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Computer-simulation studies of the melting transition of Rb and K intercalated in graphite
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The energy histogram method, introduced by Ferrenberg and Swendsen [Phys. Rev. Lett. 61, 2635
(1988); 63, 1195 (1989)], was applied to the constant-temperature molecular-dynamics (NID) simulation
of a two-dimensional system with incommensurate structures. We performed MD simulations for the
stage-2 graphite intercalation compounds (GIC's) with Rb or K being the intercalants (Rb-GIC's and
K-GIC's). The temperature dependence of the specific heat, C„ is calculated for various sizes up to 864
atoms. The melting temperature was found to be 158 K for Rb-GIC's and 119 K for K-GIC's, which are
in agreement with the experimental observations and an earlier MD result for Rb.

I. INTRODUCTION

For over a decade, the melting transitions of two-
dimensional (2D) systems have been intensively investi-
gated both experimentally and theoretically, and a valu-
able review has been given by Strandburg. Computer
simulation is one of the important techniques used in this
field. The determination of the transition temperatures
and critical properties at the transition were also done us-
ing both Monte Carlo (MC) and molecular-dynamics
(MD) simulation techniques, in which a very large
amount of computer time is needed for accumulating
sufficient configuration information to finally calculate
the temperature dependence of the specific heat, and
hence to determine the transition temperature and the
critical properties. An economical and more efficient
method, called the energy histogram method, was, how-
ever, introduced by Ferrenberg and Swendsen, ' and we
will briefly describe it below. To our knowledge, this is
the first time this method has been applied to a MD study
of the 2D melting transition. The real systems we have
studied are the stage-2 Rb and K graphite intercalation
compounds (GIC's), in which alkali-metal Rb and K
atoms are intercalated in graphite forming a sandwichlike
structure with a quasi-2D metal sheet between adjacent
graphite layers separated by an empty (normal) graphite
spacing. A variety of static and dynamic properties of
different types of GIC's was extensively studied in the last
decade by means of x-ray and neutron-scattering experi-
ments, and most recently reviewed in a volume edited by
Zabel and Solin. The MD simulation method applied to
these 2D alkali liquids by Fan and co-workers has been
largely successful in reproducing both static and dynamic
features of the data. The determination of the order-
disorder phase-transition temperature of GIC's using the
MD technique has not been published, although it was

II. MODEL POTENTIAL

The input potentials used here are the same as given in
Refs. 6—8. The first one is the 2D screened Coulomb pair
interaction potential between two alkali-metal atoms with
charge g, at a distance r apart, which was taken from the
treatment of Visscher and Falicov" and adapted for the
graphite intercalation compounds by Plischke, ' and is
expressed as

V (r)= ——Y(r)
4m'. r

where

Y(r ) =2f dq JD(qr )D(q)4&(q ),
with

(la)

D(q)= 1

qao
(q (2k~)

or

D(q)= [I—Ql —4k~/q j (q)2k~),2

qao

attempted by Fan. We intend to present this result in
this paper and compare it with a more recent constant-
temperature MD simulation performed by means of the
histogram method. Statistically, the former MD mimics
a microcanonical ensemble while the latter, constant-
temperature MD, simulates a canonical ensemble. Both
methods give rise to consistent results.

Our purpose here is to show the success of the MD
simulation and to demonstrate both the efficiency of the
energy histogram method and the accuracy of the model
used.
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4&(q) = e' i'~ 'sinh(qc/2) 1+Z(q)
VA (q) —1 1 —e ~'Z(q)

in which

(lb)

where Jo(qr) is the zero-order Bessel function, ao is the
Bohr radius, kI; is the Fermi wave vector, which can be
calculated in our 2D system in terms of the areal density
of Rb atoms po,

" and

ature is desired, the kinetic energy of the model system
must also be constant. In order to realize this require-
ment, starting with the Newtonian equations of motion,
one can introduce an additional term —ap, where p is
momentum, to the force in the equation of motion below
and then use the constraint of dT/dt =0 to determine the
factor a, as proposed by Hoover, Land, and Morn' and
Evans, ' i.e., we write the equation of motion as

and

Z(q)= A(q) —t/A (q) —1 (lc) dpi c) p
dt Bq,.

