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We investigate the structure of (Naig)2-cluster dimers via solution of the Kohn-Sham equations
for a two-center jellium model. Results for the binding energy of the dimer as a function of the
intercluster separation as well as the electronic correlation diagram of the (Naig)2 system are pre-
sented. In contrast to previous results, our calculations indicate that the barrier which separates a
local minimum in the binding energy at an intercluster separation of about 15 a.u. from the absolute
minimum, the united Na38 cluster, is rather small.

I. INTRODUCTION

The spherical jellium model introduced by Ekardt,
Beck, and Chou, Cleland, and Cohen has been shown
to explain a number of characteristic features of metal
clusters, most notably the existence of magic numbers
(for an overview see, e.g. , Refs. 4 and 5; for work on
shells and supershells in metal clusters, see Refs. 6—11).
The standard spherical model can be refined further by
the introduction of axial deformation i and of a finite
surface thickness of the jellium background. 4 In addition
to the investigation of ground state properties of metal
clusters, the jellium model has been employed with suc-
cess for the study of the optical response properties
and of elastic electron-cluster scattering.

On the basis of the jellium model, Saito and Ohnishizs
(referred to as SO hereafter) have discussed the formation
of (Naia)z-cluster dimers as an intermediate step in a
complete fusion process of two Naqg clusters. They found
that the dirner binding energy

aE(d) = E...(d) —E...(oo)

where E«&(d) is the total energy of the dimer (Naia)2 for
a given intercluster separation d and E«t(oo) is the total
energy of two separated, spherical Nayg clusters, has an
attractive local minimum at d = 16 a.u. , which is sepa-
rated from the absolute minimum at d = 0, representing
the united Na38 cluster, by a substantial barrier. SO in-
terpreted the system at this local minimum as a "giant
atom dimer, " in close analogy to atomic alkali dimers
such as Na2. Given the high abundance of Naqg clusters
in experimental mass spectra, the reactivity of Nayg
clusters and the stability of (Naia)2 dimers were sug-
gested to induce fusion of two Naqg clusters and thus to
explain the relatively high abundance of Na38 clusters in
the mass spectra, which cannot be understood in terms of

the spherical jellium model. The same concept has been
applied to (Na4)2 and (Nas)2 dimers by Ishii, Saito, and
Ohnishi and to the dimer decay of potassium clusters
by Saito and Cohen. Furthermore, Nakamura et aLz7

used a similar approach for the discussion of cluster frag-
mentation. Recently, relatively stable cluster molecules
have also been found in quantum molecular-dynamics
simulations of Nas-Nag and Nas-Nas collisions. s

In the present study we reanalyze the problem consid-
ered by SO. Our approach is thus similar to that of these
authors, that is, we solve the Kohn-Sham equations for
the valence electrons in the local-density approximation
(LDA) for a two-center jellium model. As the results
obtained depend rather sensitively on the accuracy of
the numerical procedures used, we put special empha-
sis on this point. In addition, we investigate the depen-
dence of the results on the specific form of the correlation
contributions to total energies and Kohn-Sham poten-
tials. In particular, we compare results obtained with the
Gunnarsson-Lundqvist (GL) (Ref. 29) parametrization of
the LDA correlation functional with those obtained for
the form given by Vosko, Wilk, and Nusair (VWN) (Ref.
30). While for unpolarized systems the latter functional,
in general, leads to results rather similar to those from
the Perdew-Zunger (PZ) form (without self-interaction
correction) used by SO and seems to be among the most
accurate representations of the electron-gas correlation
energy available today, the GL functional produces a
somewhat larger correlation energy. This effect also
shows up in jellium model calculations. Nonetheless, the
variation of the binding energy AE(d) with the inter-
cluster separation is quite similar for the GL and VWN
functionals. One obtains a local minimum for an inter-
cluster separation of about 15 a.u. The barrier separat-
ing this minimum from the united cluster is, on the other
hand, much smaller in height and width than the barrier
reported by SO.
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Further insight into the numerical accuracy as well as
the structure of the binding energy can be obtained from
the electron correlation diagram, that is, the variation of
the self-consistent Kohn-Sham orbital energies with the
intercluster separation. s2ss Correlation diagrams have
provided a very valuable guide for the study of excitation
and electron transfer processes in ion-atom collisions at
moderate collision energies. They can be expected to be
of equal use for the discussion of atom-cluster or, to re-
fer to our specific example, of cluster-cluster collisions at
sufficiently low energies.

