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A boson-expansion method is used to study one- and two-boson states in metallic clusters. A jel-
lium model and local-density-approximation energy-density-functional theory are the starting point
for obtaining the basic bosons describing electron excitations. A boson mapping allows one to diag-
onalize the residual interaction between bosons. For the example of the Na2q cluster, it is found
that strong anharmonic eKects appear in the electronic excitation spectrum.

I. INTRODUCTION

In recent years, photoabsorption experiments have
shown the existence of strong dipole modes in alkali metal
clusters. These plasmon modes are collective excita-
tions of electron-hole configurations which are rem-
iniscent of the well-known giant resonances (GR's) in
atomic nuclei. There are, of course, many analogies
between atomic clusters and nuclear systems, but also
important differences such as, for instance, the short-
ranged character of the nuclear interaction as opposed to
the long-range Coulomb force and the presence of a fixed
ionic potential inside the metalic cluster. Furthermore,
GR's of various multipolarities (L= 01,2, ,3. . .) are known
in nuclei while our present experience in atomic clusters is
restricted to dipole plasmons. Nevertheless, it is impor-
tant to exploit further the analogies and take advantage
of what is known in nuclei to gain better knowledge of
cluster properties.

A very interesting recent development in nuclear GR
studies is the experimental evidence of high-lying exci-
tations which can be interpreted as double GR excita-
tions, i.e. , two independent bosons built on top of each
other. This interpretation is supported by theoretical
models which predict the existence of harmonic multiple
boson vibrations. ' The spectrum of double GR states
in nuclei was studied in Ref. 12 using a boson expan-
sion scheme ' and an effective Skyrme interaction. It
was found that the shift of the eigenstates with respect
to the unperturbed two-boson energies was small and es-
sentially equal to the diagonal matrix elements of the
residual interaction between bosons. The admixture be-
tween different two-boson states turned out to be small
so that the harmonic picture was not destroyed by the
boson-boson interaction. In a subsequent paper the
direct electromagnetic decay of two-boson states to the
ground state was also studied and it was shown to be

appreciable.
The Skyrme-Hartree-Fock approach in nuclei is very

similar to the energy-density-functional approach based
on the local density approximation (LDA), which is used
in atomic clusters. Likewise, the random phase approx-
imation (RPA) with Skyrme interaction has its counter-
part in the time-dependent LDA (TDLDA). The TDLDA
can be used, in conjunction with the jellium model, to de-
scribe the dipole plasmons in clusters. Thus, it seems
interesting to generalize the TDLDA to study to what
extent the two-plasmon states can be harmonic by using
the same methods as in Ref. 12. To our knowledge, the
excitation spectrum of alkali-metal clusters in the energy
range around twice the photoabsorption peak has not
been explored experimentally yet and therefore one of
the goals of the present work is to make some predictions
based on a model which is admittedly phenomenological
but which is otherwise relatively successful in explaining
the photo-absorption peak and which does not necessi-
tate formidable computations.

In Sec. II we shortly recall the TDLDA, mainly to
define the notation and introduce the boson mapping we
use to build interacting two-boson states. In Sec. III
we present and comment on the results obtained in the
Na2i+ system. Finally, in Sec. IV some conclusions are
drawn.

II. OUTLINE OF THE METHOD

We shall use in all equations atomic units (e = m, =
5 = c = 1) for which energies are in units of 2B„=27.2 eV
and lengths in units of the Bohr radius a&& ——0.53 A, but
results will be expressed in eV and A. The starting point
is to write the energy E[p] of the system as a functional of
the electron local density p(r) and kinetic energy density
7.(r):

0163-1829/93/48(24)/18207(7)/$06. 00 18 207 1993 The American Physical Society



18 208 F. CATARA, PH. CHOMAZ, AND N. VAN GIAI 48

E[p] = f(p)d r

1
(r(r) +—

2
p(r) p(ri) 3d r'+ p(r)F„,(p) + p(r)V~(r) d r + EJ~,3

where

Ze

form which allows one to introduce easily multiple boson
states. Let us write down an effective Hamiltonian for
electrons in the form

(2)

H=Hp+ V
]

: aiai: +— Vi~ A;g
.. a,. a~agaj.2. .ill l

(5)

In Eq. (2) the P, 's are the single-particle (SP) wave
functions of the Z, occupied electron orbitals. The first
four terms of E[p] are, respectively, the electron kinetic
energy, the electrostatic electron energy, the exchange-
correlation energy, and the electron-ion energy. In the
framework of LDA, we adopt the Gunnarsson-Lundqvist
parametrization for the exchange-correlation energy
density f„,(p). The ionic component of the system is
described by the jellium model of a uniformly charged

1
sphere of radius B = r, Z3 (Z = Z for neutral clusters,
Z ) Z, for ionized ones), where r, is the Wigner-Seitz
cell radius corresponding to the studied atoms. The last
term EJ~ of Eq. (1) is just the Coulomb energy of the
jellium sphere. Furthermore, the electron-jellium poten-
tial Vg(r) is calculated simply by smearing the Coulomb
interaction over the jellium sphere.

