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Collective excitations in metallic graphene tubules
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The collective modes of coaxial-graphene-tubule systems are calculated using both classical and
quantum-mechanical approaches. While the derived results are valid for any number of coaxial tubules,
the numerical results for the dispersion relations of the plasmons are presented for a system consisting of
four graphene tubules for various values of the azimuthal quantum number m. The lowest modes
(m =0) are found to be quasiacoustic, like the one-dimensional plasmons, whereas the higher modes are
of optical nature. For each m, the number of observable modes is equal to the number of tubules having
a metallic character. The effect of the intertubule interactions is a broadening of the frequency range of
the m modes. This broadening remains important so long as the p,asmon momentum is significantly
smaller than the Fermi momentum.

The recent discovery' that the arc-discharge ap-
paratus used for fullerene synthesis can also produce hol-
low tubules of graphitic carbons of up to a micrometer in
length and several nanometers in diameter has led to
much investigation of the properties of these nanotubes.
It has been determined by electron-diCraction and mi-
croscopy experiments' that the tubules grow on the
cathode of the discharge apparatus with their axes along
the direction of the electric field and that a single needle
can, in fact, consist of several coaxial tubules with the
spacing between two successive tubes comparable to that
between the layers of graphite. While the original experi-
ments suggested that the ends of the tubules are closed off
with carbon atoms arranged in pentagons, recently it has
been found that occasionally these tubes can be open
ended at least at one end. It is also known that the
carbon-atom hexagons forming each tubule are, in most
cases, arranged such that they form a helix about the tu-
bule axis. More recently Ajayan and Iijima have noticed
capillarity-induced filling of the graphene tubules and
have been able to produce lead wires of just two to three
atoms across, giving credence to much speculation about
the possible applications of these graphitic structures.

The unusual structural characteristics of the nanotubes
have prompted various theoretical investigations of their
electronic properties. In three recent papers Mintmire,
Dunlap, and White, Hamada, Sawada, and Oshiyama,
and Saito et al. have made first-principles calculations
of the band structure of the graphene tubules. The form-
er authors concluded from their local-density-functional
calculation that some fullerene tubules may show a zero-
band-gap or metallic behavior well below room tempera-
ture. The second group studied the variation of the band
structures on the basis of the degree of helical arrange-
ment of the carbon hexagons. In particular they have
shown that if the configuration of the tubule is 8(2, 1)N
which corresponds to the axis of the tubule being normal
to the C-C bond, the tubules will be metallic as was also

found by Mintmire, Dunlap, and White for a sample
with %=5. Using a simple tight-binding model the third
group obtained results which agree with those of Refs. 7
and 8. In a recent paper Lin and Shung' have calculated
the elementary excitations of an electron gas confined in a
cylindrical tubule within the random-phase approxima-
tion (RPA), and have presented numerical results for a
single tubule and two coaxial tubules. However, their
electron gas has an extremely low density compared to
the metallic densities considered here.

In this paper we show that the theoretical study of the
collective modes (plasmons) of a coaxial tubule system
such as the graphene nanotubes can be performed by us-
ing either a classical or a quantum approach. The classi-
cal method presents certain advantages over a quantum
calculation, such as the one performed by Lin and
Shung. ' These advantages are due to the particularly
straightforward character of a classical calculation,
which can, in fact, be extended rather easily to various
situations such as increasing number of coaxial tubules,
density of conduction electrons varying from tubule to
tubule, background dielectric constants being different
for the intertubule and the intratubule interactions, etc.
Thus from a theoretical point of view, it is interesting to
develop the classical methods of investigation of those tu-
bules as far as possible paying special attention to their
mesoscopic physical character. Such an approach is par-
ticularly suitable for the tubules having a metallic charac-
ter.

However, the importance of the quantum approach
should not be underestimated. First, it determines the
range of validity of the classical description of the collec-
tive modes. Second, the damping of these modes is
indeed related to the possible electron-hole pair excita-
tions, which can be properly accounted for only in a
quantum calculation. We will thus start by a short pre-
sentation and discussion of the quantum RPA calculation
as applied to an isolated tubule.
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where I and K are the modified Bessel functions.