Exp . (3)

A (q) =cosh(qc)+D(q)sinh(qc) . (ld)

It is obvious that Y(r) represents the screening effects of
the donated electron sheets on the interaction potential,
while the first term in Eq. (1) is the normal Coulomb po-
tential. The dielectric constant c. is the only unknown in
this potential and may be treated as an adjustable param-
eter, along with the in-plane density, to yield a good fit to
the position and shape of the first sharp diffraction peak
(FSDP) in the liquid structure factor, S(q). e was empiri-
cally selected to be 2.35 for Rb and 1.80 for K; Q is the
charge transfer to the graphite from the alkali-metal
atoms, and Q =e, the electron charge, was used for a full
charge transfer of one electron. This may not be the
correct representation of our real system, but the Aexi-

bility of choice of c can compensate for the error caused
by taking Q =e. The calculations of the screened part of
the interaction pair potential is rather troublesome and
time consuming. A Lagrange polynomial was therefore
used to simplify our calculations for this potential and
the corresponding forces. The details are discussed in
Ref. S.

Another contribution to the single-particle potential is
the modulation potential produced by the periodic graph-
ite substrate shown below, which comes from a theory
developed by Reiter and Moss

V (r ) =g VHKexp(iqH~ r),
HK

(2)

III. CONSTANT-TEMPERATURE MD
AND THE ENERGY HISTOGRAM METHOD

We note that, in the 2D case, T=Ek/kX, where k is
the Boltzmann constant and X is the total number of
atoms in the computer model system, if constant temper-

where VHK's are the Fourier coefficients at the HK
graphite reciprocal-lattice rod, which were determined
experimentally in the liquid Rb- and K-GIC's state, '
qHK is a reciprocal-lattice vector of graphite, and r is a
positional vector of an atom. It v as found that only a
few coefficients VH&'s are appreciably different from
zero. Therefore, this potential is actually a sum of a limit-
ed number of sinusoidal functions with the correspond-
ingly nonvanishing strengths of amplitudes. This part of
the potential plays an important role in the incommensu-
rate structure at low temperature and in the formation of
the variety of complicated diffraction patterns, as shown
in Fig. 2.

where q, is the coordinate, p,. is the momentum of the ith
particle, and P is the potential. Due to the relation of
E, =P, /2m, , the constraint of dT/dt =0 is thereby con-
verted into

dpi
gp; /m; =0,

dt
(4)

which leads to

Bga= —g p;/m;
Bq;

gp2/m;

In our case m; =m, the mass of a Rb or K atom. This
additional term in the equation of motion is actually a
constraint force which ensures the reality of constant
temperature in the MD simulation. It is the main
difference between the constant-temperature and
constant-energy MD simulations.

To determine the transition temperature, one can cal-
culate the constant volume specific heat which must have
a turn at the transition point. The location of this turn is
just the indication of the transition temperature. From
statistics, the specific heat at temperature T can be calcu-
lated from the relation of

C, = (E E)—
kT

E(TO)= QEPz (E, ), .

where Pz- is the probability distribution of energy at To.
0

In other words, with the histogram, one has the probabil-
ity distribution of the total energy and hence can calcu-
late the average energy at a certain temperature. This is
just the routine treatment for a canonical ensemble in sta-
tistical physics. In principle, the specific heat at different
temperatures can be evaluated by repetition of the above

where E is the total energy of the model system and E is
its average at temperature T. At equilibrium in the mod-
el system, one can obtain a set of total energies which are
separated by a time interval At, approximately equal to a
few hundredths of a picosecond (ps). It is then straight-
forward to make a histogram of energy in terms of the
obtained outputs of energy from the simulation. It is ap-
parent that this histogram is proportional to the proba-
bility distribution of energy, from which the average of
energy E can be evaluated for the particular temperature
at which the simulation was performed:



48 COMPUTER-SIMULATION STUDIES OF THE MELTING. . . 1855

procedures. It is, however, unnecessary to do so on the
computer for a variety of temperatures. Instead, one can
apply the energy histogram method, introduced by Fer-
renberg and Swendsen, ' to this problem. Since the
probability distribution of energy Pz at temperature T' is
associated with the distribution Pz- at temperature T, by
the relation below