The variational procedure applied to E[p] leads to the
Kohn-Sham equations

( Q2 P( ) d3 I V ( )
xc(P)

y ( )

= e;P;(r), (3)

whose self-consistent solution gives the complete set (oc-
cupied and unoccupied) of SP states. This determines
the ground state static properties in LDA. Furthermore,
dynamical properties such as excitation spectra and tran-
sition probabilities can be calculated in TDLDA using the
quasiparticle effective interaction derived from E[p]:

V(r, r')—:b f(p)

1 b2E„,(p)
l
r —r'

l
bpbp

The solutions of the TDLDA equations, using the
above inputs, lead to the usual jellium model descrip-
tion of plasmon modes in clusters. These solutions
(called RPA states in nuclei) behave like quasibosons.
In order to go beyond this single-boson picture, we shall
now reformulate the problem in a second quantization

where a,. (a, ) is the creation (annihilation) operator for
an electron in the SP state P;. The normal products
are defined with respect to the Slater determinant

l P)
representing the LDA ground state. The (direct) two-
body matrix elements are defined as

V~ ig = P,*. (r)P~(r')V(r, r')Pk(r)Pg(r')d rd rl.

An elementary excitation will be described as the pro-
motion of one particle from a SP state occupied in the
ground state (denoted in the following as 6) to an unoc-
cupied one (denoted by p). Let us denote by B &(Ap, ) the
creation operator of a particle-hole (p-6) pair coupled to
total angular momentum A and z component p:

At this point, it must be noted that the operators (7) be-

long to the set of more general operators B, (Ap, ), where.
i and j can be either occupied or unoccupied states, and
that the Hamiltonian (5) can be expressed in terms of
Bt (Ap) and B,~(.Ap) operators.

The p-6 states are obviously eigenstates of Hp, but the
residual interaction V will admix them. The TDLDA, or
RPA, consists in considering that eigenstates of the sys-
tem are linear superpositions of p-h, configurations built
on top of a correlated ground state

l
0):

where v = (N, A, p) denotes the quantum numbers of the
corresponding eigenstate and

Ot = ) [X„q Btq(Ap) +'( 1)"Y„„B„h,(Ay)]—.
ph

The correlated and uncorrelated ground states lo) and
lP) are, respectively, the vacuum for the operators 0„
and B„h(Ap):

o„lo) =o,

(1o)
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The amplitudes X and Y, as well as the energy hu of
the state ~g„), can be determined by solving the set of
equations

(B A) (Y ) q
—Y)

where A and B are matrices whose elements are

Ai, h„h, =(„—h,)» h.h, +V„h,h„,

sum w, +w„, , independently of A and p, . The inclusion of
the parts of the residual interaction which are neglected
in RPA, namely the Vp p p p, Vh h h h, Vp p p h, and

Vh, h, .h, p terms, introduces some mixing of the two-boson
states of Eq. (13) among themselves and with the one-
boson states of Eq. (8). Thus, an eigenstate of the total
Hamiltonian will be of the form

(14)

Bph, p' h' Vpp'; h h' ~

The solutions of Eq. (11) can be called one-boson
states since the operators Ot and 0 satisfy approxi-
mately boson commutation relations. A two-boson state
is de6ned as

and within RPA it will have an energy just equal to the

Solving the equations of motion in the space spanned
by the one- and two-boson states is a formidable task. A
way to simplify the problem is to replace the fermionic
operators 0 and B by other operators 0 and B satisfy-
ing exactly boson commutation relations. In principle,
there exist several ways of mapping exactly the space of
fermionic operators to that of bosonic operators. All
mappings imply representing fermionic operators by in-
finite series of bosonic ones. In practice, it is necessary
to truncate the series at some order. Here, we shall use
the following mapping:

