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We provide a new interpretation of how electron correlations are represented within the local-density
approximation for exchange by deducing via Harbola-Sahni theory the corresponding pair-correlation
density. The expression difFers from that in the literature and contains, in addition to the uniform
electron-gas result, a term proportional to the gradient of the density. Thus, the nonuniformity of the
electronic density is explicitly incorporated in the approximation, and constitutes thereby the reason un-
derlying its success.

The local-density approximation (LDA) for exchange
and correlation of Hohenberg-Kohn-Sham' density-
functional theory is possibly the most widely' used ap-
proximation scheme for the determination of the elec-
tronic structure of matter. The reason for this, other
than its ease of application, is the high degree of accuracy
achieved. However, what has not yet been understood is
why the theory of the uniform electron gas on which the
LDA is based leads to such accurate results for the prop-
erties of nonuniform electron-density systems. In this pa-
per we show that the LDA in fact goes beyond uniform
electron-gas theory in that it explicitly incorporates the
inhomogeneity of the electronic density in its representa-
tion of electron correlations. This then is the reason un-
derlying the success of the approximation.

The physics of electron correlation for a system of elec-
trons in some external potential u,„,(r) is described by the
structure of the pair-correlation density g(r, r'), which is
the electronic density at r' given an electron at r. The
correlations between electrons are a consequence of the
Pauli exclusion principle, Coulomb repulsion, and self-
interaction. In recent work, Harbola and Sahni have
provided a physical interpretation whereby these electron
correlations can be incorporated into a local potential.
According to their interpretation, the local potential as
well as the electron-electron interaction (e-e) potential
energy both arise via Coulomb's law from the same
quantum-mechanical source charge distribution, viz. , the
pair-correlation density. The potential is the work re-
quired to move an electron in the force field of the pair-
correlation density, and the potential energy is the energy
of interaction between the electronic and pair-correlation
densities. The mathematical justification for the ex-
istence of a local potential representing electron correla-
tions is provided by Hohenberg-Kohn-Sham density-
functional theory. Within the framework of Kohn-Sham
theory, ' however, the relationship between the potential
and the e-e potential energy which is a universal func-

tional of the density is mathematical: the local many-
body potential is the functional derivative of the energy.

In this work we deduce via Harbola-Sahni theory ' an
expression for the pair-correlation density g" (r, r') for
nonuniform electronic systems within the LDA for ex-
change (X) of Dirac, ' Gaspar, ' and Kohn and Sham. '

The expression obtained difFers from the one presently
considered in the literature' to be the pair-correlation
density in this approximation, viz. , that derived for the
uniform electron gas via a Slater determinant of plane
waves assumed valid at each point of the nonuniform
density. It turns out that the expression for g„(r,r')
contains, in addition to the uniform electron-gas result, a
term proportional to the gradient of the density. Thus,
the nonuniformity of the electronic system is explicitly in-
corporated in the LDAX, and the physical representation
of electron correlations by the approximation far superior
than previously understood to be the case. For the pair-
correlation density g (r, r'), we show that the local po-
tential representing e-e interaction in the LDAX is the
work required to bring an electron from infinity to its po-
sition at r in the force field of this density. The e-e poten-
tial energy in turn is the energy of interaction between
the LDAX electronic density and this pair-correlation

. density. Now, within the LDAX, the Harbola-Sahni and
Kohn-Sham theories lead ' to the same many-body po-
tential and energy. However, when the electron correla-
tions as represented by this approximation are viewed
from the perspective of Kohn-Sham theory, the
inhomogeneity-term contribution to the pair-correlation
density does not appear, and we explain why this is the
case. Finally, by a study of the self-consistently deter-
mined structure of g," (r, r') as a function of electron
position, we explain the high accuracy of the e-e poten-
tial energy of atoms as determined within this approxi-
mation.

The pair-correlation density g(r, r') is defined as
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where %(r„.. . , r&) is the system wave function. The
numerator expectation value represents the probability of
simultaneously finding electrons at r and r', and the
denominator expectation is the electronic density p(r).
Thus, g(r, r') is the density seen at r' by an electron at r.
When only the correlations due to the Pauli exclusion
principle are considered, and the ground-state wave func-
tion is a Slater determinant of single-particle orbitals
P;(r), the pair-correlation density g„(r,r') is obtained as

g (r, r'}=p(r')+p (r, r'),
where p„(r, r') = ~y(r, r')