The paper is organized as follows: In Sec. II we outline
the theoretical framework. Section III explains the nu-
merical procedures used and discusses the characteristics
and limitations of our method. In Sec. IV our results for
the (Nais)z dimer are given. An Appendix summarizes
some details concerning the background potential for the
case of overlapping jellium spheres. We use atomic units
throughout this paper unless otherwise stated.

II. THEORY

—for references see, e.g. Ref. 34). In order to reduce the
numerical task somewhat, we restricted ourselves to the
spin-saturated case. As SO clearly demonstrate, the spin
polarized results are rather close to the unpolarized ones,
the latter representing the ground state in the most in-
teresting region of distances f T.he maximum difFerence
between both spin versions occurs for the united clus-
ter. One may obtain an idea of the energy differences in-
volved by analyzing the spherically averaged Nass ground
state for both situations: While the spin-polarized case
leads to a ground-state energy of —2.66573 a.u. (using
VWN), the unpolarized version gives —2.66262 a.u. The
difference of 0.00311 a.u. is much smaller than the en-
ergy difference with respect to two single Na~9 clusters,
AE(f = 0) = —0.04142 a.u. Consequently, even for
such f where the spin-polarized case represents the true
ground state, the AE(f) resulting from an unpolarized
calculation is close to the correct spin-polarized AE(f)
(compare Fig. 1 of SO).

Within DFT one has to solve the Kohn-Sham equa-
tions (for each separation f),

In the spherical jellium model one assumes that the
ionic cores in the cluster are well described by a positive
charge distributed uniformly over a sphere with radius

B = rgNS (2)

Here rs denotes the Wigner-Seitz radius of the bulk
metal (rs = 3.93 for Na) and N is the number of atoms
in the cluster. The valence electrons are then bound by
the electrostatic potential generated by this background
charge. In the present situation the two separated Nais
clusters are described by jellium spheres, whose centers
are a distance d = 2f apart. For the case of overlap-
ping clusters (f ( RN „=10.487 a.u.), we require the
background charge density to be homogeneous and equal
to the bulk value no = ( s rs&) i inside the two overlap-
ping spheres. This is assured by adjusting the radius of
the truncated spheres, so that in cylindrical coordinates
(p, p, z) one has

n+(r) = nse(&d —p' —(lzl —f)') (3)
where O(x) represents the usual step function, i.e. ,
O(x) = 1 for x ) 0 and 0 otherwise, and the modified
radius Bp of the truncated spheres is directly obtained
from the radius R of the corresponding isolated spheres,
Eq. (2), using the Cardanic formula,

B~=B B+
f' f'B= 1+ 8B3 4B3

The electrostatic potential corresponding to this back-
ground charge density, denoted by v,„t(r), is most easily
evaluated by a multipole expansion (for details see the
Appendix) .

For the solution of the many-body problem at hand,
we work within the framework of density-functional the-
ory (DFT), which has also been the basis for extensive
work on atomic dimers (and more complicated molecules

( + 'UKS()~) ~)) &-(~) = ~-&-(~)
2

where the total potential vKs([n]; r) is given by

vKs([n] r) = v-~(r) + vH(r) + v-([n] r)

(4)

Here v, „t, is the background potential (its form for the
case of overlapping jellium spheres is discussed in the
Appendix), vH is the Hartree potential,

vH(r) = s, n(r')
lr —r'l ' (6)

In our calculations E„,[n] has been taken into account in
the LDA. We carried through all our calculations for two
different versions of E~, [n], the form suggested by Gun-
narsson and Lundqvist 9 and the interpolation between
the RPA (being exact in the high density limit) and ac-
curate low-density Monte Carlo resultsss by Vosko, Wilk,
and Nusair, in order to demonstrate that our main
conclusions are not due to a specific form of E„", [n].
Equation (4) has to be solved self-consistently with the
ground-state density n constructed from the N lowest
occupied orbitals 4