Bt„(Ap,) : Bt„(Ap),

Bt„,(Ap) : ) ) A'A" ( 1)~ ~ + +—W(A'j A"j';j "A)(—1)" " (A'p, 'A" —p"
~
Ap)B„&„(A'p')B„h (A"p"),

hll Pl ~l Qll ~II

: ~hh ~~0~„0j
—) ) A'A" (—1)' ~ + W(A"jA'j';j "A)(—1)" " (A'p'A" —p"

~
Ap)B„„„,(A'p')B„(A"p,"),

pll P l ~l Q I I p!I

(17)

where A—:/2A + 1 and W is a Racah coefFicient. The
operators Ot are then defined exactly as in Eq. (9) using

the X and Y amplitudes of RPA, but with B and Bt
replacing B and Bt. The fermionic ground state ~0) is
also mapped onto the vacuum of the boson operators:
O. iO) = 0.

By the mapping (15)—(17) the Hamiltonian (5) is trans-
formed. into a boson Hamiltonian H, which is expressed
in terms of B and Bt. The matrix elements between
multiple boson states can be easily computed because the
Bogoliubov transformation (9) preserves Wick's theorem.
Therefore, the Hamiltonian H including the residual in-
teraction can be diagonalized in the one- and. two-boson
subspace leading to the energies and wave functions of
the excited states. It is then possible to calculate the
electromagnetic transition probabilities from the ground
state to the excited ones. The relevant expressions are
given in the Appendix.

III. R,ESULTS AND DISCUSSION

Starting from the energy functional (1) we have applied
the formalism sketched in the preceding section to the
Na2& + system, which is known to exhibit a giant dipole
resonance around 2.7 eV. The value of r, used in this cal-
culation is 3.93 a.u. The Kohn-Sham equations (3) are
solved self-consistently with a box boundary condition
at a radius B = 14 A and assuming spherical symmetry.
Then, the RPA-type equations (ll) are solved for difFer-
ent multipolarities (0 & A & 4) in order to obtain the
basis of one-boson states. In practice, the configuration
space must be truncated since its dimension determines
the size of the matrix equation (11). For each multipo-
larity we have checked that the solution of Eq. (11) in
the truncated space fulfills within 0.1'Fo the theoretical
energy-weighted sum rule (EWSR) of the corresponding
multipole operators, the EWSR being calculated exactly



18 210 F. CATARA, PH. CHOMAZ, AND N. VAN GIAI 48

in terms of moments of the electron static density {the
well-known f sum rule is just the EWSR in the special
case of dipole operator).

We find that for A ) 2 the one-boson excitation spec-
trum is almost identical to the p-h, spectrum, thus show-
ing little collectivity. In Table I we report the energy
and percentage of EWSR of the most collective states
(i.e. , those exhausting the largest fractions of EWSR)
with A = 0, 1, 2. For A = 1 the excitation spectrum is
largely dominated by a single peak at 3.03 eV, in rea-
sonable agreement with the experimental findings. The
A = 2 spectrum shows three peaks, very close to each
other, exhausting in total 86.4% of the corresponding
EWSR. The monopole strength is more fragmented with
seven states whose fractions of EWSR lie between 6%
and 27%. For convenience we have grouped neighboring
states into a single one at an energy equal to their cen-
troid energy (see the last column of Table I) and with
a strength such that this single state exhausts the same
fraction of EWSR as the sum of the original states.

Next, the boson-boson residual interaction is diago-
nalized in the space spanned by the one- and two-boson
states. The results, shown in Table II, are completely dif-
ferent from the corresponding ones in the nuclear case.
Indeed, looking at the 0+ states, we see that the double
giant dipole (GD) is completely spread over five states
whose energies range from 9.6 to 16.9 eV. Also the dou-
ble giant quadrupole (GQ) is quite fragmented, but it has
a large component in the state at 9.6 eV. Both states are
also quite mixed with the double monopole states, while
the mixing with the single monopole states is small. In
the case of 1 and 2+ states, the single GD and GQ
bosons, respectively, are mixed very little with the two-
boson states whereas the latter states are quite admixed
among themselves. However, each 1 or 2+ state is dom-
inated by a single component, at variance with the 0+
case. Looking in more detail into the various terms con-
tributing to the matrix elements of the Hamiltonian, it

TABLE I. Monopole, dipole, and quadrupole one-boson
states in Na2&+. Only states with the largest fractions of
EWSR are shown. The last column shows the centroid ener-
gies of groups of states.