~ /2p(r) is the Fermi hole charge
density at r' for an electron at r, and y(r, r')
=g;P,*(r)(II);(r') is the single-particle density matrix with

y(r, r) =p(r). The pair-correlation density g (r, r')
satisfies the constraintsg (r, r') ~0, g (r, r) =p(r)/2, and

fg„(r,r')dr'=N —l.
With these definitions let us initially consider the ex-

pression g' '(r, r') for the pair-correlation density in the
LDAX as derived in the literature. ' With a Slater deter-
minant of plane-wave states, the expectation values of Eq.
(1) are first obtained, and the resulting expression then as-
sumed valid at each point of the nonuniform density of a
system. Thus, we arrive at the expression

g' '(r, r') =p(r')+p„' '(r, r'), (3)

where

p„' '(r, r') =—,'p(r)[9j, (x)/x'] (4)

is the corresponding Fermi hole charge, with j,(x) the
first-order spherical Bessel function, x =kFR, R=r' —r,
and where k~(r)=[3r~ p(r)]'~ is the local value of the
Fermi momentum. The density g' '(r, r') satisfies the
constraints of charge neutrality and value at the electron
position but not that of positivity for all electron posi-
tions. It is asymmetrical about the electron except for an
electron position at the nucleus. However, the Fermi
hole p'„'(r, r') term is spherically symmetric about the
electron irrespective of its position. Thus, the contribu-
tion of the hole charge p„' '(r, r') to the force field at the
electron position vanishes, and the force field due to
g„' '(r, r'), which is fdr'g„' '(r, r')(r —r')/~r —r'~, arises

only from the term p(r') of Eq. (3). The resulting poten-
tial, which is the work done in the force field of the densi-
ty p(r'}, is simply the Hartree potential uH(r)
= fdr'p(r')/~r —r'~. Consequently, the single-particle
differential equation governing the system is that of the
Hartree approximation: [ —

—,'V +u,„,(r)+vH(r)]P;(r)
=e;P;(r), with p(r)=g, ~P, (r)~ . Thus, the fact that
(via Coulomb's law) g' '(r, r') gives rise to the Hartree po-
tential shows that it is not the pair-correlation density in
the LDAX.

There is yet another point to note at this juncture. The
e-e potential energy which is the energy of interaction be-
tween the density and the pair-correlation density is in
this case given by the expression ,' f fdrdr-'

Xp(r)g„' '(r, r')/~r —r'~. This expression is the same as

I

the Kohn-Sham theory expression' for the total potential
energy in the LDAX. However, the numerical value of
the potential energy is not the same as that of the Kohn-
Sham LDAX scheme since the orbitals employed to
determine this energy are Hartree rather than the Kohn-
Sharn LDAX orbitals. [This, as noted above, is because
the pair-correlation density g„' '(r, r') leads to the Hartree
diff'erential equation. ] Therefore, the total ground-state
energy with g„' '(r, r') as the pair-correlation density will

be an upper bound to the Kohn-Sham LDAX result.
In order to obtain the pair-correlation density

g, (r, r') in the LDAX, what is required is an expan-
sion of g„(r,r') of Eq. (2) in gradients of the density about
the uniform electron-gas result. To obtain this expansion
one requires the corresponding expansion for the single-
particle density matrix y(r, r'} whose diagonal matrix ele-
ment is the density p(r). In this manner the expansions
for both terms of g„(r,r') are simultaneously obtained.
The expansion for y(r, r') is known' and the pair-
correlation density g (r, r') to lowest order in V, which is
g„" (r, r'), is given as

g„" (r, r') =p(r') +p' '(r, r') +p' "(r,r'),
where

jo(x)ji(x)p'"(r, r') = ', p(r) —R.Vk~
F

jo(x) is the zeroth-order spherical Bessel function, and
R=R/R. [Note that the lowest-order correction term in
the expansion for the electronic density p(r) is of O(V ).]
The pair-correlation density g„(r,r') also satisfies the
constraints of charge conservation and value at electron
position but not that of positivity. The term p„'"(r,r') is
not spherically symmetric about the electron position
and gives rise to a force field which is VkF(r)/n. The lo-
cal many-body potential due to g„(r,r'), which is the
work done by an electron in its force field, is then
[vtr(r) —k„(r)/m. ]. This expression is readily recognized
as the Kohn-Sham theory LDAX potential. Thus, the
system differential equation derived from the pair-
correlation density g„" (r, r') via Couloinb's law and the
Kohn-Sham LDAX scheme are the same. Further, the
curl of the force field due to g„" (r, r') vanishes. This
means that the local potential representing electron
correlations in the LDAX is path independent. The e-e
potential energy, which is the interaction energy between
the density p(r) and the pair-correlation density
g„(r,r'), is then —,

' f fdr dr'p(r)g (r, r')/~r —r'~.

However, the term p"'(r, r') does not contribute to this
integral so that it reduces to the Kohn-Sham theory ex-
pression with g„" (r, r') replaced by g„' '(r, r'). The im-
portant distinction to note is that in this case the poten-
tial energy is determined by the LDAX orbitals [which
are generated by the density g„(r,r')] and not by the
Hartree orbitals [that are generated by g' '(r, r')].