For the solution of the two-center Kohn-Sham equa-
tions (4), we use prolate spheroidal coordinates (, )7, y,
which have been utilized for related problems by various
authors (see, e.g. , Refs. 32, 33, 13). While ( and g are
defined in terms of the distances rq and rq from the two
jellium centers to the point r by

(ri + r2)
2f

and v„, is the exchange-correlation potential, defined as
the functional derivative of the exchange-correlation en-
ergy functional E„,[n],

bE„,[n]
vxc n &r
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(ri —rz)
rl

2 )
—1 ( g & 1

vKs is obtained from Eq. (5) using the electronic density

vKs (r) = VKs ((, rl)

the solutions of (4) can be classified by the angular-
momentum projection quantum number m, and one can
decompose the eigenst ates as

+-( ) = +j, ((,rl)"™ Oy 1&2)e ~ ~ ~

The integer j = 1, 2, . . . denotes the sequence of levels for
given m. Consequently the Kohn-Sham equations to be
solved read

(tgq + VKS (Cr Q) )@j,m ((& Q) = &j m@j,m g & 'Q) &

with

is the usual azimuthal angle, 0 ( y & 2', with respect
to the intercenter axis. Due to the rotational symmetry
with respect to the intercenter axis,

n((, rl) = ) ) O(sF —~j )~ 4j ((,q), (16)
m=O ~=1

where op is the Fermi energy and vm accounts for the
degeneracy for given m = ~m[,

2 for m = 0
4 for m & 0, (»)

Finally, the total energy was evaluated from the rela-
tion

Etot = ) ) e(SF &j,m)&m&jm + @xc + @jelli
m=o j=1

oo 1

d( dry((2 —rl2)n(g, rl)v~((, rl)

oo 1

d( dri((' —rl') (( rl)v-(( rl)

—1
~g(C' —1)~g + cl, (1 —rl')&„

2 ' ' —rl'

((2 —rlz) m2

((' —1)(1—rl').
For such a two-dimensional problem it seems
advantageoussz 33 33 i3 2s to expand 4j m(g, rl) in terms
of analytical basis functions Q„i

~j,-(4 rl) = ). f.'& 4-i-(4 rl) (»)
n=o, l=m

Here we use the nonorthogonal Hylleraas basis,

&~im(( rl) = (&' —1) ' & " L,n I lPi (n) (13)a )
where the Lm and Pim are the generalized Laguerre poly-
nomials and the associated Legendre functions, respec-
tively, and a is an adjustable basis parameter (for a dis-
cussion of a, see Sec. III). With this basis, Eq. (11) can
be recast as an algebraic eigenvalue problem,

&max m+lmax

) ) [(nlrn~&g„+ vKs ~n'l'rn)
n'=O l'=m

(nlm~n'l'm)j fj,i, ——0, (14)
where m=0, 1,. . . , m „and ((, rl~nlrn):—@„im($,g).
Also, we have indicated that for any calculation, the ba-
sis expansion has to be truncated. While the overlap and
kinetic matrix elements (nlrn~n'l'm) and (nlm~tg„~n'l'm),
respectively, can be evaluated analytically, sz the poten-
tial matrix elements

(nlml vKs ln'l'm)

w here E„, is the exchange-correlation energy obtained
by insertion of the density (16) into the functionals of
Refs. 29 and 30 and E;,~~; is the electrostatic energy of
the homogeneous background.

III. DETAILS OF THE NUMERICAL
PROCEDURES

In this section we discuss a number of technical details
of our calculations with specific emphasis on the accuracy
and limitations of our method. Instead of applying the
direct integration indicated in Eq. (6), it is more conve-
nient to evaluate vH by solution of the Poisson equation.
Utilizing a multipole expansion,

l max

(4 )=-, ).( l+ ) (4) ( )
l=o

(19)

one ends up with differential equations for the functions
gl)

(~ (~ )~ (l + )) (()

4rrf—dri((' —rl')Pi(rl)n(( rl) (2o)

