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Coulomb oscillation amplitudes and semiconductor quantum-dot self-consistent level structure
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We calculate conductance versus gate voltage for single-electron tunneling through a lateral semicon-
ductor quantum dot in the Coulomb blockade regime using the calculated self-consistent electronic
structure of the device. We show that variations in the level spacings result in an experimentally ob-
served but previously unexplained envelope modulation of peak amplitudes. We present a formula for
the activated component of peak conductance as a function of level spacings and tunneling coefficients.

Capacitive lifting of the Coulomb blockade for tunnel-
ing in the linear source-drain bias regime through a la-
teral quantum dot defined electrostatically on a GaAs-
Al, Ga, „As two-dimensional electron-gas (2DEG) het-
erostructure, achieved via a metal gate positioned near
the dot, results in a series of nearly equally spaced reso-
nances of varying heights. ' Though many of the
features of these "Coulomb oscillations, " notably the
periodicity, are accounted for by the semiclassical theory
which parametrizes the charging energy U(N), for N
electrons in the dot, in terms of the device self-capacity
and gate to dot capacitance and which is valid when the
temperature T is much greater than dot level broadening
due to interaction with the leads;" nevertheless, a strik-
ing structure in the oscillation amplitudes has gone unex-
plained. Furthermore, the semiclassical calculation re-
quires a set of dot energy levels c, , which must be as-
sumed to be independent of N. Heretofore no attempt
has been made to use realistic levels even for this "nonin-
teracting spectrum"; rather, a single constant level spac-
ing is usually assumed.

In this paper we present calculations of the self-
consistent electronic structure for a lateral GaAs-
Al„Ga& As quantum dot with N-70. This is a factor
of 5 larger than any results that we are aware of pub-
lished to date and is made possible by our procedure
for decoupling the planar and transverse parts of
Schrodinger's equation. Further, we derive a formula for
and calculate the dot-contact-gate free energy from these
self-consistent results. We thereby are able to compute
the linear response conductance of the device with realis-
tic N-dependent energy levels, c. (N), and without em-

ploying capacitance parameters. As in the semiclassical
calculations, the elastic couplings of the dot states to the
source (drain), I" ', remain as free parameters.

The principal result which we emphasize in this paper
is that multioscillation, "envelope" modulation of the os-
cillation amplitudes, which has frequently been observed,
results from thermally activated conductance through ex-
cited states of the dot combined with variations in the
level spacings and/or tunneling coef5cients. Further, in
contrast to an infinite 2DEG, the density of states (DOS)
in a dot is a highly inhomogeneous, rapidly increasing
function of energy. Consequently, the number of accessi-
ble total dot states (for fixed N) increases rapidly with T.

Numerically we find that, for a dot at the small size limit
of currently fabricated structures, Coulomb oscillation
envelope modulation from the DOS inhomogeneity alone
is observable for T down to 50 mK.

Our model, in the Hartree approximation, of a semi-
conductor quantum-dot device similar in proportions but
about 50% smaller than that devised by Kouwenhoven
et al. is schematically illustrated in Fig. 1(a). The cal-
culation, which we will describe in more detail else-
where, is similar to those in the literature. However, in
order to solve Schrodinger's equation in the dot region
for large N, rather than solving on a three-dimensional
mesh as in Ref. 7, we compute an effective two-
dimensional potential by first solving (at each iteration)
the z-dependent Schrodinger equation at each point in
the 2D plane. The resulting multicomponent 2D equa-
tion is then diagonalized in a suitable basis (typically
Bessel functions). Poisson's equation must be solved on
the full 3D mesh, but we simplify the z dependence of the
dot electron density to a constant across a 200 A width.
We fix N and compute the chemical potential and the pla-
nar density by filling states according to a Fermi distribu-
tion [see discussion below Eq. (1)] of typically 0.5 K.
Each level is treated as spin degenerate.