0+ States 2 and 4 States

0

0

15—
MsMs

M, SM,
iM, Ms
M, M,

10 M, Ms

M, SMi

Q~Q
Ms

— DD
Ms5—
M,

/

/
/

i
/

FIG. 1. Positive parity states in one-boson plus two-boson
space. The boson labeling corresponds to Table II. The left
columns show the spectra of noninteracting bosons, the mid-
dle columns show the displacements caused by diagonal ma-
trix elements, and the right columns correspond to the results
of diagonalizing the Hamiltonian.

turns out that the vh, h, -y„h, terms are dominating over
all the other ones in this Na2i + case, contrarily to what
happens in nuclei.

In Figs. 1 and 2 represented are the unperturbed
energies, diagonal matrix elements of the Hamiltonian,
and eigenvalues obtained after diagonalization for posi-
tive and negative parity states, respectively. The most
striking result is the huge upward shift of the two-boson
states due to the diagonal matrix elements of the residual
interaction. This is at variance with our previous results
for the Ca nucleus obtained by starting from an en-
ergy density functional built from an effective Skyrme in-
teraction and using the same procedure as in the present
work. In Ref. 18 the same problem of the two-boson
spectrum in the Na2q+ cluster has been studied within
the same jellium model by using a method based on a
perturbative construction of periodic orbits of the time-
dependent mean field equations. The result is a very

J'll

0+
p+

0+
p+
0+

EWSR%
15.5
27.3

12.8
8.8
12.7

E {eV)
4.13
4.54

5.20
5.49
5.87

R {eV)
4.38

1, 2, and 3 States

15—
(D

10 M ~D

5
7

0+
p+

6.0
11.2

83.1

6.47
6.87

3.03 3.03

0
a5

0

MsD

M, @D

DQ

9
10
11

5.0
20.1
60.9

3.27
3.33
3.67

FIG. 2. Same as Fig. 1, but for negative parity states.
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small shift, in line with the findings of the same authors
in the nuclear case. This may be an indication that their
approach, which is expected to be more suited for states
of larger angular momenta because of its semiclassical
nature, is less appropriate in the present case especially
when the effects of the residual interaction are very im-
portant, as we find in metal clusters.

We have investigated the possibility that the large
shifts found in metal clusters could be due to the long
range of the interaction, in contrast with the nuclear case
where the interaction is short ranged. Replacing in V
the Coulomb interaction by a Yukawa form and adjust-
ing the range and strength parameters so that the vol-
ume integral inside the box of radius R is conserved, we
have calculated a few typical matrix elements contribut-

ing importantly to the boson-boson residual interaction.
The conclusion of this analysis is that the interaction
range is not the origin of the different behavior in nuclei
and clusters. On the other hand, examination of the X
and Y amplitudes of the bosons show that in the clus-
ter case, the Y amplitudes of the collective bosons are
somewhat larger than in the nuclear case where X am-
plitudes generally dominate. Since boson-boson matrix
elements are combinations of fermion-fermion matrix ele-
ments weighted by products of four X and Y amplitudes,
it is possible that contributions containing products of Y
amplitudes remain important in clusters while they van-
ish in nuclei. It is interesting to note that the occurrence
of large Y amplitudes indicates that the cluster ground
state

] 0) is strongly correlated. This can be related to

TABLE II. Energies and amplitudes [as defined in Eq. (14)] of eigenstates in the one-boson plus two-boson space.