(())

which have been solved by a standard shooting proce-
dure. Several tests showed that the maximum l in this
expansion can be chosen to be identical to the maximum
l in the basis expansion, Eq. (14) (or somewhat smaller
for small f). As boundary conditions we used

f3 dry((' n')0 i ((,rl)—
&&VKsN rl)V i (0 rl) (15)

have to be treated numerically,
Equation (14) has to be solved self-consistently, i.e. ,

= —2m.f dry(1 —rl')Pi(rl)n(1, rl) (»)

st the lower end of the ( interval. In the asymptotic
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xt ((),=, «Q~(t!)

as these satisfy the proper boundary conditions,

(22)

The multipole coefficients «can be evaluated by multi-
plying Eq. (20) by Pt(g) and integrating over (,

« = 4vrf dn((' —n') P~ (()Pi(n) n(( n)

regime, i.e. , for large (, the right-hand side of Eq. (20)
vanishes exponentially due to the exponential decay of
the density. Thus, up to exponentially decaying correc-
tion terms, the y~ asymptotically are proportional to the
Legendre functions of the second kind, Q~((), 7

n a„, while l a„could be chosen smaller than 12 (for

f = 0.25 a.u. we used n „=18, l = 10). rn
on the other hand, depends on f: While for f ) 5 a.u.
only m = 0, 1,2 states are among the occupied orbitals,
for smaller f, also the lowest m = 3 state is occupied.

The coupled solution of Eqs. (14) and (19) proceeded
iteratively, requiring the maximum absolute difference
between the total potentials of two successive iterations
to be smaller than 10 4 a.u. Solutions have been ob-
tained in the interval 0.25 a.u. & f & 11.5 a.u. in steps
of about 0.25 a.u,

One of the crucial parameters in the basis expansion
(12) is the scahng constant a. First, it determines the
location of the extrema and zeros of the I„.Even more
important, however, is its decisive role for the asymptotic
behavior of the basis functions @„~

(23)

Thus cp is obtained directly as

Ncp=2 —
)

This has to be contrasted by the exact asymptotic form
of the solutions of Eq. (11),

such that the asymptotic boundary condition for the
monopole term reads

(ma +1
xo(( ~ ) = —»

max
(24)

with ( „being the maximum ( value of the mesh used.
The explicit calculation of higher multipole coefBcients
can be avoided by using the boundary conditions

~qxi(() &gQt 4)
xi(() g=( .„Qi(() (25)

For the shooting procedure we required an absolute accu-
racy of 10 a.u. for the Xt(g). To achieve this accuracy
for the higher multipoles, the mesh for this procedure
was chosen independently of the Gaussian mesh used for
numerical integration (see below). Thus to obtain the in-
homogeneous term of Eq. (20) on the shooting mesh and
the X~(() on the Gaussian mesh, we had to use a spline
interpolation.

For the numerical evaluation of the matrix elements
(15) and the total energy (18), we used a two-dimensional
Gaussian integration with up to 256 mesh points for each
coordinate. It is noteworthy to mention that even these
rather large Gaussian meshes covering the complete space
inside and outside the jellium are not sufficient to obtain
Ej,u; with the required accuracy due to the sharp jellium
edge (the error being of the order of 0.1 a.u. ). Thus
EJe]]1 has been calculated on Gaussian meshes with mesh
points only inside the jellium, i.e. , taking into account the
jellium geometry. Alternatively, one could evaluate E&,~~;

analytically using the multipole expansion of Ref. 38. For
all other quantities to be integrated, a comparison with
results based on half as many mesh points showed that
the integration had converged.

Also, the size of our basis has been tested extensively.
It turned out that n~« = 12 and tm« ——12 are sufBcient
for most f For very small f. , however, we had to increase

At first glance one would conclude that adjusting a to
some average eigenvalue 2, i.e. , 1/a = 2fg 2Z, sho—uld be
a reasonable choice for a, in particular, given the fact that
the eigenvalues ezm of a jellium calculation are rather
close together. One must not underestimate, however,
the importance of the power of ( in front of the expo-
nential term: An a smaller than this is required in order
to simulate the 1/( prefactor in 4&~. Thus we have ad-
justed a to be as close to 2fg 2e as po—ssible without
producing basis functions that extend too much into the
asymptotic regime.