We next discuss why the inhomogeneity-term contribu-
tion to the pair-correlation density does not appear in the
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Kohn-Sham formulation of the LDAX. In this formula-
tion one begins by approximating the e-e potential-energy
functional of the density by the expression for the uni-
form electron gas, and then assumes the expression to be
valid locally at each point of the nonuniform electronic-
density system. This potential energy, as noted previous-
ly, is the interaction energy between the density p(r) and
the pair-correlation density g' '(r, r'). The local many-
body potential is then determined as the functional
derivative of the approximate potential-energy functional
and this turns out to be [v~(r) —k~(r)/m]. This is the
same result as that derived from g" (r, r') by Coulomb's
law. The point to note, however, is that having begun
with the assumption that the pair-correlation density is
g' '(r, r'), from which via the functional derivative the
LDAX potential and subsequently the energy are then
obtained, there is no mechanism within this self-
consistent framework to indicate that the electron corre-
lations represented by the inhomogeneity term p„'"(r,r')
are being accounted for. The fact that these additional
correlations are intrinsic to the LDAX can only be under-
stood when the approximation is viewed from the per-
spective of Coulomb's law. Of course, as is evident, the
use of the pair-correlation density g (r, r') in the
Kohn-Sham scheme leads to the same expressions for the
energy, potential, and eigenvalues as when g' '(r, r') is
employed.

We next present in Fig. 1 the self-consistently deter-
mined structure of the pair-correlation density g" (r, r')
for the neon atom for two representative electron posi-
tions. The cross section in the electron-nucleus (6'=0)
plane is plotted, with the nucleus at the origin. For com-
parison the exact pair-correlation density g, (r, r') deter-
mined via analytical Hartree-Fock wave functions is also
shown. We also plot the Hartree-Fock density p(r) to ob-
serve the difference between it and the pair-correlation
density for that electron position. The two electron posi-
tions considered are at r =0.036 a.u. in the high-density
region, and r=0. 307 a.u. at the intershell minimum of
the radial probability density. The densities at these elec-
tron positions differ by two orders of magnitude. In the
deep interior [Fig. 1(a)] and up to the radial probability
density maximum of the K shell, the g„(r,r') has con-
siderable structure. For electron positions beyond this
point [Fig. 1(b)] the oscillations in the structure of
g„(r,r') are not observable on the scale of the figure.
The significant point to note is how well g" (r, r') ap-
proximates the exact result. For electron positions
beyond the intershell minimum the two are indistinguish-
able. This is also the case beyond the first intershell
minimum for other atoms. Thus, g (r, r') differs from
the exact pair-correlation density only over the small
high-density region about the nucleus. In addition these
differences are not substantial. This explains why the
LDAX results for the total e-e potential energy are so ac-
curate. For completeness we quote in Table I the self-
consistently determined' LDAX and Hartree-Pock
theory total e-e potential energies for the noble gas
atoms. Note that for neon and heavier atoms the LDAX
errors are less than 1%.

In contrast to g, D (r, r'), the LDAX Fermi hole which
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FIG-. 1. Pair-correlation density g„(r,r') for the neon atom as
determined within the local-density approximation for exchange
(LDAX) and Hartree-Fock theory (Exact). The cross section in
the electron-nucleus {9' =0) plane is plotted as a function of the
distance r' from the nucleus for electron positions at (a)
r=0.036 a.u. and (b) r=0.307 a.u. The Hartree-Fock theory
electronic density is also plotted.

TABLE I. The total electron-electron potential energy of no-
ble gas atoms in atomic units as determined self-consistently
within the local-density approximation for exchange (LDAX)
and in Hartree-Fock (HF) theory together with the LDAX per-
cent error. The numbers in parentheses are the percent errors
in the results for the corresponding LDAX exchange energies.

Atom

He
Be
Ne
Ar
Kr
Xe
Rn

'See Ref. 1.
"See Ref. 6.

LDAX'

1.1212
4.7783

54.539
203.17

1081.9
2708.4
8257.6

HF

1.0258
4.4892

54.039
201.42

1078.5
2700.9
8244.0

%%uo Error

9.30 (16.86)
6.44 (14.59)
0.93 (9.67)
0.87 (7.98)
0.32 ( S.73 )

0.28 (4.83)
0.16 {3.79)

is [p (r, r')+p '(r, r')] differs from the exact hole for
all electron positions. Furthermore, the difference be-
tween these Fermi holes is more significant. As a result
the percent errors in the self-consistently determined
LDAX exchange energies (see Table I) are an order of
magnitude greater. This degree of accuracy of the
LDAX exchange energy can also be explained' by the
fact that it is the spherical average of the Fermi hole that
contributes to the exchange energy, and in the interior of
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atoms this average is reasonably accurate.
In conclusion, we have provided via Harbola-Sahni

theory an insight into how electron correlations are de-
scribed within the local-density approximation for ex-
change (LDAX). The current interpretation of the ap-
proximation is that each point of the interacting nonuni-
form electron gas is homogeneous but with a density cor-
responding to the local value at that point. However, the
new description shows the approximation to be far more
physically realistic because it explicitly incorporates the
inhomogeneity of the density into its representation of
electron correlations. Thus, we now understand the
physical reason why the LDAX scheme leads to accurate
e-e potential and total ground-state energies. Finally, we
note that as a consequence of our interpretation, the criti-

cism of the LDAX which questions the validity of em-
ploying expressions derived from a Slater determinant of
plane waves in regions where the potential is varying and
in the classically forbidden region where the wave func-
tion is exponential, is no longer justified. It is evident
that the wave function which gives rise to the LDAX
pair-correlation density g (r, r') does in fact incorpo-
rate to a significant degree the physics apropos to these
regions.
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