II(Q, co) is the electron-hole propagator, the real part of
which can be written in the usual form as

ReII(Q, co)= —2/(2~) S~[g(E~ E)—g—(E —E )]

X(co bE)— (3)

where one has

S . =& dk. . .
K

m'

E~ =k~ /2m *,
E+ =E(K+Q/2),

b E =E+ E=[mm '—la + kq ] lm * .

The summation-integration SK is performed over the
occupied states as indicated by the step functions 0
(which also means that the system is at zero tempera-
ture). The calculation of ReII(Q, co) using (3) is rather
straightforward, if we only keep the lowest-order term in
bE, by assuming ~Q~ ((k~, i.e., replace 1/(co b,E) by—
AE/co . One then obtains

ReII(Q, co)= —Q R/(m m*co )

with

(4)

The one-electron states in a long tubule of radius a can
be described by the two-dimensional (2D) wave function

1/(2rr+a )exp(iK x),
where one has K x=m'P+kz in cylindrical coordinates,
the electron momentum being K= ( m '/a, k ) with the en-

ergy E(K ) = [(m '/a ) +k ]/2m *, m ' being an integer
(the azimuthal quantum number), and m* the electron
effective mass. If Q = (m /a, q ) is the momentum transfer
appearing in the (complex) dielectric function s(Q, co), the
dispersion relations for the plasmon frequencies are ob-
tained by solving ReE(Q, co) =0, or more precisely from

so+ V(Q) ReII(Q, co) =0 .

Here co is the background dielectric constant, and V(Q)
is the Fourier transform of the Coulomb potential in cy-
lindrical coordinates having the following form:"

V(Q) =4vre I (aq )K (aq ),

electron gas, the Fermi momentum is related to the 2D
electron density n by kF =2mn, , and for a graphene tubule
one has n=vnc where v is the number of conduction
electrons released per carbon (C) atom and
n c=(4/3&3)/s =0.38 A is the density of C atoms
[two C atoms per hexagonal units with s (=1.42 A) as
the C-C bond length]. From these expressions one ob-
tains kz = 1.55 A 'V'v. Note that for v= 1 and an
effective mass equal to the bare electron mass m„one ob-
tains EF=9.14 eV which is in good agreement with that
of Mintmire, Dunlap, and White who suggest EF=9.6
eV. Concerning the radius a of the tubules we can use
the results presented by Hamada, Sawada, and Oshiya-
ma who have shown that the most favorable structure
for the metallic tubules is the B(2, 1)N structure (using
the notations and indices proposed by these authors).
This corresponds to a structure without helicity and with
the C-C bonds perpendicular to the tubule axis. One then
has 2+a =3Ns where N is an integer. These expressions
for a and kz give akim =1.05N&v, a quantity much larger
than one, even for the smallest possible tubule (N =5). It
is also interesting to mention that in a coaxial tubule sys-
tem, the intertubule distance, yielded by theory and ob-
servation, is 3.39 A, a distance that is to be compared

0

with the distance 3.35 A separating the graphene sheets
in natural graphite. ' This shows that from one adjacent
tubule to another, N varies in steps of 5 units. This corre-
sponds to a radius increment b.a =(15/2n)s=3. 39 A.
The condition akF ))1 is thus well satisfied and the sum-
mation in (5) can be replaced by an integration. Such an
integration was not performed by Lin and Shung. '

Indeed these authors consider tubules where the electron
density is particularly weak (0.45 A per unit length),
their charge carriers being introduced by intercalation.
This corresponds to the weak 2D density, n =0. 11
A /N. Since N 5, this density is smaller than the
above metallic density n =nc=0. 38 A by at least one
order of magnitude. The validity of the RPA may be
questioned for such a low density.

Moreover, as we mention above, expression (4) of the
electron-hole propagator is correct as long as ~Q~ is
smaller than kF=1.55 A '. In other words, qua or m
cannot exceed kFAa =5, a number which will thus be the
upper limit for the validity of the computation presented
below regarding qua and m.

From (1), (2), and (6), one obtains the dispersion rela-
tion co = co (q ) with

m0

m= —m 0

2 1/2

(5)
[co (q)] =(4vre na/Eom*)Q I (aq)Ic. (aq) .

For m =0 and q =0, (7) yields'

mo being the largest integer smaller than akF. The sum-
mation in (5) can be replaced by integration correspond-
ing to a classical calculation if akF is large. One then ob-
tains R =m-akim /2, giving

ReII(Qco)= —Q akim/(2vrm co ) .