As a is the parameter our results are most sensitive
to, one can obtain an estimate of their accuracy by com-
paring the results for two different choices of a. For this
comparison we have chosen f = 4 a.u. , as this is one of
the more critical cluster-cluster separations and our re-
sults for this f deviate considerably from those of SO.
Following our standard procedure for the choice of a, we
find a = 0.081 a.u. (from an average eigenvalue as dis-
cussed above, one would conclude a 0.24 a.u. ). Using
the VWN functional, we obtained AE(f) = —0.0259 a.u.
Furthermore, the eigenvalue of the highest occupied or-
bital turned out to be —0.09843 a.u. %'ith a = 0.10 a.u. ,
on the other hand, we found AE(f) = —0.0263 a.u. and
an eigenvalue of —0.09854 a.u. This demonstrates that
our method certainly allows the determination of b,E(f)
and eigenvalues on the 0.001-a.u. level.

The energy resolution of about 0.001 a.u. also indicates
to what extent our numerical method can resolve the or-
der of single-particle orbitals wherever these are nearly
degenerate. Problems with ordering eigenvalues properly
are without consequences for the stability of our numer-
ical procedure as long as almost-degenerate orbitals are
clearly inside or outside the occupied spectrum; in partic-
ular, as in this case, the ordering problems disappeared
as soon as self-consistency was achieved. They do affect
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our calculations, however, if these orbitals happen to be
close to the Fermi energy c~, which is always the case
at level crossings between the highest occupied and the
lowest unoccupied orbital. In the vicinity of such level
crossings, self-consistency could not be achieved. Fortu-
nately, the capability of our method to order eigenvalues
correctly is somewhat higher than the absolute energy
resolution discussed above. Nevertheless, there are two
regions of f, i.e. , 5.25 a.u. ) f ) 4.75 a.u. and 3.75 a.u.) f ) 2 a.u. (compare Fig. 3), where, due to level cross-
ings, regular converged solutions could not be obtained.
In this case we used two alternative procedures to resolve
this difficulty.

The most obvious way out of this degeneracy prob-
lem is to restrict the individual orbitals which are used
to construct the electronic density (16), i.e. , to select
one of the almost-degenerate orbitals as being occupied.
This is completely equivalent to reducing the variational
space offered by the basis (13) by one of the competing
orbitals, i.e. , to projecting out the subspace spanned by
this orbital. Comparing the ground-state energies of aQ
possibilities of including one of the competing orbitals
in the occupied spectrum then allows one to determine
the correct ground state. This method, however, has
the disadvantage that the eigenvalue of the eliminated
orbital cannot be determined self-consistently. Thus al-
ternatively we simply mix the almost-degenerate orbitals
when constructing the density, enforcing proper normal-
ization,

m=0 j=1

where v ~ equals v, Eq. (17), for all inner orbitals,
v /M for the M competing orbitals at the Fermi sur-
face and 0 otherwise. This leads to a stable series of
eigenvalues near the Fermi surface at the price of not be-
ing consistent with the basic principles of DFT, as the
ground state is no longer constructed from a single de-
terminant. Consequently' this method does not produce
ground state energies [and consequently EE(f)] in a con-
sistent way (in contrast to the former approach involving

0. 5

—0. 5

GL
SO

0 4 6

f (ri ti). ,

10

FIG. 1. AE(f), Eq. (1) (in eV) obtained using VWN
(solid line) and GL (dashed line) in comparison to SO
(dashed-dotted line).

0

kinetic
electrostatic

exchange —correlation

4 6 8 10
f ((l. . |t.. )

FIG. 2. Components of AE(f) for VWN (in eV): Ki-
netic energy (solid line), electrostatic energy (dashed line),
and exchange-correlation energy (dashed-dotted line).

only single-determinant wave functions). Thus the pro-
jection method has been used for the relevant critical f
in Figs. 1 and 2. In order to get a complete picture of
the Kohn-Sham eigenvalues, on the other hand, one has
to apply the mixing procedure. Thus this scheme has
been used for producing Fig. 3. It is important to note,
however, that the most interesting quantity, AE(f), does
not depend sensitively on the way the degeneracy situa-
tions are treated. Both procedures discussed lead to the
same AE(f) within the accuracy that is required for this
quantity.

