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Renormalization constant and effective mass for the two-dimensional electron gas
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The renormalization constant and the effective mass for the two-dimensional (2D) interacting
electron-gas system are determined as a function of density by evaluating the electron self-energy
within the CW approximation. In order to investigate the effect of exchange-correlation interaction
systematically, we have employed three types of model local-field correction factors in the dielectric
function. We compare our results with those for the 3D electron gas. It is found that the renor-
malization constant for the 2D electron gas is smaller than that for the 3D system and the eB'ective
mass is greater in the 2D system, implying that the Coulomb interaction efFect is more pronounced
in the 2D than in the 3D system.

I. INTRODUCTION

There has been a great deal of interest in the two-
dimensional (2D) electron systems occurring at surfaces
or interfaces of semiconductor materials. Since the elec-
tron concentration can be varied continuously and in a
controlled manner over a wide range, these systems pro-
vide a useful testing ground for applying approximate
methods of calculating the many-body properties of the
system. Much interest in the 2D system arises from more
recent origins. The fractional quantum Hall effect and
the high-T, superconductivity are believed to be 2D phe-
nomena, which occur in the strongly interacting electron
systems.

Recent angle-resolved photoemission spectroscopy
(ARPES) studies for the the high-T, superconductor2
indicate that the quasiparticle weight becomes much en-
hanced near the Fermi level E~, accompanied by a broad
background, reflecting the Landau Fermi-liquid behav-
ior. The quasiparticle weight at E~, which is also called
the renormalization constant Z~, is interpreted as the
amount of single-particle behavior of the particlelike ex-
citations in the system. Thus it is equal to one for the
noninteracting electron gas. For the interacting system,
the quasiparticle weight becomes smaller than one due
to the weight transfer to other multiparticle or collec-
tive excitations existing in the system. On the other
hand, the renormalization constant determines the mag-
nitude of the discontinuity in the momentum distribution
function n(k) at the Fermi surface (see Fig. 1) and so a
nonzero renormalization constant implies the existence
of the Fermi surface. Note that the renormalization con-
stant is reduced to be zero in the Luttinger liquid model
or the marginal Fermi-liquid model, proposed as possi-
ble models for the high-T, superconductors.

Motivated by the above observation, we have at-
tempted to determine the quasiparticle weight of the 2D
electron gas to simulate quasiparticle excitations in the
2D strongly correlated system. The 2D electron gas in
the low-density limit is expected to be an excellent model
system for the strongly correlated 2D phenomena. We
have calculated the renormalization constant for the 2D
electron gas as a function of electron density. Results for

the renormalization constant for the three-dimensional
(SD) electron gas have been reported by several groups,
whereas for the 2D electron gas, recent results by San-
toro and Giulianis only are available for a specific high-
density regime. They used the GW approximation with
an effective interaction of Kukkonen and Overhauser. ~

As to the effective mass for the 2D systems, Janak,
and Suzuki and Kawamotos have evaluated it in the
Si inversion layer using a static approximation to the
screening, which neglects the frequency dependence of
the dielectric function. Ting, Lee, and Quinn o have cal-
culated the effective mass based on the random-phase
approximation (RPA) and the Hubbard approximation
(HA) to the dielectric function. They obtained the effec-
tive masses which are slightly larger than experimental
values. Vinter has performed calculations on the ef-
fective mass employing the plasmon-pole approximation
to the dielectric function as suggested by Lundqvist 2

and by Overhauser. Vinter used an efFective-mass for-
mula which is difFerent from that used by Ting, Lee, and
Quinn. ~o Their values were rather smaller than the exper-
imental values. Recently, Santoro and Giuliani have
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FIG. 1. Momentum distribution n(k). The discontinuity
at the Fermi surface corresponds to the renormalization con-
stant.
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evaluated the effective mass, considering the frequency
dependence of the electron self-energy including the ver-
tex corrections induced by charge and spin fluctuation.

In this paper we have calculated the renormaliza-
tion constant and the efFective mass for an idealized 2D
electron-gas system as a function of electron density, and
compared them with existing results for the 3D system.
The electron self-energy is evaluated within the GW ap-
proxirnation. Correlation effects are systematically taken
into account by employing three types of model local field
correction factors in the dielectric function.