Pz (E; )exp[E;(P' —P) ]
Pz-(E; ) =

QPz(E )exprE. (P' —P)]

SpeciHc Heat C lk
~ 0» &

~
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N(E; )exp(PE; )
Pr(E; )=

g N(EJ )exp(PEJ )
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and E,. is the total energy of the ith entity with an inter-
val of energy bE, and P= 1 lkT, k being the Boltzmann
constant, and the symbol of N(E; ) is the nu&nber of
configurations at the energy interval from E; to E;+DE
in the phase space, one is thus able to perform the calcu-
lations of the average energy E' at temperature T', as
shown above, and finally obtain the specific heat C, at
that temperature. In a rather large range of temperatures
across the transition, one may then obtain a set of C, 's at
a series of temperatures.

It has been shown' that the particular temperature at
which the MD simulation is executed to obtain informa-
tion for the energy histogram should be selected to be as
close to the transition temperature as possible. This im-
plies that, if one has no idea in advance about the transi-
tion temperature, several trials must be performed to ob-
tain a better result. Also, a small trick must be used
while calculating the probabilities, to avoid a tremen-
dously large value due to the possibly very large energy in
the exponential. This can be accomplished by multiply-
ing both numerator and denominator of the probability
expression above by a factor exp( i3E,„),where E,—„ is
the maximum energy involved in the system.

The MD simulation was carried out with several model
systems with 54, 96, 150, 216, 294, 384, 486, 600, 726,
and 864 Rb atoms, corresponding to 18X18, 24X24,
30X30, 36X36, 42X42, 48X48, 54X54, 60X60, 66X66,
and 72 X 72 unit cells of graphite on the 2D plane. As in-
dicated below in Sec. V, the system with 864 atoms gives
rise to the most consistent and satisfactory results for this
study. Because of the higher in-plane density of K atoms,
we tried the systems with 216, 225, and 235, correspond-
ing to KC», KC»», and KC» 02 atoms for the geometry
of 36X36 unit cells, and found that the in-plane density
of KC» 02 yielded a better transition temperature which
is closer to the experimental value than others (not shown
here). This is consistent with our earlier study. The re-
sults of C, for both Rb and K shown in Fig. 1 are, how-
ever, obtained from the 864 model system. The time step
At for both Rb and K is selected to be equal to 0.01 ps
and the temperature Auctuation, within which tempera-
ture is not rescaled, is 0.1 K. The final statistical value of

FIG. 1. The temperature dependence of the dimensionless
specific heat, C, /k, where k is the Boltzmann constant, for Rb
and K intercalated in graphite, obtained from the constant-
temperature MD simulation. The locations of the peaks indi-
cate a transition temperature of 158 and 119 K for rubidium
and potassium, respectively.

the specific heat was averaged over 30000 configurations.
It is equivalent to a time elapse of 300 ps.

The plot of C„vs T is shown in Fig. 1, which clearly in-
dicates the transition temperature of about 158 K for
Rb-GIC's and 119 K for K-GIC's. These values are in
agreement with the experimental data and with our pre-
vious results from S(q) using the constant energy MD
simulation for Rb shown in Figs. 3(a) and 3(b). Also,
they are in accord with the recent result from the exten-
sive constant energy MD simulation of RbC, 2 by Seong
et al. '