It is instructive to consider f = 5 a.u. as an exam-
ple for this situation. Here the erst orbital with m = 3,
4 j—1 ~—3 is almost degenerate with two other orbitals,
4 j—7 ~—Q and @~—4 ~ q, while six electrons (note the
m and spin degeneracy) have to be distributed among
these orbitals. Analyzing this case in detail shows that
4j—7 ~—O is bound, while the right order of 4j—1 ~—3
and @j 4 1 cannot be resolved. Selecting 4j—] —3
to be bound as discussed above leads to a ground-state
energy Et~t ———2.63143 a.u. ; using 4~ 4 ~—&, one ends
up with Et t ———2.631 06 a.u. The difference of 0.000 37
a.u. between both energies certainly is very close to (if

j=8, m=0
J=3, m=2
j =4, m=1
j=6, m=0
j =5, m=1
j=7, m=O
j=1,m=3
) =2, m=2
j =3, m=1
j =4, m=O
j=5, m=O

j =1, m=2
j =2, m=1
j=3, m=O

j =1, m=1
j =2, m=O

j =1,m=0

I .- J

0. 1

—0. 12

—0. 14

—0. 16

—0. 18

—0.2
I

6

f (o. . u. . )

10

FIG. 3. Kohn-Sham eigenvalues (in a.u. ) as a function of
the cluster-cluster separation f = d/2 for VWN. The order-
ing of the counting number j corresponds to the united Na38
cluster.
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not beyond) the limits of our method. The separation
of the corresponding eigenvalues is extremely small: Us-
ing the mixing scheme one obtains e7p = —0.10150 a.u. ,

e4q ———0.10096 a.u. , and ey3 ———0.10088 a.u. Of course,
the absolute values of these eigenvalues should not be
taken seriously beyond the 10 -a.u. level. Neverthe-
less, they most clearly indicate the degree of degeneracy
present. This is, however, the most extreme case that has
occurred. In contrast to f = 5 a.u. , for all other values of
f the ground state could be determined unambiguously.

IV. RESULTS

The main result of this work is given by Fig. 1, where
we plot BE(f) as calculated using both the VWN and
GL functionals in comparison to the results obtained by
SO, which are based on the PZ functional (note that in
Fig. 1 we use units of eV in order to spread the scale).

First, it is important to recognize that the qualitative
behavior of AE(f) resulting from GL and VWN is very
similar. In the interesting regime of cluster-cluster sep-
arations, AE(f)Gi, is more or less shifted by a constant
value of roughly 0.1 eV with respect to AE(f)vw~. The
obvious tendency of the GL form to produce a some-
what stronger binding is in agreement with its electron-
gas properties (for a comparison of GL and VWN for
the case of atomic dimers, see Ref. 39). Quantitatively
the differences between GL, VWN, and PZ results for jel-
lium sphere problems are most readily discussed for the
spherically averaged unpolarized Na38 cluster. Using GL
one obtains as ground-state energy —2.86347 a.u. ; with
VWN one finds —2.66262 a.u. , while PZ gives —2.67190
a.u. As to be expected, VWN and PZ results agree very
well, as these functionals are based on the same numer-
ical correlation energy results. 35 The difference between
the GL and VWN results is similar for the smaller Na~g
system (GL: —1.40950 a.u. , VWN: —1.31060 a.u. , PZ:
—1.31476 a.u. ). It is this 7Fo difference in ground-state
energies which produces the shift between 4E(f)~L and
AE(f)vw~. In the present context, however, this shift
is not relevant: The stability of (Naig)q dimers only de-
pends on the height and width of the barrier between the
local minimum at f = 7.5 a.u. and the absolute minimum
at f = 0.75 a.u. , but the structure of the barrier is very
similar for both functionals. Nevertheless, one conclusion
to be drawn from these results is that binding energies
and eigenvalues of jellium model calculations depend ap-
preciably on the E„,[n] used in Kohn-Sham equations.
It certainly seems recommendable to use one of the more
accurate forms for E" [n]