E (eV)
4.22
5.36
6.57
9.60
10.33
11.57
12.65
12.94
13.79
14.70
16.93

()0'
Mg

—0.981
—0.141
0.044

—0.019
0.054

—0.053
—0.016
0.053

—0.070
0.030
0.030

states
M2

—0.118
0.976
0.115

—0.028
0.034

—0.068
—0.035
0.077
—0.83
0.017
0.007

M3
—0.042
—0.091
—0.983
—0.025
0.025

—0.044
0.005
0.101

—0.092
—0.005
—0.050

E (eV)
4.22
5.36
6.57
9.60
10.33
11.57
12.65
12.94
13.79
14.70
16.93

M& (SM&
—0.070
0.045

—0.036
0.026

—0.976
0.149

—0.006
—0.090
—0.025
0.060
0.068

M& (SM&
—0.055
0.073

—0.055
0.0003
0.188
0.928
0.091

—0.194
—0.062
0.144
0.158

M, (3M,
—0.014
0.032

—0.082
0.006
0.077

—0.214
—0.463
—0.796
—0.011
0.162
0.254

M, (3M,
—0.020
0.043

—0.031
—0.004
0.019

—0.227
0.869

—0.341
0.059
0.185
0.189

M& (3 M&
—0.005
0.020

—0.053
0.001
0.005

—0.064
—0.130
0.321
0.699
0.413
0.462

M3 (3 M3
0.002
0.004

—0.022
0.002
0.0003
0.004
0.031
0.054

—0.041
—0.728
0.681

D(3D
—0.098
0.077

—0.048
—0.374
—0.033
0.072
0.041

—0.264
0.648

—0.428
—0.401

QQ
0.063

—0.059
0.040

—0.926
—0.017
—0.021
—0.022
—0.094
—0.256
0.173
0.167

E (eV)
2.88
9.81
10.17
11.15
13.14

Mg (3D
0.122

—0.903
0.172

—0.246
—0.173

(b) I
M2 (3D

0.051
0.268

—0.194
—0.872
—0.359

states
M, @D
—0.009
0.053

—0.046
0.402

—0.913

DSQ
0.046

—0.218
—0.964
0.115
0.086

D
0.990
0.111
0.033
0.073
0.027

R (eV)
3.43
9.46
9.72
10.51
11.02
12.73

MgQ
0.098
0.029

—0.963
—0.004
0.209
0.134

(c)
M, Q

0.044
—0.003
0.239
0.231
0.893
0.302

2 states
Ms IIQ
—0.007
0.003
0.056
0.026

—0.339
0.939

D(3D
—0.066
0.234
0.061

—0.943
0.200
0.094

QQ
0.033
0.972
0.016
0.226

—0.051
—0.029

Q
0.991

—0.019
0.088

—0.080
—0.048
—0.012
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TABLE III. Electromagnetic excitation rate for the dipole
states of Table II(b). In the last column the rate associated
with the one-plasmon component of each state is reported.
For comparison we also report the rate for the single GD
collective state and for some noncollective 1 states.

GD

1 two-
plasmon

states

E (eV)
3.03
2.88
9.81
10.2
11.1
13.1

Rate
0.8142
0.6894
0.2228
0.1379
0.4380
0.2802

(sec )
x 10
x 10
x 10
x 10
x10 '
x 10

(one-plasmon
component)

0.6882 x 10
0.3408 x 10
0 3363 x 10
0.2162 x 10
0.4848 x 10

non-
collective

1
plasmon

5.10
5.55
5.75
5.98
6.13

0.7065 x 10
0.5070 x 10
0.2261 x 10
0.3936 x 10
0.4419 x 10

the fact that matrix elements of the residual interaction
between electrons are relatively large in comparison with
the typical level spacing of single-particle states, in con-
trast to the nuclear case. The level spacing depends on
the spatial size of the system, and this size is mainly
determined by the extension of the ionic background in
atomic clusters whereas in nuclei it is governed by the
self-consistent mean fieM.

Coming back to the figures, one can see that the en-

ergy splitting of the difFerent total angular momentum
components of the two-boson states is quite large. For
example, the D D unperturbed state at 6 eV is split
into the [D CR D]o at 13.6 eV and the [D C3 D]2 at 10.5 eV.
Similarly, the Q IRQ state at 7 eV is split into [Q CSQ]o at
10 eV, [QQ]2 at 9.5 eV and [Q Q]4 at almost the same
energy. For the negative parity states the shiA is again
quite large while the splitting is less pronounced than
in the previous case. Due to the large shift of some two-
boson states, just including the diagonal matrix elements
of the boson-boson interaction (middle columns of Figs.
1 and 2) results in a quite compressed spectrum in the
high energy region as compared with the unperturbed
spectrum. It is then an easier job for the nondiagonal
parts of the residual interaction to give rise to the large
mixing we pointed out before, in the discussion of the ta-
bles. The global picture thus emerging from our results
is highly anharmonic, in contrast with the nuclear case
where an almost perfectly harmonic two-boson spectrum
was obtained.

We have also calculated the transition rate for the di-
rect electromagnetic excitation of the 1 states of Table
II(b). The results are collected in Table III, where in
the last column we report the contribution from the one-
boson component. One sees that, for the highest levels,
there is an important constructive interference between
the one- and two-boson components. The lowest state,
which is essentially a pure one-boson, has the largest rate
as expected due to its collectivity. However, the electro-
magnetic dipole transition rate to the high-lying states is
also quite large and the contribution from the two-boson

component is very important. In Table III we show also
the rate for some 1 one-boson states, namely those ex-
hausting at least 1% of the dipole EWSR. Comparing
with the rate for exciting the two-boson state at 11.1
eV, one can see that it should be possible to detect and
isolate such a state from the background.