For a given [N, V;], where V, are the voltages applied
to the gates [Fig. 1(a)], we calculate the total free energy
of the dot-contact-gate system as follows. In its most
general form the total electrostatic energy for the system
can be written W= —,

' fdrp(r)P(r), where p(r)=p, &(r)

+p;,„(r)+p,„,(r) is the sum of dot electron, donor ion,
and contact-gate charge densities, respectively. For p;,„
and p, i, P(r) is taken as the self-consistently computed
potential, P„(r). For induced charges on gate (or con-
tact) i, P(r) = V;. We sum the dot electron energies and
compensate for the double counting of the electron-
electron interaction. The free energy must also account
for the work done by the power supplies to charge the
contacts, whereby we obtain

F( [n ],N, V, )=gn e„——,
' jdr p,&(r)P„(r)

+—' drp r r ——' V

where [n„] specifies the occupancies of the dot levels, Q,
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is the induced charge on gate (or contact) t, and p, ~, P„,
Q, , and E depend implicitly on I N, V, I.

We assume in Eq. (1) and below, where we calculate
the temperature-dependent conductance, that small
(thermal) variations in the level occupancies negligib y1

affect the self-consistent structure terms (E, P„, p, ~, and
Q, ). This is well known for self-consistent studies of het-
erostructures' and, since our temperature range does not
exceed a few K it is physically reasonable here. We find
empirically that performing the electronic structure cal-
culation at various temperatures below 4 K causes, in
particular, essentially no change in the level spacings.

In the low-temperature and source-drain bias Limit,

tunneling through a dot which initially contains Xo elec-
trons is allowed only at discrete voltages which satisfy

AFO —=Fo(No+ 1, Vc ) Fp(Np, Vc ) EF =0 (2)

where Fo(N, Vc) is by definition the free energy computed
from Eq. (1) with n =1 b'p ~N and =0 otherwise. Here
and below all gate voltages except Vz are held fixed.

The conductance of the dot as a function of gate volt-
age can be obtained by modifying the semiclassical re-
sult ' to the following:"

2 I,'r,'G(V )= QP (In I )+5„o f(F([n;+pI, N+I, Vc) F(In; I, N, Vc) EF),—c k T eq i n, O +&++d
n,.

(3)

where the first sum is over dot level occupation
configurations and the second is over dot levels. The
equilibrium probability distribution P, ( I n; I ) is given by
the Gibbs distribution, f is the Fermi function, EF is the

s(d)Fermi energy of the source and drain, and I are the
elastic couplings of level p to source (drain). The nota-
tion I n; +p I denotes the set of occupancies [n; I with the
pth level, previously empty by assumption, filled.

To summarize, we choose a set of device parameters
[Fig. 1(a)j and, on a grid of Vc and N values solve self-
consistently for E„, Q; (from the surface electric fields),

p,&(r), and P„(r). We then solve Eq. (3) numerically, us-
ing Eq. (1) to compute F( I n; I,N, Vc ).

Figure 1(b) shows P„(r) at the 2DEG level for N =50
and V~= —0.49 V. Screening of the donors across the
dot center results in a potential which is roughly 20 Hat
bottomed parabolic. In the Vc-N plane Eq. (2) is satisfied
along the T=0 "resonance curve" (inset Fig. 2). The
nonlinear dependence of Vc on X shows that for our
small dot the change in area, and hence the change in dot
to gate capacitance, is non-negligible.

The spectrum along the resonance curve is plotted in
Fig. 2. Triangles mark the Xth or "quasi-Fermi" level,
EF*. All depicted levels are in the lowest z subband,
whose energy is =2 Ry*. Below N =58 (Vc & —0.4 V)
the levels tend toward the degeneracies characteristic of a
bare 2D parabolic potential (1,2,3, . . .). More negative
gate voltages (Vc ~ —0.55 V) distort the dot and lift the
degeneracy of the higher states. At higher N the elec-
trons screen the parabolic potential and the spectrum
rejects the fatness at the center. The precise form of the
spectrum will be affected by a realistic z dependence of
the wave functions and charge distribution, by details of
the donor configuration and by exchange-correlation
effects, ' all of which we have neglected. Note, however,
that although gate C [Fig. 1(a)) asymmetrically biases the
dot the levels change smoothly and no "chaotic" varia-

13tion, as discussed by Jalabert, Stone, and Alhassid, is
observable. We believe that the assumption which those
authors make of a fIat-bottomed, infinite hard-wall poten-
tial produces anomalous sensitivity to small variations in
confining shape.
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FIG. l. (a) Quantum-dot single electron tunneling device
model showing surface gate configuration and parameters used
in these calculations. (b) Self-consistent electrostatic potential
contour for N =50 and V& = —0.49 V at the 2DEG level. Con-
tours are in Ry*. Surface gate positions (1200 A above the
2DEG level) are labeled.