The differences between the VWN results and those of
SO, on the other hand, are more dramatic. While the lo-
cation of the local minimum of AE(f) is about the same
(8 a.u. for SO compared to 7.5 a.u. in our case), its depth
differs by about 0.3 eV, with our AE being more attrac-
tive. The opposite happens for the united Na38 cluster.
Here we find AE(f = 0) = —1.127 eV (using a spherical
average for the open 2p shell —this procedure might lead
to a marginally higher ground-state energy than taking
into account the nonsphericity of the electronic density),

in comparison to —1.7 eV of SO. Note that while our
AE(f = 0) results from the solution of one-center Kohn-
Sham equations for a spherical Nass cluster (and thus
from a completely different numerical program), SO ob-
tain their united cluster energy using f = 10 a.u. , i.e. ,
on the basis of the two-center code used for other f Th. e
fact that the results from our two-center code run rather
smoothly into the united cluster energy obtained from
a much simpler and more accurate one-center program
strongly supports the accuracy of our two-center calcula-
tions. Furthermore, in contrast to the results of SO, our
AE(f) for small f indicates that our method is able to
reproduce rather subtle energy differences, as the spheri-
cally averaged Nass leads to a higher ground-state energy
than a Nass cluster with a small deformation (the small-
est f for which we carried through a calculation with the
two-center code is 0.25 a.u.), in accordance with previ-
ous results. For large values of f, which are easier to
deal with from a computational point of view, our b,E(f)
becomes identical with that of SO, as one would expect
from the similarity of VWN and PZ results for unpolar-
ized systems.

More important than the limiting behavior of AE(f)
for large and small f, however, are the difFerences in the
structure and size of the barrier that separates the dimer
minimum from the united cluster. Our barrier is pro-
duced by @~—i m, —s entering the occupied orbitals. As
soon as 4~ i ~ s is occupied, AE(f) starts to become
more attractive again. The same happens at f = 2.5
a.u. , where a new ni = 1 orbital starts to be occupied,
as can be seen from Fig. 3. Also, our barrier has a maxi-
mum of only —0.27 eV at f = 5 a.u. (corresponding to a
height of 0.79 eV with respect to the dimer minimum at
f = 7.5 a.u.—see Fig. 1). Consequently, the stability of
the dimer configuration (Naip)2 is substantially reduced
as compared to the results of SO.

In Fig. 2 we show the individual contributions to
AE(f) for the case of VWN. Again the f dependence
is quite different from that of SO (compare Fig. 2 of Ref.
23). The individual terms of the binding energy show a
somewhat smoother variation in our case.

Figure 3 shows the Kahn-Sham eigenvalues in the in-
teresting regime of f, again for the VWN functional. One
clearly recognizes how the shells of the spherical Na38
cluster develop into those of two spherical Naqg clusters.
In particular, one notes how the lowest m = 3 orbital
enters the occupied spectrum at about f = 5 a.u. , finally
joining the 1f shell of Nass. It is this rearrangement of
orbitals at the Fermi surface that is responsible for the
increase of AE(f) at f = 5 a.u. As with @j—i ~—3 a
new symmetry structure is introduced into the ground
state; the peak of AE(f) at f = 5 a.u. is much more
pronounced than the corresponding one at f = 2.5 a.u. ,
where a different m = 1 orbital starts to be occupied.

Examining Fig. 3 in detail, one observes the two re-
gions where the degeneracy of orbitals leads to conver-
gence problems for pure single-determinant ground states
(compare the comments in Sec. III). While for 4.75 a.u.( f ( 5.25 a.u. , 4j 7,~ pC j —4~——i and 4—'j—i ~—3 are
more or less degenerate, the second critical region is due
to an extended level crossing centered at f = 2.5 a.u. In
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particular, for the more sensitive regime 4.5 & f & 5.25,
small discontinuities of the eigenvalues at the bound-
aries of this region reveal the fact that in this regime
the almost-degenerate orbitals at the Fermi level have
been mixed. Nevertheless, the overall smoothness of the
eigenvalues in these critical regions clearly supports the
method used to obtain them.

