
(a), and 7.1 (b).
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that the system is quasi-one-dimensional. This extreme
case also will correspond to that of the quasi-1D electron
systems in quantum wires. '

For a very slender limit (0 (Rq ( 1), we consider only
the intraband contribution to II (I, kz, co), i.e., I=I'=0.
Then the dispersion relation for plasmons can be ob-
tained analytically. By solving equations Res=0 and
Imp=0, the plasma frequency co& is obtained as

with

0

0

(ko+&o)' —~(k —&o)'

1 —A.

fz kz
2Pl

kzq

(14)

0

k, lq

FIG. 4. The plasma dispersion relations for rs = 1, Rq =0.71.
The shaded area shows the single-particle excitation region.

A=exp
~'kz

2me in(2/8lkzl)

In this equation, co cannot be expanded in the power
series of kz. dco~ldkz shows a divergence at kz-0,
whose degree is weaker than that of a 2D electron
gas. ' ' The plasmon in a 2D electron gas is known to
have a frequency co proportional to the square root of a
wave number k in the long-wavelength limit. Equation
(15) has a structure similar to that of quasi-1D electron
systems in quantum wires. If we replace the circumfer-
ence of 2~R with the width of the quantum wire in Eq.
(15), it is the same as Eq. (2.13) of Ref. 7 in the long-
wavelength limit. It should be remarked that we can
reproduce the result of the quasi-1D system.

In conclusion, we have reported the dielectric formula-
tion of a cylindrical electron gas. We have calculated the

The dispersion relation and the single-particle excitation
region are shown in Fig. 4. For the long-wavelength lim-
it, we get

1/2

e) =2ekz 1n
mm 2

dielectric function of an electron gas confined to the sur-
face of a hollow cylinder which extends infinitely. We
also have found the oscillation of the chemical potential
with increasing R. The dielectric function obtained
shows the dimensional crossover from 2D to 1D with de-
creasing cylinder radius R. In a slender limit, the
plasmon dispersion relation is co -kz lnkz ~' . Our
hollow cylindrical model has remarkable superiority as a
theoretica1 model of the quasi-1D system. The Coulomb
potential in the quasi-1D system can be introduced natu-
rally, since its Fourier transformation can be performed
completely due to the fact that the wave function of the
direction around the z axis has a natural periodicity. It is
expected that the wave number dependence of the dielec-
tric functions may be observed in graphene tubules.
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