IV. CONCLUSION

In this work, we have investigated the possibility of
finding in atomic clusters harmonic excitations built out
of elementary modes such as the giant dipole mode.
Starting from an energy density functional and within
the jellium model, the elementary modes, or one-boson
states, are constructed using the TDLDA approach.
Some of these one-boson states can be quite collective
in the sense that they account for a large part of the
EWSR, which is also a reflection of the fact that their
wave function spreads over many PH components. This
is in particular the case of the giant dipole state which
is known experimentally. Using the one-boson states as
building blocks and applying a boson mapping method, it
is then possible to calculate the eigenstates of the system
in a subspace of interacting one- and two-boson states.
The merit of this method is that one can account for
correlations which are beyond the RPA picture without
having to perform heavy numerical computations.

The main result of the present study is that the har-
monic picture does not apply to the excitation spectrum
of electrons in alkali-Inetal clusters. Unlike the situa-
tion in atomic nuclei where the giant resonance modes
do not experience strong correlations among themselves,
the quasibosons in clusters have large mutual interac-
tions. As a consequence, one does not find in the excita-
tion spectrum around twice the energy of the photoab-
sorption peak states which could be identified as twice
the dipole plasmon. On the contrary, one finds that two-
boson states are generally shifted strongly upwards from
their unperturbed positions and they are largely admixed
among themselves. Looking more particularly at dipole
states, it is found that some of the states at rather high
excitation energy (3 to 4 times the photoabsorption peak
energy) have a sizeable electromagnetic transition rate.

The present results have been obtained in the frame-
work of the jellium model and an LDA energy den-
sity functional. These calculations could also be done
in a Hartree-Fock-RPA approach based on the jellium
model. At the level of single-boson states, TDLDA
and Hartree-Fock-RPA predictions are rather similar and
therefore we do not expect that the large anharmonicities
would be much difI'erent if one starts from the Hartree-
Fock approach. Another point which would deserve fur-
ther study is the fact that in this work, the exact boson
mapping was truncated at second. order and it would be
interesting to investigate the efI'ects of the next orders.
Again, it seems unlikely that the anharmonic behavior
wouM be much reduced by these efI'ects.
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APPENDIX

Here we derive the necessary expressions for calculat-
ing the electromagnetic transition rates from ground to
excited states. First, we decompose the electromagnetic
transition operator into multipoles

». = A ').(~ II » II &)I3.'t. (»)

where (nllTIIP) is the reduced matrix element of the 2"-
pole operator and the indices n and P can run over both
particle and hole states. In order to disentangle the dif-
ferent excitation mechanisms, we separate the rnultipole
operators into a sum of three parts:

T„("„)= A ') (p II Tp
I
h)Bt„(Ap)

ph

+(h II T~ II p)&~„(AI )

B(i -+ 0) = 87r(A + 1) K2~+'

A [(2A + 1)!!]2 h
IM, I',

where K = ui /hc. For the one-boson components of the
states of Eq. (14) we have i = v and

and use Eqs. (15)—(17) to express the Bt„and B&~& op-
A n

erators in terms of B„h and Bph. The latter operators

can then be expressed in terms of O~ and O. The tran-
sition amplitude M can be easily evaluated by using the
boson commutation relations of the Ot and O. Starting
from the ground state, the T~P "~ term can only excite
a one-boson state while T~" p~ and T~" "~ give rise to a
direct excitation of the two-boson states. The transition
rate for the excitation of a state i from the ground state
in the long wavelength limit jp(Kr) (Kr) /(2A + 1)!!
is"

»'„"' = A ').(p II T~ Ilp')&„'„(AI )
pp'

).&p II
r"&~ II h) (~,"~ —&p~)

sr A 2

T„„=A ') (h, II Tp II 6')B„„,(Ap)
while for two-boson components i = [vi I3 v2]p and

A A

—).(
—I)' ' (p llr'» ll p')

2 A 1+b„, , i

X W(A2jAij ~ j A)Y h~&X Ii gi + ( 1) W(AijA2j ~ j A)Y p
pre Ii Ig

+ ) (—I)~-~ (h, II r"V„
II h, ') W(A»A, J';&"A)V„;;„,W„;;„+( I)" +"+"W—(A»A»'; J"A)V„;;„,X„;;„

hh'p"
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