Figure 3 also shows that in the f regime of the dimer
minumum (around f = 7.5 a.u. ), one finds a substan-
tial gap between the eigenvalues of the highest occupied
(4 j—7 ~—Q) and the lowest unoccupied (@~ 2 ~ 2) or-
bital. Although in the framework of DFT only the eigen-
value of the highest occupied orbital has a rigorous phys-
ical meaning, i.e. , it equals the ionization potential, this
eigenvalue difference has been used in the literature as a
measure for the reactivity of clusters. In this respect the
comparably large gap at the dimer minimum indicates
a low reactivity of the dimer. Note, however, that LDA
eigenvalues for highest occupied orbitals can be in error
by as much as 50Fo (compare Ref. 41).

V. CONCLUSIONS

In this contribution we have reconsidered the problem
of metal cluster dimers for the case of (Naqs)2. On the
basis of the jellium model, we have solved the two-center
Kahn-Sham equations (using the LDA for exchange and
correlation) for a geometry proposed in the literature. 2

We find that the barrier that separates the minimum in
binding energy defining the cluster dimer from the abso-
lute energy minimum corresponding to the united cluster
is considerably smaller than previously reported. Thus
the transition of the dimer to the united Nass cluster is
more likely on the basis of our results. In addition, the
attractive force between two well separated Naqg clusters
is even stronger in our case, i.e. , the dimer minimum is
deeper. Consequently, the mechanism for fusion of two
Na] 9 clusters via the dimer channel, as put forward in
Ref. 23, is confirmed by our results and thus could be
the explanation for the relatively high abundance of the
nonmagic Nass cluster observed in experiments.

Our calculations indicate that Na38 is a deformed sys-
tem: For the jellium geometry considered in this work, a
separation of about 1.5 a.u. between the two centers leads
to a lower ground-state energy than a spherical cluster.
Though this geometry most likely does not represent the
most suitable form for the jellium background, and the

I

spherical average used for the electronic density in the
case of the spherical jellium might lead to a marginally
higher energy than treating the open 2p shell nonspheri-
cally, this fact refiects the deformation of Nass found in
previous studies.

Furthermore, we present a correlation diagram ob-
tained from the self-consistent solution of Kohn-Sham
equations for two-center cluster problems. This result
should provide some insight into the various possibilities
of electron excitations and transfer in low-energy cluster-
cluster collisions. Work along this line is in progress.
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APPENDIX: THE BACKGROUND POTENTIAL
FOR OVERLAPPING JELLIUM SPHERES

( ( 5I
v,„,(r, 8) = ) l

a(r'+ (, lP((cos8) (A2)

The potential (Al) can be directly evaluated along the z
axis,

For the calculation of v,„(,(r) in the case of overlapping
jellium spheres,

2 in+(r)v.„,(r) = — d r
lr —r'l

with n+(r) given by Eq. (3), we used spherical coordi-
nates,

r = fV'('+(7' —1,

cos6I = 6n

gg2 + q2

and a multipole expansion,

v,„t(r,0) = —27rno — 2(r + Rd, —f )' I" Rd, fl + Ir + Rg+ fl
2 f 2 2 2 3 1 1 3 1 1 3
3r2 f2 3r —f 3r+ f
—'d(Rd + f)TO(d—Rd —f[ —[(Rd+ f) + d' ' ]8(Rd + f —d')) ( 3)

Equation (A3) allows the determination of the coeffi-
cients a(, , 6& of Eq. (A2) by expansion in powers of either
r or 1/r. The two scales involved are given by f and

QRd —f2. For r & f and r & JR&2 —f2, one obtains
a pure series in powers of r, as the numerator in (A3)

l

can be expanded in powers of r/QRd2 —f2 and the de-
nominators in powers of r/f The opposite .situation,
r ) f, r ) JR&2 —f2, requires expansions in powers of
f/r and QR2& —f2/r and consequently all a( vanish. In
the intermediate regime one has to distinguish two cases
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depending on the relative size of f and JR&2 —f2, and
thus both at and bt contribute. Of course, only even mul-
tipoles are relevant for all these expansions in the case of
the symmetric (Naqs) 2 dimer.

In our calculations we used the multipole expansion

(A2) to obtain v«& with an accuracy of 10 ' a.u. with up

to 4000 terms contributing. In particular, we made sure

that none of the points of our Gaussian meshes was too
close to the critical radius r = f, where the corresponding

expansions do not converge.
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