Let us now show that the condition akF ))1 is indeed
satisfied in the metallic tubules and thus establish the
range of validity of the classical calculation. In a 2D

coo(q =0)=compaq [2 ln(1. 123/aq ) ]'~z .

This is a quasiacoustic mode having the dispersion rela-
tion of a one-dimensional plasmon. ' Here the frequency

co' = [4me(n l2a )/Eom *]'r.
can be considered as the bulk plasmon frequency of an
electron gas having a 3D density n/2a. For q=0 and
m WO, using' Q I (aq )K (aq ) = m /2a, one finds
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co (0)=co'Vm (7b)

These modes ( m ~ 1 ) present an optical character.
These frequencies can be estimated numerically by as-
suming co= 1, v = 1, I *=m„and a =~ha. One obtains

co (0)=co~(m /r)'

with

co =[4me (n /2ha)/Eom*]' =8.81 eV .

(7c)

(9)

The extension of this RPA calculation to a system of
coaxial tubules requires the replacement of (1) by a more
general expression involving an intertubule Coulomb po-
tential"

I "d /dt (u xt)=V J d x'(e /Eo~x x'~)—

Xn, (x')V' u(x', t) . (10)

For conduction electrons confined in coaxial tubules, the
general density of electrons is given by

n„(x)= g n, 5(r —a, ),

V„(Q)=4me I (qa& )E (qa& )

and propagators II,(g, co) related to each tubule r (a &

and a & are the smallest and largest tubule radius a, or
a,., respectively). This requires a rather heavy calcula-
tion suggested in Ref. 10. However, we will now show
how such a calculation can be cut short and extended by
a systematic use of a classical model.

In a classical model one has to solve the following
equation of motion:

S, ~ =co (2/~')[m +(zw') ]I (z~&)It.' (zr) ), (15)

with z =qua.
Let us now mention that to return to the noninteract-

ing tubule system, we have just to cancel the off-diagonal
terms of (15). Hence, one will have

[~ (q)] =S„ (16)

which is in agreement with (7).
While the theory developed in this paper is valid for a

system with any number of coaxial tubules, for the pur-
pose of illustration we have carried out numerical calcu-
lations for a system with four coaxial tubules. The
dispersion curves given by (7) or equivalently (16) for a
noninteracting system are shown in Fig. 1, where an ap-
propriate choice of units [co is measured in (co /w) units
and q in (1/rba) units] yields "universal" curves in-
dependent of any choice of specific parameters such as ~.
For q =0, one obtains (7a) or (7b) which are related to the

tertubule interaction by canceling the o6'-diagonal terms,
we get expressions (7b) or (7a) for co.

The most interesting and easiest tubule coaxial systems
to investigate are those where the tubules have the
B(2, 1)N structure. They all are assumed to have the
same density n, and they are separated by the standard
intertubule distance b,a =(15/2m)s =3.39 A. In that
case, one has a, =3sN/2~ with N=NO+5r (r being a
positive integer and No =0, 1, 2, 3, or 4). We can assume
NO=0; this gives a, =rb, a. We can then replace (12) and
(13) by dimensionless expressions: co is measured in co

P
units, with co given by (9), and S„becomes

where n, is the 2D-electron density on the rth tubule
having a radius a, . Using the electron displacement
u(x, t)=uo(r) expi(mP+qz cot) in cyl—indrical coordi-
nates, where uo(r) is the 2D vector [(m /r)U(r), qU(r)],
(10) yields the secular equation

3

co U, = gS„U~, (12)

where U, = U(a, ) and

S„+=(4~e2/Eom')n+a, [(m/a, . ) +q ]

XI (qa & )E (qa) ) . (13)

S,q =m (a & /a ) ) [cour'] (14)

where co& is defined by (8). Moreover, if we cancel the in-

The eigenvalues co =[co (q)] obtained by solving (12)
represent the dispersion relation of the collective modes
(plasmons) of the interacting tubule system.

For a general situation the solution of (12) becomes a
computational problem which depends on the choice of
the a, 's and n 's. Before considering some particular sit-
uations, let us note that for each m value, the number of
allowed modes is equal to the number of conducting tu-
bules of the system, i.e., tubules with n, &0.