II. FORMALISM

We consider an idealized 2D electron-gas system, in
which electrons are confined in a thin layer with a uni-
form positive neutralizing background charge and inter-
act with each other through the Coulomb potential

271'6
v(q) =

q

where q is a 2D wave vector. The dimensionless parame-
ter characterizing such a 2D electron gas is the interelec-
tron spacing r„which is defined by

zr (r,ap) = n

where ap is the Bohr radius and n is the surface electron
density. The Fermi wave vector is expressed as

kF = v'2zrn = (nr, ap)

with o. = 1/~2. We take a special set of units in which
lz = m = 1 and the momentum is measured in unit of the
Fermi momentum (kF ——1), and thus the Fermi energy
EF = 1/2. We measure the energy of the electron with
respect to E~, e = E —EF.

The renormalization constantis is expressed as

where v(q) is the interaction potential, e(q, iu) is the di-
electric function, and g(k+ q, ik„+ku) is the interacting
Matsubara Green's function. In practical applications,
one has often introduced a further approximation replac-
ing g by a noninteracting Green's function gp.

An approximate form of the dielectric function is com-
monly expressed as

v(q) Xp (q, ~)
1+v(q)G(q ~)Xo(q ~)'

where yp(q, cu) is the noninteracting response function
and G(q, u) is the so-called local-field correction factor.
For gp(q, u), we have used the form derived by Sternis
for real values of ~ and by Ting, I ee, and QuinniP for
imaginary u The. term v(q)G(q, u) incorporates the ef-
fects of the exchange and correlation interaction in the
dielectric function. In our study, we take a further ap-
proximation of using a static local-field correction factor;
G(q) = G(q, ~ = 0).

The simplest approximation to the local-field factor
G(q) is to take G(q) = 0, which corresponds to the
random-phase approximation (RPA) where the short-
range exchange-correlation interactions are neglected.
The attempt to go beyond the RPA was made by
Hubbard, is who obtained an explicit 3D expression of
G(q) using a diagrammatic approach. We take a 2D form
of G(q) which was derived by Jonson, zP

GHA(q) =—1 q

q2+ kF2

The Hubbard approximation (HA) takes into account the
exchange interaction but neglects the correlation interac-
tion.

As an attempt of including the correlation interac-
tion, we also consider a modified Hubbard approximation
(MHA), in which a model G(q) of the 2D analog of the
3D form used by Rice2 is adopted,

ZF = 1 ——ReZ(k, e)
06 FS

(4)
1 q""(')=

q'+ kF'+ kT'F

where E(k, e) is the retarded electron self-energy and FS
represents that the calculation is done at the Fermi sur-
face. As can be seen from the above equation, the renor-
malization constant is obtained from the energy depen-
dence of the retarded electron self-energy.

In our system of units, the effective massi~ can be ex-
pressed as

Z(k, ik„) =— dzq v (q)
(2zr) e (q, i~)
xg(k+ q, ik„+ iur), (6)

OZ) ( BZ)m'=
~

1 — 1+
~'&ps & ~k&ps

The efFective mass can be calculated from the energy
and momentum dependence of the retarded electron self-
energy.

In the GW approximations the zero-temperature elec-
tron Matsubara self-energy is expressed as with

P(1ine) (k )
d2q v (q)

(27r)2 e (q, z(u)

xgp(k+ q, e+ i(u), (12)

where A:Tp is the Thomas-Fermi wave vector. In the 2D
electron gas, it is defined by

2&AC
kTF = = v 2r, kF

Ep
In the MHA, the G(q) has an explicit r, dependence
through kTF. Furthermore, the compressibility sum rule
is satisfied better in the MHA than in the HA. We expect
that this r, dependence embodies the correlation effects
in some sense, so that the MHA gives better results for
the physical properties than the HA.

The analytical continuation, ik„~ e + ib, results in
two terms for the retarded self-energy, 6
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d'q v (q)
(27r) s (q (k+ —e)

x [O(e —(k+~) —0(—(k+~)], (13)

where O(x) is the Heaviside step function, and
Z ~'"'& (k, e) and Z~"'l (k, e) are called the line and residue
part of the self-energy, respectively.

The derivatives of the self-energy with respect to mo-
mentum and energy are numerically obtained for given
].ocal-field correction factors. Note that the derivative of
the residue part of self-energy with respect to momentum
vanishes at the Fermi surface.

III. RESULTS AND DISCUSSION

Results of numerical calculations for Z~ are given in
Fig. 2 as a function of r, . Results for the 3D system
are also provided for comparison. Three different types
of local-field correction factors, RPA [G(q) = 0], HA
[Eq. (8)], and MHA [Eq. (9)], are utilized in the calcula-
tions.