IV. CONSTANT ENERGY MD SIMULATION

The regular (constant energy) MD simulation was done
with a 216-Rb-atom model system in calculating the stat-
ic structure factor S(q), where q is the reciprocal-lattice
vector, as shown in Fig. 2 and reported before. We
show some earlier results which have not been published
and are included in this study in confirmation of the C„
results. The simulational parameters selected were stated
elsewhere. Here we reproduce only one of the plots
previously published, Fig. 2, in order to understand the
significance of Fig. 3. This figure is one quarter of a
reciprocal-lattice plane centered at the (00) point. The
Rb Bragg peaks (the strongest spots on the plot) of (01),
(10), and (ll) are shown on the corners of the large
rhombus and coincide with the graphite peaks which are
not shown. Other relatively weak spots are also contrib-
uted by Rb atoms, which clearly form a new rhombic
crystal structure at low temperature (Fig. 2) and become
a blurred or diffuse liquid halo pattern at room tempera-
ture. Due to the modulation of the graphite substrate,
each of the spots on the first ring of S(q) are split into
two symmetrical spots about the sixfold symmetry axes.
The half-angle made by the two radii from point (00) to
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plane density, KC» O2, to fit to the position and peak
height of FSDP of S(q). We also calculated the tempera-
ture dependence of the specific heat, C„ for this in-plane
density on a small model system with 235 K atoms (it
would be 216 atoms for the in-plane density of KC,2).
The plot of C, vs T indicates a transition temperature of
121 K, closer to the experimental value of 123 K than
that of KCl2. But for Rb, we did not try a higher in-
plane density, because the earlier MD simulation suggest-
ed that the in-plane density of RbC, z seemed to be a
reasonable selection.

Another aspect of our calculations worth mentioning is

20.0

FIG. 2. The anisotropic liquid S(q), where q is a reciprocal-
lattice scalar, at 154 K, from Rb as it would appear in a HK
section of a graphite sample crystal. Note the sharp Rb contri-
butions at the (10), (01), and (11) graphite Bragg positions, the
anisotropic modulated liquid scattering and the development of
halos about all (10) positions. [Note also the absence of a halo
about (11).] The ripple at the Bragg points is noise.
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the split spots is referred to as the rotation angle, which
remains constant in either disordered or ordered phase,
but jumps to another value across the transition tempera-
ture, as has been shown in experiments. ' ' It is not
difficult to roughly determine the transition temperature
by checking the change of the rotation angle. This was
done in Ref. 5 and shown in Figs. 3(a) and 3(b), in which
one can see that the value of the rotation angle is 15 at
temperatures equal to or above 165 and 10' at or below
154 K. This suggests a rough transition temperature of
160 K. A oner result could be obtained if one were to
simulate this pattern at temperatures between 165 and
154 K. However, it seems unnecessary to do so because
one can do this more precisely and economically with C„
as stated above. This last result is simply a by-product of
the previous simulation work, in which one was dealing
with a microcanonical ensemble where the total energy of
the selected model system is conserved according to the
classical Newtonian laws, while simultaneously, the ki-
netic energy, and hence temperature, changes in a rela-
tively large range. In other words, temperature shows a
rather large Auctuation about the desired value.

V. DISCUSSION

The results we present here are for the in-plane density
of -MC, 2, where M represents the alkali-metal atom, ei-
ther Rb or K. The calculated transition temperatures ap-
pear a bit smaller than those from experiments. This
seems to be due to the rather low in-plane density of K,
as has been noticed in the static structure factor of S(q),
where we have adapted a slightly larger potassium in-
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FIG. 3. (a) The angular distribution S(q) at T=300 (solid
line), 210 (dashed line), 165 (dot-dashed line), and 154 K (dotted
line) within a 60' segment of the first sharp diffraction peak
(FSDP) of S(q) about the origin (00) for the Rb sample. Note
that the rotation angle jumps across the transition temperature
T, and keeps its constancy either above or below T„respective-
ly. (b) The angular distribution S(q) at T=100 (solid line) and
85 K (dotted line) within a 60' segment of the FSDP about the
origin (00), again for Rb. The rotation angle is 10 at those tem-
peratures.
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the effect of the size of the model system. We have
shown here the outcomes of the largest model system,
with 864 alkali-metal atoms, from which the consistent
transition temperature was determined. However, for the
smaller systems, especially the systems with 54, 96, 150,
216, etc. atoms, the temperature dependence curves of C,
present either a "plateau" near the transition tempera-
ture or a double peak or a bump on a main peak. This
leads to difhculty in determining the transition tempera-
ture and critical properties. We suggest that this may be
caused by the boundaries of the small model systems. Al-
though periodic boundary conditions were always used in
the MD simulation, the percentage of the atoms which
are near the borders is too large for those small model
systems to properly mimic the real system. As mentioned

above, we have found that the system with 864 atoms is
the smallest model system to acquire satisfactory results
for the specific heat.
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