For q =0, 5,. simply becomes'

m=Q

I

10

FICi. 1. The plasmon dispersion curves for an isolated tubule
as given by (7). The lowest (m =0) mode is equivalent to a one-
dimensional plasrnon mode. For q =0, it has a pseudoacoustic
character as shown by (7a), whereas the other modes are optical
in nature. Because of the use of appropriate units shown along
the axes (with a=~ha), these curves do not depend on any
physical parameters.
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FIG. 2. The dispersion relations in (a) and

{b) are related to the four-tubule systems I and
II, respectively. They show the frequencies of
the collective modes for q =0. The white
squares are related to noninteracting tubules,
the numbers v. indicating their radii a =~ha.
The black squares show the frequencies when
the tubules interact. These latter frequencies
are obtained by solving (12), using (14).
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pseudoacoustic mode (m =0) or to the optical mode
(I%0), respectively.

In Fig. 2, we examine two particular systems (I and II).
Both are constituted of four B(2, 1)3r tubules, all having
the same density n of charge carriers. In system I, the ra-
dii of the tubules are given by a, =~ha with ~=1,2, 3,4,
and in system II by the same expression with ~=5,6, 7, 8.
First we consider the zero momentum situation which is
depicted in Fig. 2(a) for system I, and in Fig. 2(b) for sys-
tem II. The white squares connected by dashed lines are

related to the noninteracting tubules, as indicated by the
presence of the tubule indices ~. The ordinates of these
white squares are the same as those of the starting points
of the curves of Fig. 1 at q =0, as well as the ordinates of
the black squares (and solid lines), which correspond to
the interacting tubules. These latter points are obtained
by solving (12), using (14). We note that the range of the
frequencies (black squares vs white squares) becomes
more extended, once the tubules interactions are switched
on, and that this range is relatively more extended for
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FIG. 3. These figures contain the dispersion
curves for a four-tubule system with ~= S.
Each figure is related to a particular azimuthal
quantum number m. The dotted and solid
curves are related to the noninteracting and in-
teracting systems, respectively. The e8'ect of
the interactions is a broadening of the frequen-
cy range, especially for qua ~3. As a refer-
ence momentum, one has kF Aa =S.2S, for one
conduction electron released per carbon atom
(v=1).
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system I than for system II. This implies that the proper
frequencies of the tubules are closer in system II than in
system I, as shown by (7), and thus can resonate more
easily. We also note that this resonant interaction is rela-
tively stronger when m is small.

Figure 3 shows the effect of the interactions for q ~0.
Each diagram of Fig. 3 shows the plasmon dispersion re-
lation for a particular value of m and calculated for ~= S.
We chose such a presentation of our results (rather than
putting results of all m values in the same diagram), not
only to avoid any confusion due to superposition of a
number of curves belonging to different m's, but because
the different m modes can be excited selectively by means
of an incident radiation beam having the appropriate (cir-
cular) polarization. As expected we obtain four frequen-
cies for each m, the broken lines being for the nonin-
teracting case and the solid lines for the interacting case.
We note that the effect of the tubule interactions becomes
less important as q increases, as we have noticed a similar
effect for increasing m. For qua ~ 3, this effect becomes
negligible. As we have mentioned above, this corre-
sponds to q ~0.8 A, which is half the Fermi momen-
tum. Hence we are still in a region of the (q, co) space
where the plasmon excitations are not yet strongly
damped by the electron-hole excitations, and thus should
be observable. We also note that all curves of Fig. 3 tend
to the same limit for q large. This (observable) limit can
be obtained from the expression (15) for S„which be-
comes'

S„=co z&(r'/r)exp( —z ~r r—'~ )

for z (=qua) large, an expression independent of m.
Moreover the off-diagonal terms become negligible.
Hence for q large, all the dispersion curves represented in
Fig. 3 tend to

co (q)/co =[qua]'~

The two systems we have described are based on the
same assumption: the density n of the charge carriers is
the same in all the tubules. Actually that density may
vary from tubule to tubule, depending on their radius of
curvature a .

An experimental investigation of the evolution of the
collective modes, with regard to the composition of the
tubule system, should allow for the determination of the
radius (and hence band structure) for which these tubules
become metallic. The present theoretical analysis, and
more particularly the dispersion relations established
from (12) and (13), should facilitate such an investigation.
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