The conductance as a function of gate voltage corre-
sponding to the spectrum in Fig. 2 is shown in Fig. 3 for
T=0.25 K (k~T=0.004 Ry*). For comparison with the
level spacings in Fig. 2 we have set all the tunnel
coefIicients to unity. The envelope structure of the oscil-
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Eq. (3) and compare with the behavior expected from Eq.
(5) with the appropriate level spacings (Fig. 2) inserted.
(Again, the 1 's are set to unity. ) For sufficiently
low temperature, we have from Eq. (5) that
(r)/BP) ln[g(VC", T)/2~]~ —6 '" where b, '" is the
smaller of the two level spacings in Eq. (5). Thus in Fig.
4 we plot ln[g( Vc", T)/2m] [this is computed from the
full numerical solution of Eq. (3) at a variety of tempera-
tures] versus P for a variety of the resonances in Fig. 3.
The low-temperature limiting values of the slopes of each
curve, along with the values of 6 '" from the level spac-
ings, are noted. Note that where the level spacing is large
(in particular Xo =62 and 61), activated conductance
from all but the nearest level quenches at relatively high
temperatures.

Approximate symmetries (e.g. , azimuthal) in the
con6ning potential and the "soft" walls of the dot lead to
a highly nonuniform energy spectrum with levels becom-
ing overall more closely spaced with increasing energy
(Fig. 2). This bunching of levels tends to lower the tem-
perature of the regime where oscillation amplitudes
represent only an individual I . Further, while activated
tunneling is suppressed by the Boltzmann factors in Eq.
(5), the combinatorial prefactors b, reflect the rapid in-
crease with thermal energy in the number of accessible
total dot states and hence conducting channels. Our cal-
culations show that even for this small dot some oscilla-
tions possess a significant activated component down to
50 mK (Fig. 4).

While our numerical conductance results focus on the
inhuence of level spacing on the resonance amplitudes,
both varying level spacings and varying tunnel
coefficients, through the correlating effect of thermal ac-
tivation, impart an envelope modulation to the oscilla-
tions. From any prescribed set of level spacings and tun-
neling coefficients, [h~, 1 ] Eqs. (4) and(5) can be used to
compute the "turn on" of activated conductance as the

temperature is raised. Conversely, a detailed study of the
temperature dependence of a consecutive series of oscilla-
tions can be fit with Eqs. (4) and (5) to deduce both the
I 's and the LV's. Though temperature dependence of in-
dividual oscillations has been published, ' we propose that
this experiment, by examining the correlated temperature
dependence of a series of resonances, will uncover a
wealth of information on quantum-dot electronic struc-
ture which can be compared with that from other probes,
such as nonlinear transport measurements. ' Quite possi-
bly the necessary data have already been accumulated al-
though, in the absence of a simple expression relating am-
plitudes to level spacings and tunnel coefficients, they
have not been fully analyzed.

In conclusion, we have computed the self-consistent
spectrum for a lateral semiconductor quantum dot for
electron number of order 70. We have derived a formula
for the interacting dot/contact/gate system free energy in
terms of the electronic structure results. We have com-
puted the linear response conductance through the dot
and shown that level spacing and combinatorial factors
produce a larger than expected thermally activated com-
ponent of the current. We have demonstrated that experi-
mentally observed correlation and envelope modulation
of peak amplitudes is a thermal effect resulting from vari-
ations in the level spacings and/or tunneling coefficients.
We derive a formula for peak amplitude temperature
dependence which can be compared directly with experi-
ment to independently determine the Fermi surface level
spacings and tunneling coefficients.
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