As shown in the figure, Z~'s for the 2D electron gas
are substantially smaller than those for 3D system at the
same value of r, . This result can be understood from the
fact that the interaction effect is stronger in 2D than in
3D so that electrons in the 2D system are more localized.
Note, however, that the renormalization constants in the
2D system are nonzero even in the low-density region,
which implies that, within our approximation scheme,
the 2D electron-gas system is still the Fermi-liquid system
as expected. As can be seen in the figure, the MHA result
is smaller than the RPA one, but greater than the HA
one. It seems that the exchange interaction, contained
in the HA, makes the system more localized, but the
correlation interaction, expected to be contained in the
MHA, counteracts the role of the exchange interaction.

The density of high-T, superconductors, if considered
as a 2D homogeneous electron-gas system, corresponds
to r, 10. The renormalization constant at this density

turns out to be about 0.3. Thus, if high-T, supercon-
ductors are described by 2D electron-gas systems, the
quasiparticle spectral weight at E~ mill become rather
small, 0.3, and a lot of weight will be transferred to
the incoherent background.

In Fig. 3 effective masses m* for the 2D electron gas
are presented as a function of r„ together with the corre-
sponding 3D resultsis for comparison. Results by Rice2i
for the 3D system are also given. Rice also employed the
MHA but used a difFerent form of the dielectric function
and a different formula for the effective mass from ours
so that he obtained the effective masses which are a little
bit smaller than ours of MHA.

As can be seen in the figure, m"s for the 2D electron
gas are substantially larger than those for 3D at the same
value of r, . This result is again consistent with our results
from the calculation of the renormalization constant that
the interaction effect is stronger in 2D than in 3D so that
electrons in the 2D system are more localized than in the
3D system. For both 2D and 3D systems, the effective
masses are less than one at the very-high-density region
(near r, = 0) and monotonically increases as a function
of r, . This implies that the effect of mA, [= (1+ P&) Fs],
which gives rise to the mass reduction, is dominant near
r, = 0, but at the lower density region, the effect of
rn, [—:(1 —

&, )F ], which enhances the effective mass,
dominates over tie efFect of mi, so that the product of
the two becomes greater than one. 22 Thus at the densities
of real metals (r, = 2 6 for 3D), the effective mass m'
is greater than one. With increasing r„ the potential
energy becomes more sizable than the kinetic energy and
so the electron system exhibits a more localized feature.
The increase in m" as a function of r, is consistent with
this trend.

One can see from Fig. 3 that results of the MHA and
RPA are close to each other, whereas results of HA are
the largest As me. ntioned previously, the correlation
interaction reduces the mass enhancement which is ob-
tained with the exchange interaction only. Our results
for the MHA are similar to recent results by Santoro and

1.0
M

m 0.8
th

0.6O

C'

~
0

F 4
hl

~~
CO

0.2

0.0
0 2 4 6 8 10 12 14 16

rs

1.7

1.6

lh
1.4

6$

1.3
~
) 1.2

LLI
1.0

I & I & I e I & I i I I I

0 2 4 6 8 10 12 14 1 6
FIG. 2. The renormalization constant Z~ as a function of

r, . The solid lines denote results for the 2D electron gas and
dotted lines for the 3D system. The open circles denote the
RPA, the open triangles the HA, and the open squares the
MBA.

FIG. 3. The effective mass m' as a function of r, . The
solid squares denote the results by Rice (Ref. 21) for the 3D
system; other symbols are the same as those in Fig. 2.
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Giuliani. s i4 They calculated efFective masses in the small
r, region, using much more complicated local-field correc-
tion factors associated with charge- and spin-fluctuations
induced vertex corrections.

In summary, we have evaluated the renormalization
constant and the effective masses in the 2D electron-gas
system as a function of the electron density. The GW
approximation for the electron self-energy is employed
and the exchange-correlation interaction is considered via
model local-field correction factors in the dielectric func-
tion. We have found that the renormalization constant
is smaller in the 2D system than in the 3D system and
the correlation efFect reduces the effect of exchange in-
teraction. We have found that the energy dependence of

the self-energy plays a more important role in determin-
ing the effective masses than the momentum dependence
of the self-energy does. We have also found that the
effective mass is greater in the 2D system than in the
3D system, implying that the interaction effect is more
prominent in.the 2D than in the 3D system.
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